mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 02:46:06 +00:00
5ce345541e
The notice refers to full GPL 2.0 text on now defunct MIT FTP site [1]. Replace it with appropriate SPDX license identifier. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Pali Rohár <pali@kernel.org> Link: https://web.archive.org/web/20020809115410/ftp://prep.ai.mit.edu/pub/gnu/GPL [1] Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz> Message-Id: <20230522005434.22133-2-bagasdotme@gmail.com>
740 lines
19 KiB
C
740 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* balloc.c
|
|
*
|
|
* PURPOSE
|
|
* Block allocation handling routines for the OSTA-UDF(tm) filesystem.
|
|
*
|
|
* COPYRIGHT
|
|
* (C) 1999-2001 Ben Fennema
|
|
* (C) 1999 Stelias Computing Inc
|
|
*
|
|
* HISTORY
|
|
*
|
|
* 02/24/99 blf Created.
|
|
*
|
|
*/
|
|
|
|
#include "udfdecl.h"
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include "udf_i.h"
|
|
#include "udf_sb.h"
|
|
|
|
#define udf_clear_bit __test_and_clear_bit_le
|
|
#define udf_set_bit __test_and_set_bit_le
|
|
#define udf_test_bit test_bit_le
|
|
#define udf_find_next_one_bit find_next_bit_le
|
|
|
|
static int read_block_bitmap(struct super_block *sb,
|
|
struct udf_bitmap *bitmap, unsigned int block,
|
|
unsigned long bitmap_nr)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
int i;
|
|
int max_bits, off, count;
|
|
struct kernel_lb_addr loc;
|
|
|
|
loc.logicalBlockNum = bitmap->s_extPosition;
|
|
loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
|
|
|
|
bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
|
|
bitmap->s_block_bitmap[bitmap_nr] = bh;
|
|
if (!bh)
|
|
return -EIO;
|
|
|
|
/* Check consistency of Space Bitmap buffer. */
|
|
max_bits = sb->s_blocksize * 8;
|
|
if (!bitmap_nr) {
|
|
off = sizeof(struct spaceBitmapDesc) << 3;
|
|
count = min(max_bits - off, bitmap->s_nr_groups);
|
|
} else {
|
|
/*
|
|
* Rough check if bitmap number is too big to have any bitmap
|
|
* blocks reserved.
|
|
*/
|
|
if (bitmap_nr >
|
|
(bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
|
|
return 0;
|
|
off = 0;
|
|
count = bitmap->s_nr_groups - bitmap_nr * max_bits +
|
|
(sizeof(struct spaceBitmapDesc) << 3);
|
|
count = min(count, max_bits);
|
|
}
|
|
|
|
for (i = 0; i < count; i++)
|
|
if (udf_test_bit(i + off, bh->b_data))
|
|
return -EFSCORRUPTED;
|
|
return 0;
|
|
}
|
|
|
|
static int __load_block_bitmap(struct super_block *sb,
|
|
struct udf_bitmap *bitmap,
|
|
unsigned int block_group)
|
|
{
|
|
int retval = 0;
|
|
int nr_groups = bitmap->s_nr_groups;
|
|
|
|
if (block_group >= nr_groups) {
|
|
udf_debug("block_group (%u) > nr_groups (%d)\n",
|
|
block_group, nr_groups);
|
|
}
|
|
|
|
if (bitmap->s_block_bitmap[block_group])
|
|
return block_group;
|
|
|
|
retval = read_block_bitmap(sb, bitmap, block_group, block_group);
|
|
if (retval < 0)
|
|
return retval;
|
|
|
|
return block_group;
|
|
}
|
|
|
|
static inline int load_block_bitmap(struct super_block *sb,
|
|
struct udf_bitmap *bitmap,
|
|
unsigned int block_group)
|
|
{
|
|
int slot;
|
|
|
|
slot = __load_block_bitmap(sb, bitmap, block_group);
|
|
|
|
if (slot < 0)
|
|
return slot;
|
|
|
|
if (!bitmap->s_block_bitmap[slot])
|
|
return -EIO;
|
|
|
|
return slot;
|
|
}
|
|
|
|
static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct logicalVolIntegrityDesc *lvid;
|
|
|
|
if (!sbi->s_lvid_bh)
|
|
return;
|
|
|
|
lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
|
|
le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
|
|
udf_updated_lvid(sb);
|
|
}
|
|
|
|
static void udf_bitmap_free_blocks(struct super_block *sb,
|
|
struct udf_bitmap *bitmap,
|
|
struct kernel_lb_addr *bloc,
|
|
uint32_t offset,
|
|
uint32_t count)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct buffer_head *bh = NULL;
|
|
struct udf_part_map *partmap;
|
|
unsigned long block;
|
|
unsigned long block_group;
|
|
unsigned long bit;
|
|
unsigned long i;
|
|
int bitmap_nr;
|
|
unsigned long overflow;
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
|
|
if (bloc->logicalBlockNum + count < count ||
|
|
(bloc->logicalBlockNum + count) > partmap->s_partition_len) {
|
|
udf_debug("%u < %d || %u + %u > %u\n",
|
|
bloc->logicalBlockNum, 0,
|
|
bloc->logicalBlockNum, count,
|
|
partmap->s_partition_len);
|
|
goto error_return;
|
|
}
|
|
|
|
block = bloc->logicalBlockNum + offset +
|
|
(sizeof(struct spaceBitmapDesc) << 3);
|
|
|
|
do {
|
|
overflow = 0;
|
|
block_group = block >> (sb->s_blocksize_bits + 3);
|
|
bit = block % (sb->s_blocksize << 3);
|
|
|
|
/*
|
|
* Check to see if we are freeing blocks across a group boundary.
|
|
*/
|
|
if (bit + count > (sb->s_blocksize << 3)) {
|
|
overflow = bit + count - (sb->s_blocksize << 3);
|
|
count -= overflow;
|
|
}
|
|
bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
|
|
if (bitmap_nr < 0)
|
|
goto error_return;
|
|
|
|
bh = bitmap->s_block_bitmap[bitmap_nr];
|
|
for (i = 0; i < count; i++) {
|
|
if (udf_set_bit(bit + i, bh->b_data)) {
|
|
udf_debug("bit %lu already set\n", bit + i);
|
|
udf_debug("byte=%2x\n",
|
|
((__u8 *)bh->b_data)[(bit + i) >> 3]);
|
|
}
|
|
}
|
|
udf_add_free_space(sb, sbi->s_partition, count);
|
|
mark_buffer_dirty(bh);
|
|
if (overflow) {
|
|
block += count;
|
|
count = overflow;
|
|
}
|
|
} while (overflow);
|
|
|
|
error_return:
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
}
|
|
|
|
static int udf_bitmap_prealloc_blocks(struct super_block *sb,
|
|
struct udf_bitmap *bitmap,
|
|
uint16_t partition, uint32_t first_block,
|
|
uint32_t block_count)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
int alloc_count = 0;
|
|
int bit, block, block_group;
|
|
int bitmap_nr;
|
|
struct buffer_head *bh;
|
|
__u32 part_len;
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
part_len = sbi->s_partmaps[partition].s_partition_len;
|
|
if (first_block >= part_len)
|
|
goto out;
|
|
|
|
if (first_block + block_count > part_len)
|
|
block_count = part_len - first_block;
|
|
|
|
do {
|
|
block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
|
|
block_group = block >> (sb->s_blocksize_bits + 3);
|
|
|
|
bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
|
|
if (bitmap_nr < 0)
|
|
goto out;
|
|
bh = bitmap->s_block_bitmap[bitmap_nr];
|
|
|
|
bit = block % (sb->s_blocksize << 3);
|
|
|
|
while (bit < (sb->s_blocksize << 3) && block_count > 0) {
|
|
if (!udf_clear_bit(bit, bh->b_data))
|
|
goto out;
|
|
block_count--;
|
|
alloc_count++;
|
|
bit++;
|
|
block++;
|
|
}
|
|
mark_buffer_dirty(bh);
|
|
} while (block_count > 0);
|
|
|
|
out:
|
|
udf_add_free_space(sb, partition, -alloc_count);
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
return alloc_count;
|
|
}
|
|
|
|
static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
|
|
struct udf_bitmap *bitmap, uint16_t partition,
|
|
uint32_t goal, int *err)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
int newbit, bit = 0;
|
|
udf_pblk_t block;
|
|
int block_group, group_start;
|
|
int end_goal, nr_groups, bitmap_nr, i;
|
|
struct buffer_head *bh = NULL;
|
|
char *ptr;
|
|
udf_pblk_t newblock = 0;
|
|
|
|
*err = -ENOSPC;
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
|
|
repeat:
|
|
if (goal >= sbi->s_partmaps[partition].s_partition_len)
|
|
goal = 0;
|
|
|
|
nr_groups = bitmap->s_nr_groups;
|
|
block = goal + (sizeof(struct spaceBitmapDesc) << 3);
|
|
block_group = block >> (sb->s_blocksize_bits + 3);
|
|
group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
|
|
|
|
bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
|
|
if (bitmap_nr < 0)
|
|
goto error_return;
|
|
bh = bitmap->s_block_bitmap[bitmap_nr];
|
|
ptr = memscan((char *)bh->b_data + group_start, 0xFF,
|
|
sb->s_blocksize - group_start);
|
|
|
|
if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
|
|
bit = block % (sb->s_blocksize << 3);
|
|
if (udf_test_bit(bit, bh->b_data))
|
|
goto got_block;
|
|
|
|
end_goal = (bit + 63) & ~63;
|
|
bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
|
|
if (bit < end_goal)
|
|
goto got_block;
|
|
|
|
ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
|
|
sb->s_blocksize - ((bit + 7) >> 3));
|
|
newbit = (ptr - ((char *)bh->b_data)) << 3;
|
|
if (newbit < sb->s_blocksize << 3) {
|
|
bit = newbit;
|
|
goto search_back;
|
|
}
|
|
|
|
newbit = udf_find_next_one_bit(bh->b_data,
|
|
sb->s_blocksize << 3, bit);
|
|
if (newbit < sb->s_blocksize << 3) {
|
|
bit = newbit;
|
|
goto got_block;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < (nr_groups * 2); i++) {
|
|
block_group++;
|
|
if (block_group >= nr_groups)
|
|
block_group = 0;
|
|
group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
|
|
|
|
bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
|
|
if (bitmap_nr < 0)
|
|
goto error_return;
|
|
bh = bitmap->s_block_bitmap[bitmap_nr];
|
|
if (i < nr_groups) {
|
|
ptr = memscan((char *)bh->b_data + group_start, 0xFF,
|
|
sb->s_blocksize - group_start);
|
|
if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
|
|
bit = (ptr - ((char *)bh->b_data)) << 3;
|
|
break;
|
|
}
|
|
} else {
|
|
bit = udf_find_next_one_bit(bh->b_data,
|
|
sb->s_blocksize << 3,
|
|
group_start << 3);
|
|
if (bit < sb->s_blocksize << 3)
|
|
break;
|
|
}
|
|
}
|
|
if (i >= (nr_groups * 2)) {
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
return newblock;
|
|
}
|
|
if (bit < sb->s_blocksize << 3)
|
|
goto search_back;
|
|
else
|
|
bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
|
|
group_start << 3);
|
|
if (bit >= sb->s_blocksize << 3) {
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
return 0;
|
|
}
|
|
|
|
search_back:
|
|
i = 0;
|
|
while (i < 7 && bit > (group_start << 3) &&
|
|
udf_test_bit(bit - 1, bh->b_data)) {
|
|
++i;
|
|
--bit;
|
|
}
|
|
|
|
got_block:
|
|
newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
|
|
(sizeof(struct spaceBitmapDesc) << 3);
|
|
|
|
if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
|
|
/*
|
|
* Ran off the end of the bitmap, and bits following are
|
|
* non-compliant (not all zero)
|
|
*/
|
|
udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
|
|
" as free, partition length is %u)\n", partition,
|
|
newblock, sbi->s_partmaps[partition].s_partition_len);
|
|
goto error_return;
|
|
}
|
|
|
|
if (!udf_clear_bit(bit, bh->b_data)) {
|
|
udf_debug("bit already cleared for block %d\n", bit);
|
|
goto repeat;
|
|
}
|
|
|
|
mark_buffer_dirty(bh);
|
|
|
|
udf_add_free_space(sb, partition, -1);
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
*err = 0;
|
|
return newblock;
|
|
|
|
error_return:
|
|
*err = -EIO;
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static void udf_table_free_blocks(struct super_block *sb,
|
|
struct inode *table,
|
|
struct kernel_lb_addr *bloc,
|
|
uint32_t offset,
|
|
uint32_t count)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct udf_part_map *partmap;
|
|
uint32_t start, end;
|
|
uint32_t elen;
|
|
struct kernel_lb_addr eloc;
|
|
struct extent_position oepos, epos;
|
|
int8_t etype;
|
|
struct udf_inode_info *iinfo;
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
|
|
if (bloc->logicalBlockNum + count < count ||
|
|
(bloc->logicalBlockNum + count) > partmap->s_partition_len) {
|
|
udf_debug("%u < %d || %u + %u > %u\n",
|
|
bloc->logicalBlockNum, 0,
|
|
bloc->logicalBlockNum, count,
|
|
partmap->s_partition_len);
|
|
goto error_return;
|
|
}
|
|
|
|
iinfo = UDF_I(table);
|
|
udf_add_free_space(sb, sbi->s_partition, count);
|
|
|
|
start = bloc->logicalBlockNum + offset;
|
|
end = bloc->logicalBlockNum + offset + count - 1;
|
|
|
|
epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
|
|
elen = 0;
|
|
epos.block = oepos.block = iinfo->i_location;
|
|
epos.bh = oepos.bh = NULL;
|
|
|
|
while (count &&
|
|
(etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
|
|
if (((eloc.logicalBlockNum +
|
|
(elen >> sb->s_blocksize_bits)) == start)) {
|
|
if ((0x3FFFFFFF - elen) <
|
|
(count << sb->s_blocksize_bits)) {
|
|
uint32_t tmp = ((0x3FFFFFFF - elen) >>
|
|
sb->s_blocksize_bits);
|
|
count -= tmp;
|
|
start += tmp;
|
|
elen = (etype << 30) |
|
|
(0x40000000 - sb->s_blocksize);
|
|
} else {
|
|
elen = (etype << 30) |
|
|
(elen +
|
|
(count << sb->s_blocksize_bits));
|
|
start += count;
|
|
count = 0;
|
|
}
|
|
udf_write_aext(table, &oepos, &eloc, elen, 1);
|
|
} else if (eloc.logicalBlockNum == (end + 1)) {
|
|
if ((0x3FFFFFFF - elen) <
|
|
(count << sb->s_blocksize_bits)) {
|
|
uint32_t tmp = ((0x3FFFFFFF - elen) >>
|
|
sb->s_blocksize_bits);
|
|
count -= tmp;
|
|
end -= tmp;
|
|
eloc.logicalBlockNum -= tmp;
|
|
elen = (etype << 30) |
|
|
(0x40000000 - sb->s_blocksize);
|
|
} else {
|
|
eloc.logicalBlockNum = start;
|
|
elen = (etype << 30) |
|
|
(elen +
|
|
(count << sb->s_blocksize_bits));
|
|
end -= count;
|
|
count = 0;
|
|
}
|
|
udf_write_aext(table, &oepos, &eloc, elen, 1);
|
|
}
|
|
|
|
if (epos.bh != oepos.bh) {
|
|
oepos.block = epos.block;
|
|
brelse(oepos.bh);
|
|
get_bh(epos.bh);
|
|
oepos.bh = epos.bh;
|
|
oepos.offset = 0;
|
|
} else {
|
|
oepos.offset = epos.offset;
|
|
}
|
|
}
|
|
|
|
if (count) {
|
|
/*
|
|
* NOTE: we CANNOT use udf_add_aext here, as it can try to
|
|
* allocate a new block, and since we hold the super block
|
|
* lock already very bad things would happen :)
|
|
*
|
|
* We copy the behavior of udf_add_aext, but instead of
|
|
* trying to allocate a new block close to the existing one,
|
|
* we just steal a block from the extent we are trying to add.
|
|
*
|
|
* It would be nice if the blocks were close together, but it
|
|
* isn't required.
|
|
*/
|
|
|
|
int adsize;
|
|
|
|
eloc.logicalBlockNum = start;
|
|
elen = EXT_RECORDED_ALLOCATED |
|
|
(count << sb->s_blocksize_bits);
|
|
|
|
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
|
|
adsize = sizeof(struct short_ad);
|
|
else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
|
|
adsize = sizeof(struct long_ad);
|
|
else {
|
|
brelse(oepos.bh);
|
|
brelse(epos.bh);
|
|
goto error_return;
|
|
}
|
|
|
|
if (epos.offset + (2 * adsize) > sb->s_blocksize) {
|
|
/* Steal a block from the extent being free'd */
|
|
udf_setup_indirect_aext(table, eloc.logicalBlockNum,
|
|
&epos);
|
|
|
|
eloc.logicalBlockNum++;
|
|
elen -= sb->s_blocksize;
|
|
}
|
|
|
|
/* It's possible that stealing the block emptied the extent */
|
|
if (elen)
|
|
__udf_add_aext(table, &epos, &eloc, elen, 1);
|
|
}
|
|
|
|
brelse(epos.bh);
|
|
brelse(oepos.bh);
|
|
|
|
error_return:
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
return;
|
|
}
|
|
|
|
static int udf_table_prealloc_blocks(struct super_block *sb,
|
|
struct inode *table, uint16_t partition,
|
|
uint32_t first_block, uint32_t block_count)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
int alloc_count = 0;
|
|
uint32_t elen, adsize;
|
|
struct kernel_lb_addr eloc;
|
|
struct extent_position epos;
|
|
int8_t etype = -1;
|
|
struct udf_inode_info *iinfo;
|
|
|
|
if (first_block >= sbi->s_partmaps[partition].s_partition_len)
|
|
return 0;
|
|
|
|
iinfo = UDF_I(table);
|
|
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
|
|
adsize = sizeof(struct short_ad);
|
|
else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
|
|
adsize = sizeof(struct long_ad);
|
|
else
|
|
return 0;
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
epos.offset = sizeof(struct unallocSpaceEntry);
|
|
epos.block = iinfo->i_location;
|
|
epos.bh = NULL;
|
|
eloc.logicalBlockNum = 0xFFFFFFFF;
|
|
|
|
while (first_block != eloc.logicalBlockNum &&
|
|
(etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
|
|
udf_debug("eloc=%u, elen=%u, first_block=%u\n",
|
|
eloc.logicalBlockNum, elen, first_block);
|
|
; /* empty loop body */
|
|
}
|
|
|
|
if (first_block == eloc.logicalBlockNum) {
|
|
epos.offset -= adsize;
|
|
|
|
alloc_count = (elen >> sb->s_blocksize_bits);
|
|
if (alloc_count > block_count) {
|
|
alloc_count = block_count;
|
|
eloc.logicalBlockNum += alloc_count;
|
|
elen -= (alloc_count << sb->s_blocksize_bits);
|
|
udf_write_aext(table, &epos, &eloc,
|
|
(etype << 30) | elen, 1);
|
|
} else
|
|
udf_delete_aext(table, epos);
|
|
} else {
|
|
alloc_count = 0;
|
|
}
|
|
|
|
brelse(epos.bh);
|
|
|
|
if (alloc_count)
|
|
udf_add_free_space(sb, partition, -alloc_count);
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
return alloc_count;
|
|
}
|
|
|
|
static udf_pblk_t udf_table_new_block(struct super_block *sb,
|
|
struct inode *table, uint16_t partition,
|
|
uint32_t goal, int *err)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
|
|
udf_pblk_t newblock = 0;
|
|
uint32_t adsize;
|
|
uint32_t elen, goal_elen = 0;
|
|
struct kernel_lb_addr eloc, goal_eloc;
|
|
struct extent_position epos, goal_epos;
|
|
int8_t etype;
|
|
struct udf_inode_info *iinfo = UDF_I(table);
|
|
|
|
*err = -ENOSPC;
|
|
|
|
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
|
|
adsize = sizeof(struct short_ad);
|
|
else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
|
|
adsize = sizeof(struct long_ad);
|
|
else
|
|
return newblock;
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
if (goal >= sbi->s_partmaps[partition].s_partition_len)
|
|
goal = 0;
|
|
|
|
/* We search for the closest matching block to goal. If we find
|
|
a exact hit, we stop. Otherwise we keep going till we run out
|
|
of extents. We store the buffer_head, bloc, and extoffset
|
|
of the current closest match and use that when we are done.
|
|
*/
|
|
epos.offset = sizeof(struct unallocSpaceEntry);
|
|
epos.block = iinfo->i_location;
|
|
epos.bh = goal_epos.bh = NULL;
|
|
|
|
while (spread &&
|
|
(etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
|
|
if (goal >= eloc.logicalBlockNum) {
|
|
if (goal < eloc.logicalBlockNum +
|
|
(elen >> sb->s_blocksize_bits))
|
|
nspread = 0;
|
|
else
|
|
nspread = goal - eloc.logicalBlockNum -
|
|
(elen >> sb->s_blocksize_bits);
|
|
} else {
|
|
nspread = eloc.logicalBlockNum - goal;
|
|
}
|
|
|
|
if (nspread < spread) {
|
|
spread = nspread;
|
|
if (goal_epos.bh != epos.bh) {
|
|
brelse(goal_epos.bh);
|
|
goal_epos.bh = epos.bh;
|
|
get_bh(goal_epos.bh);
|
|
}
|
|
goal_epos.block = epos.block;
|
|
goal_epos.offset = epos.offset - adsize;
|
|
goal_eloc = eloc;
|
|
goal_elen = (etype << 30) | elen;
|
|
}
|
|
}
|
|
|
|
brelse(epos.bh);
|
|
|
|
if (spread == 0xFFFFFFFF) {
|
|
brelse(goal_epos.bh);
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* Only allocate blocks from the beginning of the extent.
|
|
That way, we only delete (empty) extents, never have to insert an
|
|
extent because of splitting */
|
|
/* This works, but very poorly.... */
|
|
|
|
newblock = goal_eloc.logicalBlockNum;
|
|
goal_eloc.logicalBlockNum++;
|
|
goal_elen -= sb->s_blocksize;
|
|
|
|
if (goal_elen)
|
|
udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
|
|
else
|
|
udf_delete_aext(table, goal_epos);
|
|
brelse(goal_epos.bh);
|
|
|
|
udf_add_free_space(sb, partition, -1);
|
|
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
*err = 0;
|
|
return newblock;
|
|
}
|
|
|
|
void udf_free_blocks(struct super_block *sb, struct inode *inode,
|
|
struct kernel_lb_addr *bloc, uint32_t offset,
|
|
uint32_t count)
|
|
{
|
|
uint16_t partition = bloc->partitionReferenceNum;
|
|
struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
|
|
|
|
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
|
|
udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
|
|
bloc, offset, count);
|
|
} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
|
|
udf_table_free_blocks(sb, map->s_uspace.s_table,
|
|
bloc, offset, count);
|
|
}
|
|
|
|
if (inode) {
|
|
inode_sub_bytes(inode,
|
|
((sector_t)count) << sb->s_blocksize_bits);
|
|
}
|
|
}
|
|
|
|
inline int udf_prealloc_blocks(struct super_block *sb,
|
|
struct inode *inode,
|
|
uint16_t partition, uint32_t first_block,
|
|
uint32_t block_count)
|
|
{
|
|
struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
|
|
int allocated;
|
|
|
|
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
|
|
allocated = udf_bitmap_prealloc_blocks(sb,
|
|
map->s_uspace.s_bitmap,
|
|
partition, first_block,
|
|
block_count);
|
|
else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
|
|
allocated = udf_table_prealloc_blocks(sb,
|
|
map->s_uspace.s_table,
|
|
partition, first_block,
|
|
block_count);
|
|
else
|
|
return 0;
|
|
|
|
if (inode && allocated > 0)
|
|
inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
|
|
return allocated;
|
|
}
|
|
|
|
inline udf_pblk_t udf_new_block(struct super_block *sb,
|
|
struct inode *inode,
|
|
uint16_t partition, uint32_t goal, int *err)
|
|
{
|
|
struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
|
|
udf_pblk_t block;
|
|
|
|
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
|
|
block = udf_bitmap_new_block(sb,
|
|
map->s_uspace.s_bitmap,
|
|
partition, goal, err);
|
|
else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
|
|
block = udf_table_new_block(sb,
|
|
map->s_uspace.s_table,
|
|
partition, goal, err);
|
|
else {
|
|
*err = -EIO;
|
|
return 0;
|
|
}
|
|
if (inode && block)
|
|
inode_add_bytes(inode, sb->s_blocksize);
|
|
return block;
|
|
}
|