linux/fs/f2fs/super.c
Chao Yu c227f91273 f2fs: record dirty status of regular/symlink inode
Maintain regular/symlink inode which has dirty pages in global dirty list
and record their total dirty pages count like the way of handling directory
inode.

Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2015-12-16 08:58:12 -08:00

1638 lines
41 KiB
C

/*
* fs/f2fs/super.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/statfs.h>
#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/kthread.h>
#include <linux/parser.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/random.h>
#include <linux/exportfs.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/sysfs.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include "gc.h"
#include "trace.h"
#define CREATE_TRACE_POINTS
#include <trace/events/f2fs.h>
static struct proc_dir_entry *f2fs_proc_root;
static struct kmem_cache *f2fs_inode_cachep;
static struct kset *f2fs_kset;
/* f2fs-wide shrinker description */
static struct shrinker f2fs_shrinker_info = {
.scan_objects = f2fs_shrink_scan,
.count_objects = f2fs_shrink_count,
.seeks = DEFAULT_SEEKS,
};
enum {
Opt_gc_background,
Opt_disable_roll_forward,
Opt_norecovery,
Opt_discard,
Opt_noheap,
Opt_user_xattr,
Opt_nouser_xattr,
Opt_acl,
Opt_noacl,
Opt_active_logs,
Opt_disable_ext_identify,
Opt_inline_xattr,
Opt_inline_data,
Opt_inline_dentry,
Opt_flush_merge,
Opt_nobarrier,
Opt_fastboot,
Opt_extent_cache,
Opt_noextent_cache,
Opt_noinline_data,
Opt_err,
};
static match_table_t f2fs_tokens = {
{Opt_gc_background, "background_gc=%s"},
{Opt_disable_roll_forward, "disable_roll_forward"},
{Opt_norecovery, "norecovery"},
{Opt_discard, "discard"},
{Opt_noheap, "no_heap"},
{Opt_user_xattr, "user_xattr"},
{Opt_nouser_xattr, "nouser_xattr"},
{Opt_acl, "acl"},
{Opt_noacl, "noacl"},
{Opt_active_logs, "active_logs=%u"},
{Opt_disable_ext_identify, "disable_ext_identify"},
{Opt_inline_xattr, "inline_xattr"},
{Opt_inline_data, "inline_data"},
{Opt_inline_dentry, "inline_dentry"},
{Opt_flush_merge, "flush_merge"},
{Opt_nobarrier, "nobarrier"},
{Opt_fastboot, "fastboot"},
{Opt_extent_cache, "extent_cache"},
{Opt_noextent_cache, "noextent_cache"},
{Opt_noinline_data, "noinline_data"},
{Opt_err, NULL},
};
/* Sysfs support for f2fs */
enum {
GC_THREAD, /* struct f2fs_gc_thread */
SM_INFO, /* struct f2fs_sm_info */
NM_INFO, /* struct f2fs_nm_info */
F2FS_SBI, /* struct f2fs_sb_info */
};
struct f2fs_attr {
struct attribute attr;
ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
const char *, size_t);
int struct_type;
int offset;
};
static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
{
if (struct_type == GC_THREAD)
return (unsigned char *)sbi->gc_thread;
else if (struct_type == SM_INFO)
return (unsigned char *)SM_I(sbi);
else if (struct_type == NM_INFO)
return (unsigned char *)NM_I(sbi);
else if (struct_type == F2FS_SBI)
return (unsigned char *)sbi;
return NULL;
}
static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
unsigned char *ptr = NULL;
unsigned int *ui;
ptr = __struct_ptr(sbi, a->struct_type);
if (!ptr)
return -EINVAL;
ui = (unsigned int *)(ptr + a->offset);
return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
}
static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
struct f2fs_sb_info *sbi,
const char *buf, size_t count)
{
unsigned char *ptr;
unsigned long t;
unsigned int *ui;
ssize_t ret;
ptr = __struct_ptr(sbi, a->struct_type);
if (!ptr)
return -EINVAL;
ui = (unsigned int *)(ptr + a->offset);
ret = kstrtoul(skip_spaces(buf), 0, &t);
if (ret < 0)
return ret;
*ui = t;
return count;
}
static ssize_t f2fs_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
return a->show ? a->show(a, sbi, buf) : 0;
}
static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t len)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
return a->store ? a->store(a, sbi, buf, len) : 0;
}
static void f2fs_sb_release(struct kobject *kobj)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
complete(&sbi->s_kobj_unregister);
}
#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
static struct f2fs_attr f2fs_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
.struct_type = _struct_type, \
.offset = _offset \
}
#define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
F2FS_ATTR_OFFSET(struct_type, name, 0644, \
f2fs_sbi_show, f2fs_sbi_store, \
offsetof(struct struct_name, elname))
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, cp_interval);
#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
static struct attribute *f2fs_attrs[] = {
ATTR_LIST(gc_min_sleep_time),
ATTR_LIST(gc_max_sleep_time),
ATTR_LIST(gc_no_gc_sleep_time),
ATTR_LIST(gc_idle),
ATTR_LIST(reclaim_segments),
ATTR_LIST(max_small_discards),
ATTR_LIST(batched_trim_sections),
ATTR_LIST(ipu_policy),
ATTR_LIST(min_ipu_util),
ATTR_LIST(min_fsync_blocks),
ATTR_LIST(max_victim_search),
ATTR_LIST(dir_level),
ATTR_LIST(ram_thresh),
ATTR_LIST(ra_nid_pages),
ATTR_LIST(cp_interval),
NULL,
};
static const struct sysfs_ops f2fs_attr_ops = {
.show = f2fs_attr_show,
.store = f2fs_attr_store,
};
static struct kobj_type f2fs_ktype = {
.default_attrs = f2fs_attrs,
.sysfs_ops = &f2fs_attr_ops,
.release = f2fs_sb_release,
};
void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
va_end(args);
}
static void init_once(void *foo)
{
struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
inode_init_once(&fi->vfs_inode);
}
static int parse_options(struct super_block *sb, char *options)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct request_queue *q;
substring_t args[MAX_OPT_ARGS];
char *p, *name;
int arg = 0;
if (!options)
return 0;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
/*
* Initialize args struct so we know whether arg was
* found; some options take optional arguments.
*/
args[0].to = args[0].from = NULL;
token = match_token(p, f2fs_tokens, args);
switch (token) {
case Opt_gc_background:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
set_opt(sbi, BG_GC);
clear_opt(sbi, FORCE_FG_GC);
} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
clear_opt(sbi, BG_GC);
clear_opt(sbi, FORCE_FG_GC);
} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
set_opt(sbi, BG_GC);
set_opt(sbi, FORCE_FG_GC);
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_disable_roll_forward:
set_opt(sbi, DISABLE_ROLL_FORWARD);
break;
case Opt_norecovery:
/* this option mounts f2fs with ro */
set_opt(sbi, DISABLE_ROLL_FORWARD);
if (!f2fs_readonly(sb))
return -EINVAL;
break;
case Opt_discard:
q = bdev_get_queue(sb->s_bdev);
if (blk_queue_discard(q)) {
set_opt(sbi, DISCARD);
} else {
f2fs_msg(sb, KERN_WARNING,
"mounting with \"discard\" option, but "
"the device does not support discard");
}
break;
case Opt_noheap:
set_opt(sbi, NOHEAP);
break;
#ifdef CONFIG_F2FS_FS_XATTR
case Opt_user_xattr:
set_opt(sbi, XATTR_USER);
break;
case Opt_nouser_xattr:
clear_opt(sbi, XATTR_USER);
break;
case Opt_inline_xattr:
set_opt(sbi, INLINE_XATTR);
break;
#else
case Opt_user_xattr:
f2fs_msg(sb, KERN_INFO,
"user_xattr options not supported");
break;
case Opt_nouser_xattr:
f2fs_msg(sb, KERN_INFO,
"nouser_xattr options not supported");
break;
case Opt_inline_xattr:
f2fs_msg(sb, KERN_INFO,
"inline_xattr options not supported");
break;
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
case Opt_acl:
set_opt(sbi, POSIX_ACL);
break;
case Opt_noacl:
clear_opt(sbi, POSIX_ACL);
break;
#else
case Opt_acl:
f2fs_msg(sb, KERN_INFO, "acl options not supported");
break;
case Opt_noacl:
f2fs_msg(sb, KERN_INFO, "noacl options not supported");
break;
#endif
case Opt_active_logs:
if (args->from && match_int(args, &arg))
return -EINVAL;
if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
return -EINVAL;
sbi->active_logs = arg;
break;
case Opt_disable_ext_identify:
set_opt(sbi, DISABLE_EXT_IDENTIFY);
break;
case Opt_inline_data:
set_opt(sbi, INLINE_DATA);
break;
case Opt_inline_dentry:
set_opt(sbi, INLINE_DENTRY);
break;
case Opt_flush_merge:
set_opt(sbi, FLUSH_MERGE);
break;
case Opt_nobarrier:
set_opt(sbi, NOBARRIER);
break;
case Opt_fastboot:
set_opt(sbi, FASTBOOT);
break;
case Opt_extent_cache:
set_opt(sbi, EXTENT_CACHE);
break;
case Opt_noextent_cache:
clear_opt(sbi, EXTENT_CACHE);
break;
case Opt_noinline_data:
clear_opt(sbi, INLINE_DATA);
break;
default:
f2fs_msg(sb, KERN_ERR,
"Unrecognized mount option \"%s\" or missing value",
p);
return -EINVAL;
}
}
return 0;
}
static struct inode *f2fs_alloc_inode(struct super_block *sb)
{
struct f2fs_inode_info *fi;
fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
if (!fi)
return NULL;
init_once((void *) fi);
/* Initialize f2fs-specific inode info */
fi->vfs_inode.i_version = 1;
atomic_set(&fi->dirty_pages, 0);
fi->i_current_depth = 1;
fi->i_advise = 0;
init_rwsem(&fi->i_sem);
INIT_LIST_HEAD(&fi->dirty_list);
INIT_LIST_HEAD(&fi->inmem_pages);
mutex_init(&fi->inmem_lock);
set_inode_flag(fi, FI_NEW_INODE);
if (test_opt(F2FS_SB(sb), INLINE_XATTR))
set_inode_flag(fi, FI_INLINE_XATTR);
/* Will be used by directory only */
fi->i_dir_level = F2FS_SB(sb)->dir_level;
#ifdef CONFIG_F2FS_FS_ENCRYPTION
fi->i_crypt_info = NULL;
#endif
return &fi->vfs_inode;
}
static int f2fs_drop_inode(struct inode *inode)
{
/*
* This is to avoid a deadlock condition like below.
* writeback_single_inode(inode)
* - f2fs_write_data_page
* - f2fs_gc -> iput -> evict
* - inode_wait_for_writeback(inode)
*/
if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
if (!inode->i_nlink && !is_bad_inode(inode)) {
/* to avoid evict_inode call simultaneously */
atomic_inc(&inode->i_count);
spin_unlock(&inode->i_lock);
/* some remained atomic pages should discarded */
if (f2fs_is_atomic_file(inode))
commit_inmem_pages(inode, true);
/* should remain fi->extent_tree for writepage */
f2fs_destroy_extent_node(inode);
sb_start_intwrite(inode->i_sb);
i_size_write(inode, 0);
if (F2FS_HAS_BLOCKS(inode))
f2fs_truncate(inode, true);
sb_end_intwrite(inode->i_sb);
#ifdef CONFIG_F2FS_FS_ENCRYPTION
if (F2FS_I(inode)->i_crypt_info)
f2fs_free_encryption_info(inode,
F2FS_I(inode)->i_crypt_info);
#endif
spin_lock(&inode->i_lock);
atomic_dec(&inode->i_count);
}
return 0;
}
return generic_drop_inode(inode);
}
/*
* f2fs_dirty_inode() is called from __mark_inode_dirty()
*
* We should call set_dirty_inode to write the dirty inode through write_inode.
*/
static void f2fs_dirty_inode(struct inode *inode, int flags)
{
set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
}
static void f2fs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
}
static void f2fs_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, f2fs_i_callback);
}
static void f2fs_put_super(struct super_block *sb)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
if (sbi->s_proc) {
remove_proc_entry("segment_info", sbi->s_proc);
remove_proc_entry(sb->s_id, f2fs_proc_root);
}
kobject_del(&sbi->s_kobj);
stop_gc_thread(sbi);
/* prevent remaining shrinker jobs */
mutex_lock(&sbi->umount_mutex);
/*
* We don't need to do checkpoint when superblock is clean.
* But, the previous checkpoint was not done by umount, it needs to do
* clean checkpoint again.
*/
if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
struct cp_control cpc = {
.reason = CP_UMOUNT,
};
write_checkpoint(sbi, &cpc);
}
/* write_checkpoint can update stat informaion */
f2fs_destroy_stats(sbi);
/*
* normally superblock is clean, so we need to release this.
* In addition, EIO will skip do checkpoint, we need this as well.
*/
release_ino_entry(sbi);
release_discard_addrs(sbi);
f2fs_leave_shrinker(sbi);
mutex_unlock(&sbi->umount_mutex);
iput(sbi->node_inode);
iput(sbi->meta_inode);
/* destroy f2fs internal modules */
destroy_node_manager(sbi);
destroy_segment_manager(sbi);
kfree(sbi->ckpt);
kobject_put(&sbi->s_kobj);
wait_for_completion(&sbi->s_kobj_unregister);
sb->s_fs_info = NULL;
kfree(sbi->raw_super);
kfree(sbi);
}
int f2fs_sync_fs(struct super_block *sb, int sync)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
trace_f2fs_sync_fs(sb, sync);
if (sync) {
struct cp_control cpc;
cpc.reason = __get_cp_reason(sbi);
mutex_lock(&sbi->gc_mutex);
write_checkpoint(sbi, &cpc);
mutex_unlock(&sbi->gc_mutex);
} else {
f2fs_balance_fs(sbi);
}
f2fs_trace_ios(NULL, 1);
return 0;
}
static int f2fs_freeze(struct super_block *sb)
{
int err;
if (f2fs_readonly(sb))
return 0;
err = f2fs_sync_fs(sb, 1);
return err;
}
static int f2fs_unfreeze(struct super_block *sb)
{
return 0;
}
static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
block_t total_count, user_block_count, start_count, ovp_count;
total_count = le64_to_cpu(sbi->raw_super->block_count);
user_block_count = sbi->user_block_count;
start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
buf->f_type = F2FS_SUPER_MAGIC;
buf->f_bsize = sbi->blocksize;
buf->f_blocks = total_count - start_count;
buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
buf->f_bavail = user_block_count - valid_user_blocks(sbi);
buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
buf->f_ffree = buf->f_files - valid_inode_count(sbi);
buf->f_namelen = F2FS_NAME_LEN;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
return 0;
}
static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
{
struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
if (test_opt(sbi, FORCE_FG_GC))
seq_printf(seq, ",background_gc=%s", "sync");
else
seq_printf(seq, ",background_gc=%s", "on");
} else {
seq_printf(seq, ",background_gc=%s", "off");
}
if (test_opt(sbi, DISABLE_ROLL_FORWARD))
seq_puts(seq, ",disable_roll_forward");
if (test_opt(sbi, DISCARD))
seq_puts(seq, ",discard");
if (test_opt(sbi, NOHEAP))
seq_puts(seq, ",no_heap_alloc");
#ifdef CONFIG_F2FS_FS_XATTR
if (test_opt(sbi, XATTR_USER))
seq_puts(seq, ",user_xattr");
else
seq_puts(seq, ",nouser_xattr");
if (test_opt(sbi, INLINE_XATTR))
seq_puts(seq, ",inline_xattr");
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
if (test_opt(sbi, POSIX_ACL))
seq_puts(seq, ",acl");
else
seq_puts(seq, ",noacl");
#endif
if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
seq_puts(seq, ",disable_ext_identify");
if (test_opt(sbi, INLINE_DATA))
seq_puts(seq, ",inline_data");
else
seq_puts(seq, ",noinline_data");
if (test_opt(sbi, INLINE_DENTRY))
seq_puts(seq, ",inline_dentry");
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
seq_puts(seq, ",flush_merge");
if (test_opt(sbi, NOBARRIER))
seq_puts(seq, ",nobarrier");
if (test_opt(sbi, FASTBOOT))
seq_puts(seq, ",fastboot");
if (test_opt(sbi, EXTENT_CACHE))
seq_puts(seq, ",extent_cache");
else
seq_puts(seq, ",noextent_cache");
seq_printf(seq, ",active_logs=%u", sbi->active_logs);
return 0;
}
static int segment_info_seq_show(struct seq_file *seq, void *offset)
{
struct super_block *sb = seq->private;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
unsigned int total_segs =
le32_to_cpu(sbi->raw_super->segment_count_main);
int i;
seq_puts(seq, "format: segment_type|valid_blocks\n"
"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
for (i = 0; i < total_segs; i++) {
struct seg_entry *se = get_seg_entry(sbi, i);
if ((i % 10) == 0)
seq_printf(seq, "%-10d", i);
seq_printf(seq, "%d|%-3u", se->type,
get_valid_blocks(sbi, i, 1));
if ((i % 10) == 9 || i == (total_segs - 1))
seq_putc(seq, '\n');
else
seq_putc(seq, ' ');
}
return 0;
}
static int segment_info_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, segment_info_seq_show, PDE_DATA(inode));
}
static const struct file_operations f2fs_seq_segment_info_fops = {
.owner = THIS_MODULE,
.open = segment_info_open_fs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void default_options(struct f2fs_sb_info *sbi)
{
/* init some FS parameters */
sbi->active_logs = NR_CURSEG_TYPE;
set_opt(sbi, BG_GC);
set_opt(sbi, INLINE_DATA);
set_opt(sbi, EXTENT_CACHE);
#ifdef CONFIG_F2FS_FS_XATTR
set_opt(sbi, XATTR_USER);
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
set_opt(sbi, POSIX_ACL);
#endif
}
static int f2fs_remount(struct super_block *sb, int *flags, char *data)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct f2fs_mount_info org_mount_opt;
int err, active_logs;
bool need_restart_gc = false;
bool need_stop_gc = false;
bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
sync_filesystem(sb);
/*
* Save the old mount options in case we
* need to restore them.
*/
org_mount_opt = sbi->mount_opt;
active_logs = sbi->active_logs;
sbi->mount_opt.opt = 0;
default_options(sbi);
/* parse mount options */
err = parse_options(sb, data);
if (err)
goto restore_opts;
/*
* Previous and new state of filesystem is RO,
* so skip checking GC and FLUSH_MERGE conditions.
*/
if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
goto skip;
/* disallow enable/disable extent_cache dynamically */
if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
err = -EINVAL;
f2fs_msg(sbi->sb, KERN_WARNING,
"switch extent_cache option is not allowed");
goto restore_opts;
}
/*
* We stop the GC thread if FS is mounted as RO
* or if background_gc = off is passed in mount
* option. Also sync the filesystem.
*/
if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
if (sbi->gc_thread) {
stop_gc_thread(sbi);
f2fs_sync_fs(sb, 1);
need_restart_gc = true;
}
} else if (!sbi->gc_thread) {
err = start_gc_thread(sbi);
if (err)
goto restore_opts;
need_stop_gc = true;
}
/*
* We stop issue flush thread if FS is mounted as RO
* or if flush_merge is not passed in mount option.
*/
if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
destroy_flush_cmd_control(sbi);
} else if (!SM_I(sbi)->cmd_control_info) {
err = create_flush_cmd_control(sbi);
if (err)
goto restore_gc;
}
skip:
/* Update the POSIXACL Flag */
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
return 0;
restore_gc:
if (need_restart_gc) {
if (start_gc_thread(sbi))
f2fs_msg(sbi->sb, KERN_WARNING,
"background gc thread has stopped");
} else if (need_stop_gc) {
stop_gc_thread(sbi);
}
restore_opts:
sbi->mount_opt = org_mount_opt;
sbi->active_logs = active_logs;
return err;
}
static struct super_operations f2fs_sops = {
.alloc_inode = f2fs_alloc_inode,
.drop_inode = f2fs_drop_inode,
.destroy_inode = f2fs_destroy_inode,
.write_inode = f2fs_write_inode,
.dirty_inode = f2fs_dirty_inode,
.show_options = f2fs_show_options,
.evict_inode = f2fs_evict_inode,
.put_super = f2fs_put_super,
.sync_fs = f2fs_sync_fs,
.freeze_fs = f2fs_freeze,
.unfreeze_fs = f2fs_unfreeze,
.statfs = f2fs_statfs,
.remount_fs = f2fs_remount,
};
static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
u64 ino, u32 generation)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
if (check_nid_range(sbi, ino))
return ERR_PTR(-ESTALE);
/*
* f2fs_iget isn't quite right if the inode is currently unallocated!
* However f2fs_iget currently does appropriate checks to handle stale
* inodes so everything is OK.
*/
inode = f2fs_iget(sb, ino);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (unlikely(generation && inode->i_generation != generation)) {
/* we didn't find the right inode.. */
iput(inode);
return ERR_PTR(-ESTALE);
}
return inode;
}
static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
f2fs_nfs_get_inode);
}
static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
f2fs_nfs_get_inode);
}
static const struct export_operations f2fs_export_ops = {
.fh_to_dentry = f2fs_fh_to_dentry,
.fh_to_parent = f2fs_fh_to_parent,
.get_parent = f2fs_get_parent,
};
static loff_t max_file_size(unsigned bits)
{
loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
loff_t leaf_count = ADDRS_PER_BLOCK;
/* two direct node blocks */
result += (leaf_count * 2);
/* two indirect node blocks */
leaf_count *= NIDS_PER_BLOCK;
result += (leaf_count * 2);
/* one double indirect node block */
leaf_count *= NIDS_PER_BLOCK;
result += leaf_count;
result <<= bits;
return result;
}
static inline bool sanity_check_area_boundary(struct super_block *sb,
struct f2fs_super_block *raw_super)
{
u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
u32 segment_count = le32_to_cpu(raw_super->segment_count);
u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
if (segment0_blkaddr != cp_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
segment0_blkaddr, cp_blkaddr);
return true;
}
if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
sit_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
cp_blkaddr, sit_blkaddr,
segment_count_ckpt << log_blocks_per_seg);
return true;
}
if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
nat_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
sit_blkaddr, nat_blkaddr,
segment_count_sit << log_blocks_per_seg);
return true;
}
if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
ssa_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
nat_blkaddr, ssa_blkaddr,
segment_count_nat << log_blocks_per_seg);
return true;
}
if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
main_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
ssa_blkaddr, main_blkaddr,
segment_count_ssa << log_blocks_per_seg);
return true;
}
if (main_blkaddr + (segment_count_main << log_blocks_per_seg) !=
segment0_blkaddr + (segment_count << log_blocks_per_seg)) {
f2fs_msg(sb, KERN_INFO,
"Wrong MAIN_AREA boundary, start(%u) end(%u) blocks(%u)",
main_blkaddr,
segment0_blkaddr + (segment_count << log_blocks_per_seg),
segment_count_main << log_blocks_per_seg);
return true;
}
return false;
}
static int sanity_check_raw_super(struct super_block *sb,
struct f2fs_super_block *raw_super)
{
unsigned int blocksize;
if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
f2fs_msg(sb, KERN_INFO,
"Magic Mismatch, valid(0x%x) - read(0x%x)",
F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
return 1;
}
/* Currently, support only 4KB page cache size */
if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
f2fs_msg(sb, KERN_INFO,
"Invalid page_cache_size (%lu), supports only 4KB\n",
PAGE_CACHE_SIZE);
return 1;
}
/* Currently, support only 4KB block size */
blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
if (blocksize != F2FS_BLKSIZE) {
f2fs_msg(sb, KERN_INFO,
"Invalid blocksize (%u), supports only 4KB\n",
blocksize);
return 1;
}
/* check log blocks per segment */
if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
f2fs_msg(sb, KERN_INFO,
"Invalid log blocks per segment (%u)\n",
le32_to_cpu(raw_super->log_blocks_per_seg));
return 1;
}
/* Currently, support 512/1024/2048/4096 bytes sector size */
if (le32_to_cpu(raw_super->log_sectorsize) >
F2FS_MAX_LOG_SECTOR_SIZE ||
le32_to_cpu(raw_super->log_sectorsize) <
F2FS_MIN_LOG_SECTOR_SIZE) {
f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
le32_to_cpu(raw_super->log_sectorsize));
return 1;
}
if (le32_to_cpu(raw_super->log_sectors_per_block) +
le32_to_cpu(raw_super->log_sectorsize) !=
F2FS_MAX_LOG_SECTOR_SIZE) {
f2fs_msg(sb, KERN_INFO,
"Invalid log sectors per block(%u) log sectorsize(%u)",
le32_to_cpu(raw_super->log_sectors_per_block),
le32_to_cpu(raw_super->log_sectorsize));
return 1;
}
/* check reserved ino info */
if (le32_to_cpu(raw_super->node_ino) != 1 ||
le32_to_cpu(raw_super->meta_ino) != 2 ||
le32_to_cpu(raw_super->root_ino) != 3) {
f2fs_msg(sb, KERN_INFO,
"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
le32_to_cpu(raw_super->node_ino),
le32_to_cpu(raw_super->meta_ino),
le32_to_cpu(raw_super->root_ino));
return 1;
}
/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
if (sanity_check_area_boundary(sb, raw_super))
return 1;
return 0;
}
static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
{
unsigned int total, fsmeta;
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
total = le32_to_cpu(raw_super->segment_count);
fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
fsmeta += le32_to_cpu(raw_super->segment_count_sit);
fsmeta += le32_to_cpu(raw_super->segment_count_nat);
fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
if (unlikely(fsmeta >= total))
return 1;
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
return 1;
}
return 0;
}
static void init_sb_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = sbi->raw_super;
int i;
sbi->log_sectors_per_block =
le32_to_cpu(raw_super->log_sectors_per_block);
sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
sbi->blocksize = 1 << sbi->log_blocksize;
sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
sbi->total_sections = le32_to_cpu(raw_super->section_count);
sbi->total_node_count =
(le32_to_cpu(raw_super->segment_count_nat) / 2)
* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
sbi->cur_victim_sec = NULL_SECNO;
sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
for (i = 0; i < NR_COUNT_TYPE; i++)
atomic_set(&sbi->nr_pages[i], 0);
sbi->dir_level = DEF_DIR_LEVEL;
sbi->cp_interval = DEF_CP_INTERVAL;
clear_sbi_flag(sbi, SBI_NEED_FSCK);
INIT_LIST_HEAD(&sbi->s_list);
mutex_init(&sbi->umount_mutex);
}
/*
* Read f2fs raw super block.
* Because we have two copies of super block, so read the first one at first,
* if the first one is invalid, move to read the second one.
*/
static int read_raw_super_block(struct super_block *sb,
struct f2fs_super_block **raw_super,
int *valid_super_block, int *recovery)
{
int block = 0;
struct buffer_head *bh;
struct f2fs_super_block *super, *buf;
int err = 0;
super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
if (!super)
return -ENOMEM;
retry:
bh = sb_bread(sb, block);
if (!bh) {
*recovery = 1;
f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
block + 1);
err = -EIO;
goto next;
}
buf = (struct f2fs_super_block *)(bh->b_data + F2FS_SUPER_OFFSET);
/* sanity checking of raw super */
if (sanity_check_raw_super(sb, buf)) {
brelse(bh);
*recovery = 1;
f2fs_msg(sb, KERN_ERR,
"Can't find valid F2FS filesystem in %dth superblock",
block + 1);
err = -EINVAL;
goto next;
}
if (!*raw_super) {
memcpy(super, buf, sizeof(*super));
*valid_super_block = block;
*raw_super = super;
}
brelse(bh);
next:
/* check the validity of the second superblock */
if (block == 0) {
block++;
goto retry;
}
/* No valid superblock */
if (!*raw_super) {
kfree(super);
return err;
}
return 0;
}
int __f2fs_commit_super(struct f2fs_sb_info *sbi, int block)
{
struct f2fs_super_block *super = F2FS_RAW_SUPER(sbi);
struct buffer_head *bh;
int err;
bh = sb_getblk(sbi->sb, block);
if (!bh)
return -EIO;
lock_buffer(bh);
memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
set_buffer_uptodate(bh);
set_buffer_dirty(bh);
unlock_buffer(bh);
/* it's rare case, we can do fua all the time */
err = __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
brelse(bh);
return err;
}
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
{
int err;
/* write back-up superblock first */
err = __f2fs_commit_super(sbi, sbi->valid_super_block ? 0 : 1);
/* if we are in recovery path, skip writing valid superblock */
if (recover || err)
return err;
/* write current valid superblock */
return __f2fs_commit_super(sbi, sbi->valid_super_block);
}
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
{
struct f2fs_sb_info *sbi;
struct f2fs_super_block *raw_super;
struct inode *root;
long err;
bool retry = true, need_fsck = false;
char *options = NULL;
int recovery, i, valid_super_block;
try_onemore:
err = -EINVAL;
raw_super = NULL;
valid_super_block = -1;
recovery = 0;
/* allocate memory for f2fs-specific super block info */
sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
/* set a block size */
if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
goto free_sbi;
}
err = read_raw_super_block(sb, &raw_super, &valid_super_block,
&recovery);
if (err)
goto free_sbi;
sb->s_fs_info = sbi;
default_options(sbi);
/* parse mount options */
options = kstrdup((const char *)data, GFP_KERNEL);
if (data && !options) {
err = -ENOMEM;
goto free_sb_buf;
}
err = parse_options(sb, options);
if (err)
goto free_options;
sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
sb->s_max_links = F2FS_LINK_MAX;
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
sb->s_op = &f2fs_sops;
sb->s_xattr = f2fs_xattr_handlers;
sb->s_export_op = &f2fs_export_ops;
sb->s_magic = F2FS_SUPER_MAGIC;
sb->s_time_gran = 1;
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
/* init f2fs-specific super block info */
sbi->sb = sb;
sbi->raw_super = raw_super;
sbi->valid_super_block = valid_super_block;
mutex_init(&sbi->gc_mutex);
mutex_init(&sbi->writepages);
mutex_init(&sbi->cp_mutex);
init_rwsem(&sbi->node_write);
/* disallow all the data/node/meta page writes */
set_sbi_flag(sbi, SBI_POR_DOING);
spin_lock_init(&sbi->stat_lock);
init_rwsem(&sbi->read_io.io_rwsem);
sbi->read_io.sbi = sbi;
sbi->read_io.bio = NULL;
for (i = 0; i < NR_PAGE_TYPE; i++) {
init_rwsem(&sbi->write_io[i].io_rwsem);
sbi->write_io[i].sbi = sbi;
sbi->write_io[i].bio = NULL;
}
init_rwsem(&sbi->cp_rwsem);
init_waitqueue_head(&sbi->cp_wait);
init_sb_info(sbi);
/* get an inode for meta space */
sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
if (IS_ERR(sbi->meta_inode)) {
f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
err = PTR_ERR(sbi->meta_inode);
goto free_options;
}
err = get_valid_checkpoint(sbi);
if (err) {
f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
goto free_meta_inode;
}
/* sanity checking of checkpoint */
err = -EINVAL;
if (sanity_check_ckpt(sbi)) {
f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
goto free_cp;
}
sbi->total_valid_node_count =
le32_to_cpu(sbi->ckpt->valid_node_count);
sbi->total_valid_inode_count =
le32_to_cpu(sbi->ckpt->valid_inode_count);
sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
sbi->total_valid_block_count =
le64_to_cpu(sbi->ckpt->valid_block_count);
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->alloc_valid_block_count = 0;
for (i = 0; i < NR_INODE_TYPE; i++) {
INIT_LIST_HEAD(&sbi->inode_list[i]);
spin_lock_init(&sbi->inode_lock[i]);
}
init_extent_cache_info(sbi);
init_ino_entry_info(sbi);
/* setup f2fs internal modules */
err = build_segment_manager(sbi);
if (err) {
f2fs_msg(sb, KERN_ERR,
"Failed to initialize F2FS segment manager");
goto free_sm;
}
err = build_node_manager(sbi);
if (err) {
f2fs_msg(sb, KERN_ERR,
"Failed to initialize F2FS node manager");
goto free_nm;
}
build_gc_manager(sbi);
/* get an inode for node space */
sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
if (IS_ERR(sbi->node_inode)) {
f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
err = PTR_ERR(sbi->node_inode);
goto free_nm;
}
f2fs_join_shrinker(sbi);
/* if there are nt orphan nodes free them */
err = recover_orphan_inodes(sbi);
if (err)
goto free_node_inode;
/* read root inode and dentry */
root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
if (IS_ERR(root)) {
f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
err = PTR_ERR(root);
goto free_node_inode;
}
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
iput(root);
err = -EINVAL;
goto free_node_inode;
}
sb->s_root = d_make_root(root); /* allocate root dentry */
if (!sb->s_root) {
err = -ENOMEM;
goto free_root_inode;
}
err = f2fs_build_stats(sbi);
if (err)
goto free_root_inode;
if (f2fs_proc_root)
sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
if (sbi->s_proc)
proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
&f2fs_seq_segment_info_fops, sb);
sbi->s_kobj.kset = f2fs_kset;
init_completion(&sbi->s_kobj_unregister);
err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
"%s", sb->s_id);
if (err)
goto free_proc;
/* recover fsynced data */
if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
/*
* mount should be failed, when device has readonly mode, and
* previous checkpoint was not done by clean system shutdown.
*/
if (bdev_read_only(sb->s_bdev) &&
!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
err = -EROFS;
goto free_kobj;
}
if (need_fsck)
set_sbi_flag(sbi, SBI_NEED_FSCK);
err = recover_fsync_data(sbi);
if (err) {
need_fsck = true;
f2fs_msg(sb, KERN_ERR,
"Cannot recover all fsync data errno=%ld", err);
goto free_kobj;
}
}
/* recover_fsync_data() cleared this already */
clear_sbi_flag(sbi, SBI_POR_DOING);
/*
* If filesystem is not mounted as read-only then
* do start the gc_thread.
*/
if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
/* After POR, we can run background GC thread.*/
err = start_gc_thread(sbi);
if (err)
goto free_kobj;
}
kfree(options);
/* recover broken superblock */
if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
f2fs_commit_super(sbi, true);
}
sbi->cp_expires = round_jiffies_up(jiffies);
return 0;
free_kobj:
kobject_del(&sbi->s_kobj);
kobject_put(&sbi->s_kobj);
wait_for_completion(&sbi->s_kobj_unregister);
free_proc:
if (sbi->s_proc) {
remove_proc_entry("segment_info", sbi->s_proc);
remove_proc_entry(sb->s_id, f2fs_proc_root);
}
f2fs_destroy_stats(sbi);
free_root_inode:
dput(sb->s_root);
sb->s_root = NULL;
free_node_inode:
mutex_lock(&sbi->umount_mutex);
f2fs_leave_shrinker(sbi);
iput(sbi->node_inode);
mutex_unlock(&sbi->umount_mutex);
free_nm:
destroy_node_manager(sbi);
free_sm:
destroy_segment_manager(sbi);
free_cp:
kfree(sbi->ckpt);
free_meta_inode:
make_bad_inode(sbi->meta_inode);
iput(sbi->meta_inode);
free_options:
kfree(options);
free_sb_buf:
kfree(raw_super);
free_sbi:
kfree(sbi);
/* give only one another chance */
if (retry) {
retry = false;
shrink_dcache_sb(sb);
goto try_onemore;
}
return err;
}
static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
}
static void kill_f2fs_super(struct super_block *sb)
{
if (sb->s_root)
set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
kill_block_super(sb);
}
static struct file_system_type f2fs_fs_type = {
.owner = THIS_MODULE,
.name = "f2fs",
.mount = f2fs_mount,
.kill_sb = kill_f2fs_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("f2fs");
static int __init init_inodecache(void)
{
f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
sizeof(struct f2fs_inode_info));
if (!f2fs_inode_cachep)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(f2fs_inode_cachep);
}
static int __init init_f2fs_fs(void)
{
int err;
f2fs_build_trace_ios();
err = init_inodecache();
if (err)
goto fail;
err = create_node_manager_caches();
if (err)
goto free_inodecache;
err = create_segment_manager_caches();
if (err)
goto free_node_manager_caches;
err = create_checkpoint_caches();
if (err)
goto free_segment_manager_caches;
err = create_extent_cache();
if (err)
goto free_checkpoint_caches;
f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
if (!f2fs_kset) {
err = -ENOMEM;
goto free_extent_cache;
}
err = f2fs_init_crypto();
if (err)
goto free_kset;
err = register_shrinker(&f2fs_shrinker_info);
if (err)
goto free_crypto;
err = register_filesystem(&f2fs_fs_type);
if (err)
goto free_shrinker;
err = f2fs_create_root_stats();
if (err)
goto free_filesystem;
f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
return 0;
free_filesystem:
unregister_filesystem(&f2fs_fs_type);
free_shrinker:
unregister_shrinker(&f2fs_shrinker_info);
free_crypto:
f2fs_exit_crypto();
free_kset:
kset_unregister(f2fs_kset);
free_extent_cache:
destroy_extent_cache();
free_checkpoint_caches:
destroy_checkpoint_caches();
free_segment_manager_caches:
destroy_segment_manager_caches();
free_node_manager_caches:
destroy_node_manager_caches();
free_inodecache:
destroy_inodecache();
fail:
return err;
}
static void __exit exit_f2fs_fs(void)
{
remove_proc_entry("fs/f2fs", NULL);
f2fs_destroy_root_stats();
unregister_shrinker(&f2fs_shrinker_info);
unregister_filesystem(&f2fs_fs_type);
f2fs_exit_crypto();
destroy_extent_cache();
destroy_checkpoint_caches();
destroy_segment_manager_caches();
destroy_node_manager_caches();
destroy_inodecache();
kset_unregister(f2fs_kset);
f2fs_destroy_trace_ios();
}
module_init(init_f2fs_fs)
module_exit(exit_f2fs_fs)
MODULE_AUTHOR("Samsung Electronics's Praesto Team");
MODULE_DESCRIPTION("Flash Friendly File System");
MODULE_LICENSE("GPL");