linux/fs/f2fs/inline.c
Jaegeuk Kim bce8d11207 f2fs: avoid deadlock on init_inode_metadata
Previously, init_inode_metadata does not hold any parent directory's inode
page. So, f2fs_init_acl can grab its parent inode page without any problem.
But, when we use inline_dentry, that page is grabbed during f2fs_add_link,
so that we can fall into deadlock condition like below.

INFO: task mknod:11006 blocked for more than 120 seconds.
      Tainted: G           OE  3.17.0-rc1+ #13
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
mknod           D ffff88003fc94580     0 11006  11004 0x00000000
 ffff880007717b10 0000000000000002 ffff88003c323220 ffff880007717fd8
 0000000000014580 0000000000014580 ffff88003daecb30 ffff88003c323220
 ffff88003fc94e80 ffff88003ffbb4e8 ffff880007717ba0 0000000000000002
Call Trace:
 [<ffffffff8173dc40>] ? bit_wait+0x50/0x50
 [<ffffffff8173d4cd>] io_schedule+0x9d/0x130
 [<ffffffff8173dc6c>] bit_wait_io+0x2c/0x50
 [<ffffffff8173da3b>] __wait_on_bit_lock+0x4b/0xb0
 [<ffffffff811640a7>] __lock_page+0x67/0x70
 [<ffffffff810acf50>] ? autoremove_wake_function+0x40/0x40
 [<ffffffff811652cc>] pagecache_get_page+0x14c/0x1e0
 [<ffffffffa029afa9>] get_node_page+0x59/0x130 [f2fs]
 [<ffffffffa02a63ad>] read_all_xattrs+0x24d/0x430 [f2fs]
 [<ffffffffa02a6ca2>] f2fs_getxattr+0x52/0xe0 [f2fs]
 [<ffffffffa02a7481>] f2fs_get_acl+0x41/0x2d0 [f2fs]
 [<ffffffff8122d847>] get_acl+0x47/0x70
 [<ffffffff8122db5a>] posix_acl_create+0x5a/0x150
 [<ffffffffa02a7759>] f2fs_init_acl+0x29/0xcb [f2fs]
 [<ffffffffa0286a8d>] init_inode_metadata+0x5d/0x340 [f2fs]
 [<ffffffffa029253a>] f2fs_add_inline_entry+0x12a/0x2e0 [f2fs]
 [<ffffffffa0286ea5>] __f2fs_add_link+0x45/0x4a0 [f2fs]
 [<ffffffffa028b5b6>] ? f2fs_new_inode+0x146/0x220 [f2fs]
 [<ffffffffa028b816>] f2fs_mknod+0x86/0xf0 [f2fs]
 [<ffffffff811e3ec1>] vfs_mknod+0xe1/0x160
 [<ffffffff811e4b26>] SyS_mknod+0x1f6/0x200
 [<ffffffff81741d7f>] tracesys+0xe1/0xe6

Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2014-11-03 16:07:33 -08:00

566 lines
14 KiB
C

/*
* fs/f2fs/inline.c
* Copyright (c) 2013, Intel Corporation
* Authors: Huajun Li <huajun.li@intel.com>
* Haicheng Li <haicheng.li@intel.com>
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
bool f2fs_may_inline(struct inode *inode)
{
block_t nr_blocks;
loff_t i_size;
if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
return false;
if (f2fs_is_atomic_file(inode))
return false;
nr_blocks = F2FS_I(inode)->i_xattr_nid ? 3 : 2;
if (inode->i_blocks > nr_blocks)
return false;
i_size = i_size_read(inode);
if (i_size > MAX_INLINE_DATA)
return false;
return true;
}
int f2fs_read_inline_data(struct inode *inode, struct page *page)
{
struct page *ipage;
void *src_addr, *dst_addr;
if (page->index) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
goto out;
}
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage)) {
unlock_page(page);
return PTR_ERR(ipage);
}
zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
/* Copy the whole inline data block */
src_addr = inline_data_addr(ipage);
dst_addr = kmap(page);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
kunmap(page);
f2fs_put_page(ipage, 1);
out:
SetPageUptodate(page);
unlock_page(page);
return 0;
}
static int __f2fs_convert_inline_data(struct inode *inode, struct page *page)
{
int err = 0;
struct page *ipage;
struct dnode_of_data dn;
void *src_addr, *dst_addr;
block_t new_blk_addr;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_io_info fio = {
.type = DATA,
.rw = WRITE_SYNC | REQ_PRIO,
};
f2fs_lock_op(sbi);
ipage = get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto out;
}
/* someone else converted inline_data already */
if (!f2fs_has_inline_data(inode))
goto out;
/*
* i_addr[0] is not used for inline data,
* so reserving new block will not destroy inline data
*/
set_new_dnode(&dn, inode, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, 0);
if (err)
goto out;
f2fs_wait_on_page_writeback(page, DATA);
zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
/* Copy the whole inline data block */
src_addr = inline_data_addr(ipage);
dst_addr = kmap(page);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
kunmap(page);
SetPageUptodate(page);
/* write data page to try to make data consistent */
set_page_writeback(page);
write_data_page(page, &dn, &new_blk_addr, &fio);
update_extent_cache(new_blk_addr, &dn);
f2fs_wait_on_page_writeback(page, DATA);
/* clear inline data and flag after data writeback */
zero_user_segment(ipage, INLINE_DATA_OFFSET,
INLINE_DATA_OFFSET + MAX_INLINE_DATA);
clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
stat_dec_inline_inode(inode);
sync_inode_page(&dn);
f2fs_put_dnode(&dn);
out:
f2fs_unlock_op(sbi);
return err;
}
int f2fs_convert_inline_data(struct inode *inode, pgoff_t to_size,
struct page *page)
{
struct page *new_page = page;
int err;
if (!f2fs_has_inline_data(inode))
return 0;
else if (to_size <= MAX_INLINE_DATA)
return 0;
if (!page || page->index != 0) {
new_page = grab_cache_page(inode->i_mapping, 0);
if (!new_page)
return -ENOMEM;
}
err = __f2fs_convert_inline_data(inode, new_page);
if (!page || page->index != 0)
f2fs_put_page(new_page, 1);
return err;
}
int f2fs_write_inline_data(struct inode *inode,
struct page *page, unsigned size)
{
void *src_addr, *dst_addr;
struct page *ipage;
struct dnode_of_data dn;
int err;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
if (err)
return err;
ipage = dn.inode_page;
/* Release any data block if it is allocated */
if (!f2fs_has_inline_data(inode)) {
int count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
truncate_data_blocks_range(&dn, count);
set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
stat_inc_inline_inode(inode);
}
f2fs_wait_on_page_writeback(ipage, NODE);
zero_user_segment(ipage, INLINE_DATA_OFFSET,
INLINE_DATA_OFFSET + MAX_INLINE_DATA);
src_addr = kmap(page);
dst_addr = inline_data_addr(ipage);
memcpy(dst_addr, src_addr, size);
kunmap(page);
set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
sync_inode_page(&dn);
f2fs_put_dnode(&dn);
return 0;
}
void truncate_inline_data(struct inode *inode, u64 from)
{
struct page *ipage;
if (from >= MAX_INLINE_DATA)
return;
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage))
return;
f2fs_wait_on_page_writeback(ipage, NODE);
zero_user_segment(ipage, INLINE_DATA_OFFSET + from,
INLINE_DATA_OFFSET + MAX_INLINE_DATA);
set_page_dirty(ipage);
f2fs_put_page(ipage, 1);
}
bool recover_inline_data(struct inode *inode, struct page *npage)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode *ri = NULL;
void *src_addr, *dst_addr;
struct page *ipage;
/*
* The inline_data recovery policy is as follows.
* [prev.] [next] of inline_data flag
* o o -> recover inline_data
* o x -> remove inline_data, and then recover data blocks
* x o -> remove inline_data, and then recover inline_data
* x x -> recover data blocks
*/
if (IS_INODE(npage))
ri = F2FS_INODE(npage);
if (f2fs_has_inline_data(inode) &&
ri && (ri->i_inline & F2FS_INLINE_DATA)) {
process_inline:
ipage = get_node_page(sbi, inode->i_ino);
f2fs_bug_on(sbi, IS_ERR(ipage));
f2fs_wait_on_page_writeback(ipage, NODE);
src_addr = inline_data_addr(npage);
dst_addr = inline_data_addr(ipage);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
update_inode(inode, ipage);
f2fs_put_page(ipage, 1);
return true;
}
if (f2fs_has_inline_data(inode)) {
ipage = get_node_page(sbi, inode->i_ino);
f2fs_bug_on(sbi, IS_ERR(ipage));
f2fs_wait_on_page_writeback(ipage, NODE);
zero_user_segment(ipage, INLINE_DATA_OFFSET,
INLINE_DATA_OFFSET + MAX_INLINE_DATA);
clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
update_inode(inode, ipage);
f2fs_put_page(ipage, 1);
} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
truncate_blocks(inode, 0, false);
set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
goto process_inline;
}
return false;
}
struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
struct qstr *name, struct page **res_page)
{
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
struct f2fs_inline_dentry *inline_dentry;
struct f2fs_dir_entry *de;
struct page *ipage;
int max_slots = NR_INLINE_DENTRY;
ipage = get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage))
return NULL;
inline_dentry = inline_data_addr(ipage);
de = find_target_dentry(name, &max_slots, &inline_dentry->dentry_bitmap,
inline_dentry->dentry,
inline_dentry->filename);
unlock_page(ipage);
if (de)
*res_page = ipage;
else
f2fs_put_page(ipage, 0);
/*
* For the most part, it should be a bug when name_len is zero.
* We stop here for figuring out where the bugs has occurred.
*/
f2fs_bug_on(sbi, max_slots < 0);
return de;
}
struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
struct page **p)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct page *ipage;
struct f2fs_dir_entry *de;
struct f2fs_inline_dentry *dentry_blk;
ipage = get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage))
return NULL;
dentry_blk = inline_data_addr(ipage);
de = &dentry_blk->dentry[1];
*p = ipage;
unlock_page(ipage);
return de;
}
int make_empty_inline_dir(struct inode *inode, struct inode *parent,
struct page *ipage)
{
struct f2fs_inline_dentry *dentry_blk;
struct f2fs_dir_entry *de;
dentry_blk = inline_data_addr(ipage);
de = &dentry_blk->dentry[0];
de->name_len = cpu_to_le16(1);
de->hash_code = 0;
de->ino = cpu_to_le32(inode->i_ino);
memcpy(dentry_blk->filename[0], ".", 1);
set_de_type(de, inode);
de = &dentry_blk->dentry[1];
de->hash_code = 0;
de->name_len = cpu_to_le16(2);
de->ino = cpu_to_le32(parent->i_ino);
memcpy(dentry_blk->filename[1], "..", 2);
set_de_type(de, inode);
test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
set_page_dirty(ipage);
/* update i_size to MAX_INLINE_DATA */
if (i_size_read(inode) < MAX_INLINE_DATA) {
i_size_write(inode, MAX_INLINE_DATA);
set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
}
return 0;
}
int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
struct f2fs_inline_dentry *inline_dentry)
{
struct page *page;
struct dnode_of_data dn;
struct f2fs_dentry_block *dentry_blk;
int err;
page = grab_cache_page(dir->i_mapping, 0);
if (!page)
return -ENOMEM;
set_new_dnode(&dn, dir, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, 0);
if (err)
goto out;
f2fs_wait_on_page_writeback(page, DATA);
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
dentry_blk = kmap(page);
/* copy data from inline dentry block to new dentry block */
memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
INLINE_DENTRY_BITMAP_SIZE);
memcpy(dentry_blk->dentry, inline_dentry->dentry,
sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
memcpy(dentry_blk->filename, inline_dentry->filename,
NR_INLINE_DENTRY * F2FS_SLOT_LEN);
kunmap(page);
SetPageUptodate(page);
set_page_dirty(page);
/* clear inline dir and flag after data writeback */
zero_user_segment(ipage, INLINE_DATA_OFFSET,
INLINE_DATA_OFFSET + MAX_INLINE_DATA);
clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
stat_dec_inline_inode(dir);
if (i_size_read(dir) < PAGE_CACHE_SIZE) {
i_size_write(dir, PAGE_CACHE_SIZE);
set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
}
sync_inode_page(&dn);
out:
f2fs_put_page(page, 1);
return err;
}
int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct page *ipage;
unsigned int bit_pos;
f2fs_hash_t name_hash;
struct f2fs_dir_entry *de;
size_t namelen = name->len;
struct f2fs_inline_dentry *dentry_blk = NULL;
int slots = GET_DENTRY_SLOTS(namelen);
struct page *page;
int err = 0;
int i;
name_hash = f2fs_dentry_hash(name);
ipage = get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
dentry_blk = inline_data_addr(ipage);
bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
slots, NR_INLINE_DENTRY);
if (bit_pos >= NR_INLINE_DENTRY) {
err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
if (!err)
err = -EAGAIN;
goto out;
}
down_write(&F2FS_I(inode)->i_sem);
page = init_inode_metadata(inode, dir, name, ipage);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
f2fs_wait_on_page_writeback(ipage, NODE);
de = &dentry_blk->dentry[bit_pos];
de->hash_code = name_hash;
de->name_len = cpu_to_le16(namelen);
memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
de->ino = cpu_to_le32(inode->i_ino);
set_de_type(de, inode);
for (i = 0; i < slots; i++)
test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
set_page_dirty(ipage);
/* we don't need to mark_inode_dirty now */
F2FS_I(inode)->i_pino = dir->i_ino;
update_inode(inode, page);
f2fs_put_page(page, 1);
update_parent_metadata(dir, inode, 0);
fail:
up_write(&F2FS_I(inode)->i_sem);
if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
update_inode(dir, ipage);
clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
}
out:
f2fs_put_page(ipage, 1);
return err;
}
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode)
{
struct f2fs_inline_dentry *inline_dentry;
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
unsigned int bit_pos;
int i;
lock_page(page);
f2fs_wait_on_page_writeback(page, NODE);
inline_dentry = inline_data_addr(page);
bit_pos = dentry - inline_dentry->dentry;
for (i = 0; i < slots; i++)
test_and_clear_bit_le(bit_pos + i,
&inline_dentry->dentry_bitmap);
set_page_dirty(page);
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
if (inode)
f2fs_drop_nlink(dir, inode, page);
f2fs_put_page(page, 1);
}
bool f2fs_empty_inline_dir(struct inode *dir)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct page *ipage;
unsigned int bit_pos = 2;
struct f2fs_inline_dentry *dentry_blk;
ipage = get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage))
return false;
dentry_blk = inline_data_addr(ipage);
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_INLINE_DENTRY,
bit_pos);
f2fs_put_page(ipage, 1);
if (bit_pos < NR_INLINE_DENTRY)
return false;
return true;
}
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned int bit_pos = 0;
struct f2fs_inline_dentry *inline_dentry = NULL;
struct f2fs_dir_entry *de = NULL;
struct page *ipage = NULL;
unsigned char d_type = DT_UNKNOWN;
if (ctx->pos == NR_INLINE_DENTRY)
return 0;
ipage = get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
bit_pos = ((unsigned long)ctx->pos % NR_INLINE_DENTRY);
inline_dentry = inline_data_addr(ipage);
while (bit_pos < NR_INLINE_DENTRY) {
bit_pos = find_next_bit_le(&inline_dentry->dentry_bitmap,
NR_INLINE_DENTRY,
bit_pos);
if (bit_pos >= NR_INLINE_DENTRY)
break;
de = &inline_dentry->dentry[bit_pos];
if (de->file_type < F2FS_FT_MAX)
d_type = f2fs_filetype_table[de->file_type];
else
d_type = DT_UNKNOWN;
if (!dir_emit(ctx,
inline_dentry->filename[bit_pos],
le16_to_cpu(de->name_len),
le32_to_cpu(de->ino), d_type))
goto out;
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
ctx->pos = bit_pos;
}
ctx->pos = NR_INLINE_DENTRY;
out:
f2fs_put_page(ipage, 1);
return 0;
}