linux/include/uapi/drm/xe_drm.h
Aravind Iddamsetty be13336e07 drm/xe/pmu: Drop interrupt pmu event
Drop interrupt event from PMU as that is not useful and not being used
by any UMD.

Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Francois Dugast <francois.dugast@intel.com>
Signed-off-by: Aravind Iddamsetty <aravind.iddamsetty@linux.intel.com>
Reviewed-by: Francois Dugast <francois.dugast@intel.com>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2023-12-21 11:44:33 -05:00

1017 lines
28 KiB
C

/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2023 Intel Corporation
*/
#ifndef _UAPI_XE_DRM_H_
#define _UAPI_XE_DRM_H_
#include "drm.h"
#if defined(__cplusplus)
extern "C" {
#endif
/* Please note that modifications to all structs defined here are
* subject to backwards-compatibility constraints.
*/
/**
* DOC: uevent generated by xe on it's pci node.
*
* XE_RESET_FAILED_UEVENT - Event is generated when attempt to reset gt
* fails. The value supplied with the event is always "NEEDS_RESET".
* Additional information supplied is tile id and gt id of the gt unit for
* which reset has failed.
*/
#define XE_RESET_FAILED_UEVENT "DEVICE_STATUS"
/**
* struct xe_user_extension - Base class for defining a chain of extensions
*
* Many interfaces need to grow over time. In most cases we can simply
* extend the struct and have userspace pass in more data. Another option,
* as demonstrated by Vulkan's approach to providing extensions for forward
* and backward compatibility, is to use a list of optional structs to
* provide those extra details.
*
* The key advantage to using an extension chain is that it allows us to
* redefine the interface more easily than an ever growing struct of
* increasing complexity, and for large parts of that interface to be
* entirely optional. The downside is more pointer chasing; chasing across
* the __user boundary with pointers encapsulated inside u64.
*
* Example chaining:
*
* .. code-block:: C
*
* struct xe_user_extension ext3 {
* .next_extension = 0, // end
* .name = ...,
* };
* struct xe_user_extension ext2 {
* .next_extension = (uintptr_t)&ext3,
* .name = ...,
* };
* struct xe_user_extension ext1 {
* .next_extension = (uintptr_t)&ext2,
* .name = ...,
* };
*
* Typically the struct xe_user_extension would be embedded in some uAPI
* struct, and in this case we would feed it the head of the chain(i.e ext1),
* which would then apply all of the above extensions.
*
*/
struct xe_user_extension {
/**
* @next_extension:
*
* Pointer to the next struct xe_user_extension, or zero if the end.
*/
__u64 next_extension;
/**
* @name: Name of the extension.
*
* Note that the name here is just some integer.
*
* Also note that the name space for this is not global for the whole
* driver, but rather its scope/meaning is limited to the specific piece
* of uAPI which has embedded the struct xe_user_extension.
*/
__u32 name;
/**
* @pad: MBZ
*
* All undefined bits must be zero.
*/
__u32 pad;
};
/*
* xe specific ioctls.
*
* The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
* [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
* against DRM_COMMAND_BASE and should be between [0x0, 0x60).
*/
#define DRM_XE_DEVICE_QUERY 0x00
#define DRM_XE_GEM_CREATE 0x01
#define DRM_XE_GEM_MMAP_OFFSET 0x02
#define DRM_XE_VM_CREATE 0x03
#define DRM_XE_VM_DESTROY 0x04
#define DRM_XE_VM_BIND 0x05
#define DRM_XE_EXEC 0x06
#define DRM_XE_EXEC_QUEUE_CREATE 0x07
#define DRM_XE_EXEC_QUEUE_DESTROY 0x08
#define DRM_XE_EXEC_QUEUE_SET_PROPERTY 0x09
#define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x0a
#define DRM_XE_WAIT_USER_FENCE 0x0b
/* Must be kept compact -- no holes */
#define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
#define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
#define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
#define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
#define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
#define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
#define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
#define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
#define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
#define DRM_IOCTL_XE_EXEC_QUEUE_SET_PROPERTY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_SET_PROPERTY, struct drm_xe_exec_queue_set_property)
#define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
#define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
/** struct drm_xe_engine_class_instance - instance of an engine class */
struct drm_xe_engine_class_instance {
#define DRM_XE_ENGINE_CLASS_RENDER 0
#define DRM_XE_ENGINE_CLASS_COPY 1
#define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2
#define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3
#define DRM_XE_ENGINE_CLASS_COMPUTE 4
/*
* Kernel only classes (not actual hardware engine class). Used for
* creating ordered queues of VM bind operations.
*/
#define DRM_XE_ENGINE_CLASS_VM_BIND_ASYNC 5
#define DRM_XE_ENGINE_CLASS_VM_BIND_SYNC 6
__u16 engine_class;
__u16 engine_instance;
__u16 gt_id;
__u16 rsvd;
};
/**
* enum drm_xe_memory_class - Supported memory classes.
*/
enum drm_xe_memory_class {
/** @XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
XE_MEM_REGION_CLASS_SYSMEM = 0,
/**
* @XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
* represents the memory that is local to the device, which we
* call VRAM. Not valid on integrated platforms.
*/
XE_MEM_REGION_CLASS_VRAM
};
/**
* struct drm_xe_query_mem_region - Describes some region as known to
* the driver.
*/
struct drm_xe_query_mem_region {
/**
* @mem_class: The memory class describing this region.
*
* See enum drm_xe_memory_class for supported values.
*/
__u16 mem_class;
/**
* @instance: The instance for this region.
*
* The @mem_class and @instance taken together will always give
* a unique pair.
*/
__u16 instance;
/** @pad: MBZ */
__u32 pad;
/**
* @min_page_size: Min page-size in bytes for this region.
*
* When the kernel allocates memory for this region, the
* underlying pages will be at least @min_page_size in size.
*
* Important note: When userspace allocates a GTT address which
* can point to memory allocated from this region, it must also
* respect this minimum alignment. This is enforced by the
* kernel.
*/
__u32 min_page_size;
/**
* @total_size: The usable size in bytes for this region.
*/
__u64 total_size;
/**
* @used: Estimate of the memory used in bytes for this region.
*
* Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
* accounting. Without this the value here will always equal
* zero.
*/
__u64 used;
/**
* @cpu_visible_size: How much of this region can be CPU
* accessed, in bytes.
*
* This will always be <= @total_size, and the remainder (if
* any) will not be CPU accessible. If the CPU accessible part
* is smaller than @total_size then this is referred to as a
* small BAR system.
*
* On systems without small BAR (full BAR), the probed_size will
* always equal the @total_size, since all of it will be CPU
* accessible.
*
* Note this is only tracked for XE_MEM_REGION_CLASS_VRAM
* regions (for other types the value here will always equal
* zero).
*/
__u64 cpu_visible_size;
/**
* @cpu_visible_used: Estimate of CPU visible memory used, in
* bytes.
*
* Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
* accounting. Without this the value here will always equal
* zero. Note this is only currently tracked for
* XE_MEM_REGION_CLASS_VRAM regions (for other types the value
* here will always be zero).
*/
__u64 cpu_visible_used;
/** @reserved: MBZ */
__u64 reserved[6];
};
/**
* struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
*
* If a query is made with a struct drm_xe_device_query where .query is equal to
* DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
* in .data. struct drm_xe_query_engine_cycles is allocated by the user and
* .data points to this allocated structure.
*
* The query returns the engine cycles and the frequency that can
* be used to calculate the engine timestamp. In addition the
* query returns a set of cpu timestamps that indicate when the command
* streamer cycle count was captured.
*/
struct drm_xe_query_engine_cycles {
/**
* @eci: This is input by the user and is the engine for which command
* streamer cycles is queried.
*/
struct drm_xe_engine_class_instance eci;
/**
* @clockid: This is input by the user and is the reference clock id for
* CPU timestamp. For definition, see clock_gettime(2) and
* perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
* CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
*/
__s32 clockid;
/** @width: Width of the engine cycle counter in bits. */
__u32 width;
/**
* @engine_cycles: Engine cycles as read from its register
* at 0x358 offset.
*/
__u64 engine_cycles;
/** @engine_frequency: Frequency of the engine cycles in Hz. */
__u64 engine_frequency;
/**
* @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
* reading the engine_cycles register using the reference clockid set by the
* user.
*/
__u64 cpu_timestamp;
/**
* @cpu_delta: Time delta in ns captured around reading the lower dword
* of the engine_cycles register.
*/
__u64 cpu_delta;
};
/**
* struct drm_xe_query_mem_usage - describe memory regions and usage
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_MEM_USAGE, then the reply uses
* struct drm_xe_query_mem_usage in .data.
*/
struct drm_xe_query_mem_usage {
/** @num_regions: number of memory regions returned in @regions */
__u32 num_regions;
/** @pad: MBZ */
__u32 pad;
/** @regions: The returned regions for this device */
struct drm_xe_query_mem_region regions[];
};
/**
* struct drm_xe_query_config - describe the device configuration
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
* struct drm_xe_query_config in .data.
*
*/
struct drm_xe_query_config {
/** @num_params: number of parameters returned in info */
__u32 num_params;
/** @pad: MBZ */
__u32 pad;
#define XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0
#define XE_QUERY_CONFIG_FLAGS 1
#define XE_QUERY_CONFIG_FLAGS_HAS_VRAM (0x1 << 0)
#define XE_QUERY_CONFIG_MIN_ALIGNMENT 2
#define XE_QUERY_CONFIG_VA_BITS 3
#define XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4
/** @info: array of elements containing the config info */
__u64 info[];
};
/**
* struct drm_xe_query_gt - describe an individual GT.
*
* To be used with drm_xe_query_gt_list, which will return a list with all the
* existing GT individual descriptions.
* Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
* implementing graphics and/or media operations.
*/
struct drm_xe_query_gt {
#define XE_QUERY_GT_TYPE_MAIN 0
#define XE_QUERY_GT_TYPE_MEDIA 1
/** @type: GT type: Main or Media */
__u16 type;
/** @gt_id: Unique ID of this GT within the PCI Device */
__u16 gt_id;
/** @clock_freq: A clock frequency for timestamp */
__u32 clock_freq;
/**
* @native_mem_regions: Bit mask of instances from
* drm_xe_query_mem_usage that lives on the same GPU/Tile and have
* direct access.
*/
__u64 native_mem_regions;
/**
* @slow_mem_regions: Bit mask of instances from
* drm_xe_query_mem_usage that this GT can indirectly access, although
* they live on a different GPU/Tile.
*/
__u64 slow_mem_regions;
/** @reserved: Reserved */
__u64 reserved[8];
};
/**
* struct drm_xe_query_gt_list - A list with GT description items.
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
* drm_xe_query_gt_list in .data.
*/
struct drm_xe_query_gt_list {
/** @num_gt: number of GT items returned in gt_list */
__u32 num_gt;
/** @pad: MBZ */
__u32 pad;
/** @gt_list: The GT list returned for this device */
struct drm_xe_query_gt gt_list[];
};
/**
* struct drm_xe_query_topology_mask - describe the topology mask of a GT
*
* This is the hardware topology which reflects the internal physical
* structure of the GPU.
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
* struct drm_xe_query_topology_mask in .data.
*/
struct drm_xe_query_topology_mask {
/** @gt_id: GT ID the mask is associated with */
__u16 gt_id;
/*
* To query the mask of Dual Sub Slices (DSS) available for geometry
* operations. For example a query response containing the following
* in mask:
* DSS_GEOMETRY ff ff ff ff 00 00 00 00
* means 32 DSS are available for geometry.
*/
#define XE_TOPO_DSS_GEOMETRY (1 << 0)
/*
* To query the mask of Dual Sub Slices (DSS) available for compute
* operations. For example a query response containing the following
* in mask:
* DSS_COMPUTE ff ff ff ff 00 00 00 00
* means 32 DSS are available for compute.
*/
#define XE_TOPO_DSS_COMPUTE (1 << 1)
/*
* To query the mask of Execution Units (EU) available per Dual Sub
* Slices (DSS). For example a query response containing the following
* in mask:
* EU_PER_DSS ff ff 00 00 00 00 00 00
* means each DSS has 16 EU.
*/
#define XE_TOPO_EU_PER_DSS (1 << 2)
/** @type: type of mask */
__u16 type;
/** @num_bytes: number of bytes in requested mask */
__u32 num_bytes;
/** @mask: little-endian mask of @num_bytes */
__u8 mask[];
};
/**
* struct drm_xe_device_query - main structure to query device information
*
* If size is set to 0, the driver fills it with the required size for the
* requested type of data to query. If size is equal to the required size,
* the queried information is copied into data.
*
* For example the following code snippet allows retrieving and printing
* information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
*
* .. code-block:: C
*
* struct drm_xe_engine_class_instance *hwe;
* struct drm_xe_device_query query = {
* .extensions = 0,
* .query = DRM_XE_DEVICE_QUERY_ENGINES,
* .size = 0,
* .data = 0,
* };
* ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
* hwe = malloc(query.size);
* query.data = (uintptr_t)hwe;
* ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
* int num_engines = query.size / sizeof(*hwe);
* for (int i = 0; i < num_engines; i++) {
* printf("Engine %d: %s\n", i,
* hwe[i].engine_class == DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
* hwe[i].engine_class == DRM_XE_ENGINE_CLASS_COPY ? "COPY":
* hwe[i].engine_class == DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
* hwe[i].engine_class == DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
* hwe[i].engine_class == DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
* "UNKNOWN");
* }
* free(hwe);
*/
struct drm_xe_device_query {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
#define DRM_XE_DEVICE_QUERY_ENGINES 0
#define DRM_XE_DEVICE_QUERY_MEM_USAGE 1
#define DRM_XE_DEVICE_QUERY_CONFIG 2
#define DRM_XE_DEVICE_QUERY_GT_LIST 3
#define DRM_XE_DEVICE_QUERY_HWCONFIG 4
#define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5
#define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6
/** @query: The type of data to query */
__u32 query;
/** @size: Size of the queried data */
__u32 size;
/** @data: Queried data is placed here */
__u64 data;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_gem_create {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/**
* @size: Requested size for the object
*
* The (page-aligned) allocated size for the object will be returned.
*/
__u64 size;
#define XE_GEM_CREATE_FLAG_DEFER_BACKING (0x1 << 24)
#define XE_GEM_CREATE_FLAG_SCANOUT (0x1 << 25)
/*
* When using VRAM as a possible placement, ensure that the corresponding VRAM
* allocation will always use the CPU accessible part of VRAM. This is important
* for small-bar systems (on full-bar systems this gets turned into a noop).
*
* Note: System memory can be used as an extra placement if the kernel should
* spill the allocation to system memory, if space can't be made available in
* the CPU accessible part of VRAM (giving the same behaviour as the i915
* interface, see I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
*
* Note: For clear-color CCS surfaces the kernel needs to read the clear-color
* value stored in the buffer, and on discrete platforms we need to use VRAM for
* display surfaces, therefore the kernel requires setting this flag for such
* objects, otherwise an error is thrown on small-bar systems.
*/
#define XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (0x1 << 26)
/**
* @flags: Flags, currently a mask of memory instances of where BO can
* be placed
*/
__u32 flags;
/**
* @vm_id: Attached VM, if any
*
* If a VM is specified, this BO must:
*
* 1. Only ever be bound to that VM.
* 2. Cannot be exported as a PRIME fd.
*/
__u32 vm_id;
/**
* @handle: Returned handle for the object.
*
* Object handles are nonzero.
*/
__u32 handle;
/** @pad: MBZ */
__u32 pad;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_gem_mmap_offset {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @handle: Handle for the object being mapped. */
__u32 handle;
/** @flags: Must be zero */
__u32 flags;
/** @offset: The fake offset to use for subsequent mmap call */
__u64 offset;
/** @reserved: Reserved */
__u64 reserved[2];
};
/** struct drm_xe_ext_set_property - XE set property extension */
struct drm_xe_ext_set_property {
/** @base: base user extension */
struct xe_user_extension base;
/** @property: property to set */
__u32 property;
/** @pad: MBZ */
__u32 pad;
/** @value: property value */
__u64 value;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_vm_create {
#define XE_VM_EXTENSION_SET_PROPERTY 0
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
#define DRM_XE_VM_CREATE_SCRATCH_PAGE (0x1 << 0)
#define DRM_XE_VM_CREATE_COMPUTE_MODE (0x1 << 1)
#define DRM_XE_VM_CREATE_ASYNC_DEFAULT (0x1 << 2)
#define DRM_XE_VM_CREATE_FAULT_MODE (0x1 << 3)
/** @flags: Flags */
__u32 flags;
/** @vm_id: Returned VM ID */
__u32 vm_id;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_vm_destroy {
/** @vm_id: VM ID */
__u32 vm_id;
/** @pad: MBZ */
__u32 pad;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_vm_bind_op {
/**
* @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
*/
__u32 obj;
/** @pad: MBZ */
__u32 pad;
union {
/**
* @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
* ignored for unbind
*/
__u64 obj_offset;
/** @userptr: user pointer to bind on */
__u64 userptr;
};
/**
* @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
*/
__u64 range;
/** @addr: Address to operate on, MBZ for UNMAP_ALL */
__u64 addr;
/**
* @tile_mask: Mask for which tiles to create binds for, 0 == All tiles,
* only applies to creating new VMAs
*/
__u64 tile_mask;
#define XE_VM_BIND_OP_MAP 0x0
#define XE_VM_BIND_OP_UNMAP 0x1
#define XE_VM_BIND_OP_MAP_USERPTR 0x2
#define XE_VM_BIND_OP_UNMAP_ALL 0x3
#define XE_VM_BIND_OP_PREFETCH 0x4
/** @op: Bind operation to perform */
__u32 op;
#define XE_VM_BIND_FLAG_READONLY (0x1 << 0)
#define XE_VM_BIND_FLAG_ASYNC (0x1 << 1)
/*
* Valid on a faulting VM only, do the MAP operation immediately rather
* than deferring the MAP to the page fault handler.
*/
#define XE_VM_BIND_FLAG_IMMEDIATE (0x1 << 2)
/*
* When the NULL flag is set, the page tables are setup with a special
* bit which indicates writes are dropped and all reads return zero. In
* the future, the NULL flags will only be valid for XE_VM_BIND_OP_MAP
* operations, the BO handle MBZ, and the BO offset MBZ. This flag is
* intended to implement VK sparse bindings.
*/
#define XE_VM_BIND_FLAG_NULL (0x1 << 3)
/** @flags: Bind flags */
__u32 flags;
/** @mem_region: Memory region to prefetch VMA to, instance not a mask */
__u32 region;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_vm_bind {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @vm_id: The ID of the VM to bind to */
__u32 vm_id;
/**
* @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
* and exec queue must have same vm_id. If zero, the default VM bind engine
* is used.
*/
__u32 exec_queue_id;
/** @num_binds: number of binds in this IOCTL */
__u32 num_binds;
/** @pad: MBZ */
__u32 pad;
union {
/** @bind: used if num_binds == 1 */
struct drm_xe_vm_bind_op bind;
/**
* @vector_of_binds: userptr to array of struct
* drm_xe_vm_bind_op if num_binds > 1
*/
__u64 vector_of_binds;
};
/** @num_syncs: amount of syncs to wait on */
__u32 num_syncs;
/** @pad2: MBZ */
__u32 pad2;
/** @syncs: pointer to struct drm_xe_sync array */
__u64 syncs;
/** @reserved: Reserved */
__u64 reserved[2];
};
/* For use with XE_EXEC_QUEUE_SET_PROPERTY_ACC_GRANULARITY */
/* Monitor 128KB contiguous region with 4K sub-granularity */
#define XE_ACC_GRANULARITY_128K 0
/* Monitor 2MB contiguous region with 64KB sub-granularity */
#define XE_ACC_GRANULARITY_2M 1
/* Monitor 16MB contiguous region with 512KB sub-granularity */
#define XE_ACC_GRANULARITY_16M 2
/* Monitor 64MB contiguous region with 2M sub-granularity */
#define XE_ACC_GRANULARITY_64M 3
/**
* struct drm_xe_exec_queue_set_property - exec queue set property
*
* Same namespace for extensions as drm_xe_exec_queue_create
*/
struct drm_xe_exec_queue_set_property {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @exec_queue_id: Exec queue ID */
__u32 exec_queue_id;
#define XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0
#define XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1
#define XE_EXEC_QUEUE_SET_PROPERTY_PREEMPTION_TIMEOUT 2
#define XE_EXEC_QUEUE_SET_PROPERTY_PERSISTENCE 3
#define XE_EXEC_QUEUE_SET_PROPERTY_JOB_TIMEOUT 4
#define XE_EXEC_QUEUE_SET_PROPERTY_ACC_TRIGGER 5
#define XE_EXEC_QUEUE_SET_PROPERTY_ACC_NOTIFY 6
#define XE_EXEC_QUEUE_SET_PROPERTY_ACC_GRANULARITY 7
/** @property: property to set */
__u32 property;
/** @value: property value */
__u64 value;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_exec_queue_create {
#define XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @width: submission width (number BB per exec) for this exec queue */
__u16 width;
/** @num_placements: number of valid placements for this exec queue */
__u16 num_placements;
/** @vm_id: VM to use for this exec queue */
__u32 vm_id;
/** @flags: MBZ */
__u32 flags;
/** @exec_queue_id: Returned exec queue ID */
__u32 exec_queue_id;
/**
* @instances: user pointer to a 2-d array of struct
* drm_xe_engine_class_instance
*
* length = width (i) * num_placements (j)
* index = j + i * width
*/
__u64 instances;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_exec_queue_get_property {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @exec_queue_id: Exec queue ID */
__u32 exec_queue_id;
#define XE_EXEC_QUEUE_GET_PROPERTY_BAN 0
/** @property: property to get */
__u32 property;
/** @value: property value */
__u64 value;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_exec_queue_destroy {
/** @exec_queue_id: Exec queue ID */
__u32 exec_queue_id;
/** @pad: MBZ */
__u32 pad;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_sync {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
#define DRM_XE_SYNC_SYNCOBJ 0x0
#define DRM_XE_SYNC_TIMELINE_SYNCOBJ 0x1
#define DRM_XE_SYNC_DMA_BUF 0x2
#define DRM_XE_SYNC_USER_FENCE 0x3
#define DRM_XE_SYNC_SIGNAL 0x10
__u32 flags;
/** @pad: MBZ */
__u32 pad;
union {
__u32 handle;
/**
* @addr: Address of user fence. When sync passed in via exec
* IOCTL this a GPU address in the VM. When sync passed in via
* VM bind IOCTL this is a user pointer. In either case, it is
* the users responsibility that this address is present and
* mapped when the user fence is signalled. Must be qword
* aligned.
*/
__u64 addr;
};
__u64 timeline_value;
/** @reserved: Reserved */
__u64 reserved[2];
};
struct drm_xe_exec {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @exec_queue_id: Exec queue ID for the batch buffer */
__u32 exec_queue_id;
/** @num_syncs: Amount of struct drm_xe_sync in array. */
__u32 num_syncs;
/** @syncs: Pointer to struct drm_xe_sync array. */
__u64 syncs;
/**
* @address: address of batch buffer if num_batch_buffer == 1 or an
* array of batch buffer addresses
*/
__u64 address;
/**
* @num_batch_buffer: number of batch buffer in this exec, must match
* the width of the engine
*/
__u16 num_batch_buffer;
/** @pad: MBZ */
__u16 pad[3];
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_wait_user_fence - wait user fence
*
* Wait on user fence, XE will wake-up on every HW engine interrupt in the
* instances list and check if user fence is complete::
*
* (*addr & MASK) OP (VALUE & MASK)
*
* Returns to user on user fence completion or timeout.
*/
struct drm_xe_wait_user_fence {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/**
* @addr: user pointer address to wait on, must qword aligned
*/
__u64 addr;
#define DRM_XE_UFENCE_WAIT_EQ 0
#define DRM_XE_UFENCE_WAIT_NEQ 1
#define DRM_XE_UFENCE_WAIT_GT 2
#define DRM_XE_UFENCE_WAIT_GTE 3
#define DRM_XE_UFENCE_WAIT_LT 4
#define DRM_XE_UFENCE_WAIT_LTE 5
/** @op: wait operation (type of comparison) */
__u16 op;
#define DRM_XE_UFENCE_WAIT_SOFT_OP (1 << 0) /* e.g. Wait on VM bind */
#define DRM_XE_UFENCE_WAIT_ABSTIME (1 << 1)
/** @flags: wait flags */
__u16 flags;
/** @pad: MBZ */
__u32 pad;
/** @value: compare value */
__u64 value;
#define DRM_XE_UFENCE_WAIT_U8 0xffu
#define DRM_XE_UFENCE_WAIT_U16 0xffffu
#define DRM_XE_UFENCE_WAIT_U32 0xffffffffu
#define DRM_XE_UFENCE_WAIT_U64 0xffffffffffffffffu
/** @mask: comparison mask */
__u64 mask;
/**
* @timeout: how long to wait before bailing, value in nanoseconds.
* Without DRM_XE_UFENCE_WAIT_ABSTIME flag set (relative timeout)
* it contains timeout expressed in nanoseconds to wait (fence will
* expire at now() + timeout).
* When DRM_XE_UFENCE_WAIT_ABSTIME flat is set (absolute timeout) wait
* will end at timeout (uses system MONOTONIC_CLOCK).
* Passing negative timeout leads to neverending wait.
*
* On relative timeout this value is updated with timeout left
* (for restarting the call in case of signal delivery).
* On absolute timeout this value stays intact (restarted call still
* expire at the same point of time).
*/
__s64 timeout;
/**
* @num_engines: number of engine instances to wait on, must be zero
* when DRM_XE_UFENCE_WAIT_SOFT_OP set
*/
__u64 num_engines;
/**
* @instances: user pointer to array of drm_xe_engine_class_instance to
* wait on, must be NULL when DRM_XE_UFENCE_WAIT_SOFT_OP set
*/
__u64 instances;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* DOC: XE PMU event config IDs
*
* Check 'man perf_event_open' to use the ID's XE_PMU_XXXX listed in xe_drm.h
* in 'struct perf_event_attr' as part of perf_event_open syscall to read a
* particular event.
*
* For example to open the XE_PMU_RENDER_GROUP_BUSY(0):
*
* .. code-block:: C
*
* struct perf_event_attr attr;
* long long count;
* int cpu = 0;
* int fd;
*
* memset(&attr, 0, sizeof(struct perf_event_attr));
* attr.type = type; // eg: /sys/bus/event_source/devices/xe_0000_56_00.0/type
* attr.read_format = PERF_FORMAT_TOTAL_TIME_ENABLED;
* attr.use_clockid = 1;
* attr.clockid = CLOCK_MONOTONIC;
* attr.config = XE_PMU_RENDER_GROUP_BUSY(0);
*
* fd = syscall(__NR_perf_event_open, &attr, -1, cpu, -1, 0);
*/
/*
* Top bits of every counter are GT id.
*/
#define __XE_PMU_GT_SHIFT (56)
#define ___XE_PMU_OTHER(gt, x) \
(((__u64)(x)) | ((__u64)(gt) << __XE_PMU_GT_SHIFT))
#define XE_PMU_RENDER_GROUP_BUSY(gt) ___XE_PMU_OTHER(gt, 0)
#define XE_PMU_COPY_GROUP_BUSY(gt) ___XE_PMU_OTHER(gt, 1)
#define XE_PMU_MEDIA_GROUP_BUSY(gt) ___XE_PMU_OTHER(gt, 2)
#define XE_PMU_ANY_ENGINE_GROUP_BUSY(gt) ___XE_PMU_OTHER(gt, 3)
#if defined(__cplusplus)
}
#endif
#endif /* _UAPI_XE_DRM_H_ */