mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-03 19:53:32 +00:00
f93f67d06b
LoongArch has similar problems explained in commit 7f0b1bf045
("arm64: Fix barriers used for page table modifications"), when hardware
page table walker (PTW) enabled, speculative accesses may cause spurious
page fault in kernel space. Theoretically, in order to completely avoid
spurious page fault we need a "dbar + ibar" pair between the page table
modifications and the subsequent memory accesses using the corresponding
virtual address. But "ibar" is too heavy for performace, so we only use
a "dbar 0b11000" in set_pte(). And let spurious_fault() filter the rest
rare spurious page faults which should be avoided by "ibar".
Besides, we replace the llsc loop with amo in set_pte() which has better
performace, and refactor mmu_context.h to 1) avoid any load/store/branch
instructions between the writing of CSR.ASID & CSR.PGDL, 2) ensure flush
tlb operation is after updating ASID.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
312 lines
7.6 KiB
C
312 lines
7.6 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
|
|
*
|
|
* Derived from MIPS:
|
|
* Copyright (C) 1995 - 2000 by Ralf Baechle
|
|
*/
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/entry-common.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kfence.h>
|
|
|
|
#include <asm/branch.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
int show_unhandled_signals = 1;
|
|
|
|
static int __kprobes spurious_fault(unsigned long write, unsigned long address)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (!(address & __UA_LIMIT))
|
|
return 0;
|
|
|
|
pgd = pgd_offset_k(address);
|
|
if (!pgd_present(pgdp_get(pgd)))
|
|
return 0;
|
|
|
|
p4d = p4d_offset(pgd, address);
|
|
if (!p4d_present(p4dp_get(p4d)))
|
|
return 0;
|
|
|
|
pud = pud_offset(p4d, address);
|
|
if (!pud_present(pudp_get(pud)))
|
|
return 0;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(pmdp_get(pmd)))
|
|
return 0;
|
|
|
|
if (pmd_leaf(*pmd)) {
|
|
return write ? pmd_write(pmdp_get(pmd)) : 1;
|
|
} else {
|
|
pte = pte_offset_kernel(pmd, address);
|
|
if (!pte_present(ptep_get(pte)))
|
|
return 0;
|
|
|
|
return write ? pte_write(ptep_get(pte)) : 1;
|
|
}
|
|
}
|
|
|
|
static void __kprobes no_context(struct pt_regs *regs,
|
|
unsigned long write, unsigned long address)
|
|
{
|
|
const int field = sizeof(unsigned long) * 2;
|
|
|
|
if (spurious_fault(write, address))
|
|
return;
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs))
|
|
return;
|
|
|
|
if (kfence_handle_page_fault(address, write, regs))
|
|
return;
|
|
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice.
|
|
*/
|
|
bust_spinlocks(1);
|
|
|
|
pr_alert("CPU %d Unable to handle kernel paging request at "
|
|
"virtual address %0*lx, era == %0*lx, ra == %0*lx\n",
|
|
raw_smp_processor_id(), field, address, field, regs->csr_era,
|
|
field, regs->regs[1]);
|
|
die("Oops", regs);
|
|
}
|
|
|
|
static void __kprobes do_out_of_memory(struct pt_regs *regs,
|
|
unsigned long write, unsigned long address)
|
|
{
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return the userspace
|
|
* (which will retry the fault, or kill us if we got oom-killed).
|
|
*/
|
|
if (!user_mode(regs)) {
|
|
no_context(regs, write, address);
|
|
return;
|
|
}
|
|
pagefault_out_of_memory();
|
|
}
|
|
|
|
static void __kprobes do_sigbus(struct pt_regs *regs,
|
|
unsigned long write, unsigned long address, int si_code)
|
|
{
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!user_mode(regs)) {
|
|
no_context(regs, write, address);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Send a sigbus, regardless of whether we were in kernel
|
|
* or user mode.
|
|
*/
|
|
current->thread.csr_badvaddr = address;
|
|
current->thread.trap_nr = read_csr_excode();
|
|
force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
|
|
}
|
|
|
|
static void __kprobes do_sigsegv(struct pt_regs *regs,
|
|
unsigned long write, unsigned long address, int si_code)
|
|
{
|
|
const int field = sizeof(unsigned long) * 2;
|
|
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!user_mode(regs)) {
|
|
no_context(regs, write, address);
|
|
return;
|
|
}
|
|
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
current->thread.csr_badvaddr = address;
|
|
if (!write)
|
|
current->thread.error_code = 1;
|
|
else
|
|
current->thread.error_code = 2;
|
|
current->thread.trap_nr = read_csr_excode();
|
|
|
|
if (show_unhandled_signals &&
|
|
unhandled_signal(current, SIGSEGV) && __ratelimit(&ratelimit_state)) {
|
|
pr_info("do_page_fault(): sending SIGSEGV to %s for invalid %s %0*lx\n",
|
|
current->comm,
|
|
write ? "write access to" : "read access from",
|
|
field, address);
|
|
pr_info("era = %0*lx in", field,
|
|
(unsigned long) regs->csr_era);
|
|
print_vma_addr(KERN_CONT " ", regs->csr_era);
|
|
pr_cont("\n");
|
|
pr_info("ra = %0*lx in", field,
|
|
(unsigned long) regs->regs[1]);
|
|
print_vma_addr(KERN_CONT " ", regs->regs[1]);
|
|
pr_cont("\n");
|
|
}
|
|
force_sig_fault(SIGSEGV, si_code, (void __user *)address);
|
|
}
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address,
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
* routines.
|
|
*/
|
|
static void __kprobes __do_page_fault(struct pt_regs *regs,
|
|
unsigned long write, unsigned long address)
|
|
{
|
|
int si_code = SEGV_MAPERR;
|
|
unsigned int flags = FAULT_FLAG_DEFAULT;
|
|
struct task_struct *tsk = current;
|
|
struct mm_struct *mm = tsk->mm;
|
|
struct vm_area_struct *vma = NULL;
|
|
vm_fault_t fault;
|
|
|
|
if (kprobe_page_fault(regs, current->thread.trap_nr))
|
|
return;
|
|
|
|
/*
|
|
* We fault-in kernel-space virtual memory on-demand. The
|
|
* 'reference' page table is init_mm.pgd.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
* be in an interrupt or a critical region, and should
|
|
* only copy the information from the master page table,
|
|
* nothing more.
|
|
*/
|
|
if (address & __UA_LIMIT) {
|
|
if (!user_mode(regs))
|
|
no_context(regs, write, address);
|
|
else
|
|
do_sigsegv(regs, write, address, si_code);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user
|
|
* context, we must not take the fault..
|
|
*/
|
|
if (faulthandler_disabled() || !mm) {
|
|
do_sigsegv(regs, write, address, si_code);
|
|
return;
|
|
}
|
|
|
|
if (user_mode(regs))
|
|
flags |= FAULT_FLAG_USER;
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
|
retry:
|
|
vma = lock_mm_and_find_vma(mm, address, regs);
|
|
if (unlikely(!vma))
|
|
goto bad_area_nosemaphore;
|
|
goto good_area;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
bad_area:
|
|
mmap_read_unlock(mm);
|
|
bad_area_nosemaphore:
|
|
do_sigsegv(regs, write, address, si_code);
|
|
return;
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
good_area:
|
|
si_code = SEGV_ACCERR;
|
|
|
|
if (write) {
|
|
flags |= FAULT_FLAG_WRITE;
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
goto bad_area;
|
|
} else {
|
|
if (!(vma->vm_flags & VM_EXEC) && address == exception_era(regs))
|
|
goto bad_area;
|
|
if (!(vma->vm_flags & (VM_READ | VM_WRITE)) && address != exception_era(regs))
|
|
goto bad_area;
|
|
}
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
fault = handle_mm_fault(vma, address, flags, regs);
|
|
|
|
if (fault_signal_pending(fault, regs)) {
|
|
if (!user_mode(regs))
|
|
no_context(regs, write, address);
|
|
return;
|
|
}
|
|
|
|
/* The fault is fully completed (including releasing mmap lock) */
|
|
if (fault & VM_FAULT_COMPLETED)
|
|
return;
|
|
|
|
if (unlikely(fault & VM_FAULT_RETRY)) {
|
|
flags |= FAULT_FLAG_TRIED;
|
|
|
|
/*
|
|
* No need to mmap_read_unlock(mm) as we would
|
|
* have already released it in __lock_page_or_retry
|
|
* in mm/filemap.c.
|
|
*/
|
|
goto retry;
|
|
}
|
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
mmap_read_unlock(mm);
|
|
if (fault & VM_FAULT_OOM) {
|
|
do_out_of_memory(regs, write, address);
|
|
return;
|
|
} else if (fault & VM_FAULT_SIGSEGV) {
|
|
do_sigsegv(regs, write, address, si_code);
|
|
return;
|
|
} else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
|
|
do_sigbus(regs, write, address, si_code);
|
|
return;
|
|
}
|
|
BUG();
|
|
}
|
|
|
|
mmap_read_unlock(mm);
|
|
}
|
|
|
|
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|
unsigned long write, unsigned long address)
|
|
{
|
|
irqentry_state_t state = irqentry_enter(regs);
|
|
|
|
/* Enable interrupt if enabled in parent context */
|
|
if (likely(regs->csr_prmd & CSR_PRMD_PIE))
|
|
local_irq_enable();
|
|
|
|
__do_page_fault(regs, write, address);
|
|
|
|
local_irq_disable();
|
|
|
|
irqentry_exit(regs, state);
|
|
}
|