linux/net/rose/af_rose.c
YOSHIFUJI Hideaki c346dca108 [NET] NETNS: Omit net_device->nd_net without CONFIG_NET_NS.
Introduce per-net_device inlines: dev_net(), dev_net_set().
Without CONFIG_NET_NS, no namespace other than &init_net exists.
Let's explicitly define them to help compiler optimizations.

Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
2008-03-26 04:39:53 +09:00

1654 lines
38 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
* Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
* Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
* Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/stat.h>
#include <net/net_namespace.h>
#include <net/ax25.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/fcntl.h>
#include <linux/termios.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <net/rose.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <net/tcp_states.h>
#include <net/ip.h>
#include <net/arp.h>
static int rose_ndevs = 10;
int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
int sysctl_rose_call_request_timeout = ROSE_DEFAULT_T1;
int sysctl_rose_reset_request_timeout = ROSE_DEFAULT_T2;
int sysctl_rose_clear_request_timeout = ROSE_DEFAULT_T3;
int sysctl_rose_no_activity_timeout = ROSE_DEFAULT_IDLE;
int sysctl_rose_ack_hold_back_timeout = ROSE_DEFAULT_HB;
int sysctl_rose_routing_control = ROSE_DEFAULT_ROUTING;
int sysctl_rose_link_fail_timeout = ROSE_DEFAULT_FAIL_TIMEOUT;
int sysctl_rose_maximum_vcs = ROSE_DEFAULT_MAXVC;
int sysctl_rose_window_size = ROSE_DEFAULT_WINDOW_SIZE;
static HLIST_HEAD(rose_list);
static DEFINE_SPINLOCK(rose_list_lock);
static struct proto_ops rose_proto_ops;
ax25_address rose_callsign;
/*
* ROSE network devices are virtual network devices encapsulating ROSE
* frames into AX.25 which will be sent through an AX.25 device, so form a
* special "super class" of normal net devices; split their locks off into a
* separate class since they always nest.
*/
static struct lock_class_key rose_netdev_xmit_lock_key;
/*
* Convert a ROSE address into text.
*/
const char *rose2asc(const rose_address *addr)
{
static char buffer[11];
if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
addr->rose_addr[4] == 0x00) {
strcpy(buffer, "*");
} else {
sprintf(buffer, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
addr->rose_addr[1] & 0xFF,
addr->rose_addr[2] & 0xFF,
addr->rose_addr[3] & 0xFF,
addr->rose_addr[4] & 0xFF);
}
return buffer;
}
/*
* Compare two ROSE addresses, 0 == equal.
*/
int rosecmp(rose_address *addr1, rose_address *addr2)
{
int i;
for (i = 0; i < 5; i++)
if (addr1->rose_addr[i] != addr2->rose_addr[i])
return 1;
return 0;
}
/*
* Compare two ROSE addresses for only mask digits, 0 == equal.
*/
int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
{
unsigned int i, j;
if (mask > 10)
return 1;
for (i = 0; i < mask; i++) {
j = i / 2;
if ((i % 2) != 0) {
if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
return 1;
} else {
if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
return 1;
}
}
return 0;
}
/*
* Socket removal during an interrupt is now safe.
*/
static void rose_remove_socket(struct sock *sk)
{
spin_lock_bh(&rose_list_lock);
sk_del_node_init(sk);
spin_unlock_bh(&rose_list_lock);
}
/*
* Kill all bound sockets on a broken link layer connection to a
* particular neighbour.
*/
void rose_kill_by_neigh(struct rose_neigh *neigh)
{
struct sock *s;
struct hlist_node *node;
spin_lock_bh(&rose_list_lock);
sk_for_each(s, node, &rose_list) {
struct rose_sock *rose = rose_sk(s);
if (rose->neighbour == neigh) {
rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
rose->neighbour->use--;
rose->neighbour = NULL;
}
}
spin_unlock_bh(&rose_list_lock);
}
/*
* Kill all bound sockets on a dropped device.
*/
static void rose_kill_by_device(struct net_device *dev)
{
struct sock *s;
struct hlist_node *node;
spin_lock_bh(&rose_list_lock);
sk_for_each(s, node, &rose_list) {
struct rose_sock *rose = rose_sk(s);
if (rose->device == dev) {
rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
rose->neighbour->use--;
rose->device = NULL;
}
}
spin_unlock_bh(&rose_list_lock);
}
/*
* Handle device status changes.
*/
static int rose_device_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct net_device *dev = (struct net_device *)ptr;
if (dev_net(dev) != &init_net)
return NOTIFY_DONE;
if (event != NETDEV_DOWN)
return NOTIFY_DONE;
switch (dev->type) {
case ARPHRD_ROSE:
rose_kill_by_device(dev);
break;
case ARPHRD_AX25:
rose_link_device_down(dev);
rose_rt_device_down(dev);
break;
}
return NOTIFY_DONE;
}
/*
* Add a socket to the bound sockets list.
*/
static void rose_insert_socket(struct sock *sk)
{
spin_lock_bh(&rose_list_lock);
sk_add_node(sk, &rose_list);
spin_unlock_bh(&rose_list_lock);
}
/*
* Find a socket that wants to accept the Call Request we just
* received.
*/
static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
{
struct sock *s;
struct hlist_node *node;
spin_lock_bh(&rose_list_lock);
sk_for_each(s, node, &rose_list) {
struct rose_sock *rose = rose_sk(s);
if (!rosecmp(&rose->source_addr, addr) &&
!ax25cmp(&rose->source_call, call) &&
!rose->source_ndigis && s->sk_state == TCP_LISTEN)
goto found;
}
sk_for_each(s, node, &rose_list) {
struct rose_sock *rose = rose_sk(s);
if (!rosecmp(&rose->source_addr, addr) &&
!ax25cmp(&rose->source_call, &null_ax25_address) &&
s->sk_state == TCP_LISTEN)
goto found;
}
s = NULL;
found:
spin_unlock_bh(&rose_list_lock);
return s;
}
/*
* Find a connected ROSE socket given my LCI and device.
*/
struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
{
struct sock *s;
struct hlist_node *node;
spin_lock_bh(&rose_list_lock);
sk_for_each(s, node, &rose_list) {
struct rose_sock *rose = rose_sk(s);
if (rose->lci == lci && rose->neighbour == neigh)
goto found;
}
s = NULL;
found:
spin_unlock_bh(&rose_list_lock);
return s;
}
/*
* Find a unique LCI for a given device.
*/
unsigned int rose_new_lci(struct rose_neigh *neigh)
{
int lci;
if (neigh->dce_mode) {
for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
return lci;
} else {
for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
return lci;
}
return 0;
}
/*
* Deferred destroy.
*/
void rose_destroy_socket(struct sock *);
/*
* Handler for deferred kills.
*/
static void rose_destroy_timer(unsigned long data)
{
rose_destroy_socket((struct sock *)data);
}
/*
* This is called from user mode and the timers. Thus it protects itself
* against interrupt users but doesn't worry about being called during
* work. Once it is removed from the queue no interrupt or bottom half
* will touch it and we are (fairly 8-) ) safe.
*/
void rose_destroy_socket(struct sock *sk)
{
struct sk_buff *skb;
rose_remove_socket(sk);
rose_stop_heartbeat(sk);
rose_stop_idletimer(sk);
rose_stop_timer(sk);
rose_clear_queues(sk); /* Flush the queues */
while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
if (skb->sk != sk) { /* A pending connection */
/* Queue the unaccepted socket for death */
sock_set_flag(skb->sk, SOCK_DEAD);
rose_start_heartbeat(skb->sk);
rose_sk(skb->sk)->state = ROSE_STATE_0;
}
kfree_skb(skb);
}
if (atomic_read(&sk->sk_wmem_alloc) ||
atomic_read(&sk->sk_rmem_alloc)) {
/* Defer: outstanding buffers */
setup_timer(&sk->sk_timer, rose_destroy_timer,
(unsigned long)sk);
sk->sk_timer.expires = jiffies + 10 * HZ;
add_timer(&sk->sk_timer);
} else
sock_put(sk);
}
/*
* Handling for system calls applied via the various interfaces to a
* ROSE socket object.
*/
static int rose_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, int optlen)
{
struct sock *sk = sock->sk;
struct rose_sock *rose = rose_sk(sk);
int opt;
if (level != SOL_ROSE)
return -ENOPROTOOPT;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(opt, (int __user *)optval))
return -EFAULT;
switch (optname) {
case ROSE_DEFER:
rose->defer = opt ? 1 : 0;
return 0;
case ROSE_T1:
if (opt < 1)
return -EINVAL;
rose->t1 = opt * HZ;
return 0;
case ROSE_T2:
if (opt < 1)
return -EINVAL;
rose->t2 = opt * HZ;
return 0;
case ROSE_T3:
if (opt < 1)
return -EINVAL;
rose->t3 = opt * HZ;
return 0;
case ROSE_HOLDBACK:
if (opt < 1)
return -EINVAL;
rose->hb = opt * HZ;
return 0;
case ROSE_IDLE:
if (opt < 0)
return -EINVAL;
rose->idle = opt * 60 * HZ;
return 0;
case ROSE_QBITINCL:
rose->qbitincl = opt ? 1 : 0;
return 0;
default:
return -ENOPROTOOPT;
}
}
static int rose_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct rose_sock *rose = rose_sk(sk);
int val = 0;
int len;
if (level != SOL_ROSE)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case ROSE_DEFER:
val = rose->defer;
break;
case ROSE_T1:
val = rose->t1 / HZ;
break;
case ROSE_T2:
val = rose->t2 / HZ;
break;
case ROSE_T3:
val = rose->t3 / HZ;
break;
case ROSE_HOLDBACK:
val = rose->hb / HZ;
break;
case ROSE_IDLE:
val = rose->idle / (60 * HZ);
break;
case ROSE_QBITINCL:
val = rose->qbitincl;
break;
default:
return -ENOPROTOOPT;
}
len = min_t(unsigned int, len, sizeof(int));
if (put_user(len, optlen))
return -EFAULT;
return copy_to_user(optval, &val, len) ? -EFAULT : 0;
}
static int rose_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
if (sk->sk_state != TCP_LISTEN) {
struct rose_sock *rose = rose_sk(sk);
rose->dest_ndigis = 0;
memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
memset(&rose->dest_call, 0, AX25_ADDR_LEN);
memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
sk->sk_max_ack_backlog = backlog;
sk->sk_state = TCP_LISTEN;
return 0;
}
return -EOPNOTSUPP;
}
static struct proto rose_proto = {
.name = "ROSE",
.owner = THIS_MODULE,
.obj_size = sizeof(struct rose_sock),
};
static int rose_create(struct net *net, struct socket *sock, int protocol)
{
struct sock *sk;
struct rose_sock *rose;
if (net != &init_net)
return -EAFNOSUPPORT;
if (sock->type != SOCK_SEQPACKET || protocol != 0)
return -ESOCKTNOSUPPORT;
sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto);
if (sk == NULL)
return -ENOMEM;
rose = rose_sk(sk);
sock_init_data(sock, sk);
skb_queue_head_init(&rose->ack_queue);
#ifdef M_BIT
skb_queue_head_init(&rose->frag_queue);
rose->fraglen = 0;
#endif
sock->ops = &rose_proto_ops;
sk->sk_protocol = protocol;
init_timer(&rose->timer);
init_timer(&rose->idletimer);
rose->t1 = msecs_to_jiffies(sysctl_rose_call_request_timeout);
rose->t2 = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
rose->t3 = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
rose->hb = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
rose->state = ROSE_STATE_0;
return 0;
}
static struct sock *rose_make_new(struct sock *osk)
{
struct sock *sk;
struct rose_sock *rose, *orose;
if (osk->sk_type != SOCK_SEQPACKET)
return NULL;
sk = sk_alloc(osk->sk_net, PF_ROSE, GFP_ATOMIC, &rose_proto);
if (sk == NULL)
return NULL;
rose = rose_sk(sk);
sock_init_data(NULL, sk);
skb_queue_head_init(&rose->ack_queue);
#ifdef M_BIT
skb_queue_head_init(&rose->frag_queue);
rose->fraglen = 0;
#endif
sk->sk_type = osk->sk_type;
sk->sk_socket = osk->sk_socket;
sk->sk_priority = osk->sk_priority;
sk->sk_protocol = osk->sk_protocol;
sk->sk_rcvbuf = osk->sk_rcvbuf;
sk->sk_sndbuf = osk->sk_sndbuf;
sk->sk_state = TCP_ESTABLISHED;
sk->sk_sleep = osk->sk_sleep;
sock_copy_flags(sk, osk);
init_timer(&rose->timer);
init_timer(&rose->idletimer);
orose = rose_sk(osk);
rose->t1 = orose->t1;
rose->t2 = orose->t2;
rose->t3 = orose->t3;
rose->hb = orose->hb;
rose->idle = orose->idle;
rose->defer = orose->defer;
rose->device = orose->device;
rose->qbitincl = orose->qbitincl;
return sk;
}
static int rose_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct rose_sock *rose;
if (sk == NULL) return 0;
rose = rose_sk(sk);
switch (rose->state) {
case ROSE_STATE_0:
rose_disconnect(sk, 0, -1, -1);
rose_destroy_socket(sk);
break;
case ROSE_STATE_2:
rose->neighbour->use--;
rose_disconnect(sk, 0, -1, -1);
rose_destroy_socket(sk);
break;
case ROSE_STATE_1:
case ROSE_STATE_3:
case ROSE_STATE_4:
case ROSE_STATE_5:
rose_clear_queues(sk);
rose_stop_idletimer(sk);
rose_write_internal(sk, ROSE_CLEAR_REQUEST);
rose_start_t3timer(sk);
rose->state = ROSE_STATE_2;
sk->sk_state = TCP_CLOSE;
sk->sk_shutdown |= SEND_SHUTDOWN;
sk->sk_state_change(sk);
sock_set_flag(sk, SOCK_DEAD);
sock_set_flag(sk, SOCK_DESTROY);
break;
default:
break;
}
sock->sk = NULL;
return 0;
}
static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sock *sk = sock->sk;
struct rose_sock *rose = rose_sk(sk);
struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
struct net_device *dev;
ax25_address *source;
ax25_uid_assoc *user;
int n;
if (!sock_flag(sk, SOCK_ZAPPED))
return -EINVAL;
if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
return -EINVAL;
if (addr->srose_family != AF_ROSE)
return -EINVAL;
if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
return -EINVAL;
if (addr->srose_ndigis > ROSE_MAX_DIGIS)
return -EINVAL;
if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) {
SOCK_DEBUG(sk, "ROSE: bind failed: invalid address\n");
return -EADDRNOTAVAIL;
}
source = &addr->srose_call;
user = ax25_findbyuid(current->euid);
if (user) {
rose->source_call = user->call;
ax25_uid_put(user);
} else {
if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
rose->source_call = *source;
}
rose->source_addr = addr->srose_addr;
rose->device = dev;
rose->source_ndigis = addr->srose_ndigis;
if (addr_len == sizeof(struct full_sockaddr_rose)) {
struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
for (n = 0 ; n < addr->srose_ndigis ; n++)
rose->source_digis[n] = full_addr->srose_digis[n];
} else {
if (rose->source_ndigis == 1) {
rose->source_digis[0] = addr->srose_digi;
}
}
rose_insert_socket(sk);
sock_reset_flag(sk, SOCK_ZAPPED);
SOCK_DEBUG(sk, "ROSE: socket is bound\n");
return 0;
}
static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
{
struct sock *sk = sock->sk;
struct rose_sock *rose = rose_sk(sk);
struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
unsigned char cause, diagnostic;
struct net_device *dev;
ax25_uid_assoc *user;
int n, err = 0;
if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
return -EINVAL;
if (addr->srose_family != AF_ROSE)
return -EINVAL;
if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
return -EINVAL;
if (addr->srose_ndigis > ROSE_MAX_DIGIS)
return -EINVAL;
/* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
return -EINVAL;
lock_sock(sk);
if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
/* Connect completed during a ERESTARTSYS event */
sock->state = SS_CONNECTED;
goto out_release;
}
if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
sock->state = SS_UNCONNECTED;
err = -ECONNREFUSED;
goto out_release;
}
if (sk->sk_state == TCP_ESTABLISHED) {
/* No reconnect on a seqpacket socket */
err = -EISCONN;
goto out_release;
}
sk->sk_state = TCP_CLOSE;
sock->state = SS_UNCONNECTED;
rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
&diagnostic);
if (!rose->neighbour)
return -ENETUNREACH;
rose->lci = rose_new_lci(rose->neighbour);
if (!rose->lci) {
err = -ENETUNREACH;
goto out_release;
}
if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */
sock_reset_flag(sk, SOCK_ZAPPED);
if ((dev = rose_dev_first()) == NULL) {
err = -ENETUNREACH;
goto out_release;
}
user = ax25_findbyuid(current->euid);
if (!user) {
err = -EINVAL;
goto out_release;
}
memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
rose->source_call = user->call;
rose->device = dev;
ax25_uid_put(user);
rose_insert_socket(sk); /* Finish the bind */
}
rose_try_next_neigh:
rose->dest_addr = addr->srose_addr;
rose->dest_call = addr->srose_call;
rose->rand = ((long)rose & 0xFFFF) + rose->lci;
rose->dest_ndigis = addr->srose_ndigis;
if (addr_len == sizeof(struct full_sockaddr_rose)) {
struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
for (n = 0 ; n < addr->srose_ndigis ; n++)
rose->dest_digis[n] = full_addr->srose_digis[n];
} else {
if (rose->dest_ndigis == 1) {
rose->dest_digis[0] = addr->srose_digi;
}
}
/* Move to connecting socket, start sending Connect Requests */
sock->state = SS_CONNECTING;
sk->sk_state = TCP_SYN_SENT;
rose->state = ROSE_STATE_1;
rose->neighbour->use++;
rose_write_internal(sk, ROSE_CALL_REQUEST);
rose_start_heartbeat(sk);
rose_start_t1timer(sk);
/* Now the loop */
if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
err = -EINPROGRESS;
goto out_release;
}
/*
* A Connect Ack with Choke or timeout or failed routing will go to
* closed.
*/
if (sk->sk_state == TCP_SYN_SENT) {
DEFINE_WAIT(wait);
for (;;) {
prepare_to_wait(sk->sk_sleep, &wait,
TASK_INTERRUPTIBLE);
if (sk->sk_state != TCP_SYN_SENT)
break;
if (!signal_pending(current)) {
release_sock(sk);
schedule();
lock_sock(sk);
continue;
}
err = -ERESTARTSYS;
break;
}
finish_wait(sk->sk_sleep, &wait);
if (err)
goto out_release;
}
if (sk->sk_state != TCP_ESTABLISHED) {
/* Try next neighbour */
rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause, &diagnostic);
if (rose->neighbour)
goto rose_try_next_neigh;
/* No more neighbours */
sock->state = SS_UNCONNECTED;
err = sock_error(sk); /* Always set at this point */
goto out_release;
}
sock->state = SS_CONNECTED;
out_release:
release_sock(sk);
return err;
}
static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
{
struct sk_buff *skb;
struct sock *newsk;
DEFINE_WAIT(wait);
struct sock *sk;
int err = 0;
if ((sk = sock->sk) == NULL)
return -EINVAL;
lock_sock(sk);
if (sk->sk_type != SOCK_SEQPACKET) {
err = -EOPNOTSUPP;
goto out_release;
}
if (sk->sk_state != TCP_LISTEN) {
err = -EINVAL;
goto out_release;
}
/*
* The write queue this time is holding sockets ready to use
* hooked into the SABM we saved
*/
for (;;) {
prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
skb = skb_dequeue(&sk->sk_receive_queue);
if (skb)
break;
if (flags & O_NONBLOCK) {
err = -EWOULDBLOCK;
break;
}
if (!signal_pending(current)) {
release_sock(sk);
schedule();
lock_sock(sk);
continue;
}
err = -ERESTARTSYS;
break;
}
finish_wait(sk->sk_sleep, &wait);
if (err)
goto out_release;
newsk = skb->sk;
newsk->sk_socket = newsock;
newsk->sk_sleep = &newsock->wait;
/* Now attach up the new socket */
skb->sk = NULL;
kfree_skb(skb);
sk->sk_ack_backlog--;
newsock->sk = newsk;
out_release:
release_sock(sk);
return err;
}
static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
int *uaddr_len, int peer)
{
struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
struct sock *sk = sock->sk;
struct rose_sock *rose = rose_sk(sk);
int n;
if (peer != 0) {
if (sk->sk_state != TCP_ESTABLISHED)
return -ENOTCONN;
srose->srose_family = AF_ROSE;
srose->srose_addr = rose->dest_addr;
srose->srose_call = rose->dest_call;
srose->srose_ndigis = rose->dest_ndigis;
for (n = 0; n < rose->dest_ndigis; n++)
srose->srose_digis[n] = rose->dest_digis[n];
} else {
srose->srose_family = AF_ROSE;
srose->srose_addr = rose->source_addr;
srose->srose_call = rose->source_call;
srose->srose_ndigis = rose->source_ndigis;
for (n = 0; n < rose->source_ndigis; n++)
srose->srose_digis[n] = rose->source_digis[n];
}
*uaddr_len = sizeof(struct full_sockaddr_rose);
return 0;
}
int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
{
struct sock *sk;
struct sock *make;
struct rose_sock *make_rose;
struct rose_facilities_struct facilities;
int n, len;
skb->sk = NULL; /* Initially we don't know who it's for */
/*
* skb->data points to the rose frame start
*/
memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
len = (((skb->data[3] >> 4) & 0x0F) + 1) >> 1;
len += (((skb->data[3] >> 0) & 0x0F) + 1) >> 1;
if (!rose_parse_facilities(skb->data + len + 4, &facilities)) {
rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
return 0;
}
sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
/*
* We can't accept the Call Request.
*/
if (sk == NULL || sk_acceptq_is_full(sk) ||
(make = rose_make_new(sk)) == NULL) {
rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
return 0;
}
skb->sk = make;
make->sk_state = TCP_ESTABLISHED;
make_rose = rose_sk(make);
make_rose->lci = lci;
make_rose->dest_addr = facilities.dest_addr;
make_rose->dest_call = facilities.dest_call;
make_rose->dest_ndigis = facilities.dest_ndigis;
for (n = 0 ; n < facilities.dest_ndigis ; n++)
make_rose->dest_digis[n] = facilities.dest_digis[n];
make_rose->source_addr = facilities.source_addr;
make_rose->source_call = facilities.source_call;
make_rose->source_ndigis = facilities.source_ndigis;
for (n = 0 ; n < facilities.source_ndigis ; n++)
make_rose->source_digis[n]= facilities.source_digis[n];
make_rose->neighbour = neigh;
make_rose->device = dev;
make_rose->facilities = facilities;
make_rose->neighbour->use++;
if (rose_sk(sk)->defer) {
make_rose->state = ROSE_STATE_5;
} else {
rose_write_internal(make, ROSE_CALL_ACCEPTED);
make_rose->state = ROSE_STATE_3;
rose_start_idletimer(make);
}
make_rose->condition = 0x00;
make_rose->vs = 0;
make_rose->va = 0;
make_rose->vr = 0;
make_rose->vl = 0;
sk->sk_ack_backlog++;
rose_insert_socket(make);
skb_queue_head(&sk->sk_receive_queue, skb);
rose_start_heartbeat(make);
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_data_ready(sk, skb->len);
return 1;
}
static int rose_sendmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
struct rose_sock *rose = rose_sk(sk);
struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
int err;
struct full_sockaddr_rose srose;
struct sk_buff *skb;
unsigned char *asmptr;
int n, size, qbit = 0;
if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
return -EINVAL;
if (sock_flag(sk, SOCK_ZAPPED))
return -EADDRNOTAVAIL;
if (sk->sk_shutdown & SEND_SHUTDOWN) {
send_sig(SIGPIPE, current, 0);
return -EPIPE;
}
if (rose->neighbour == NULL || rose->device == NULL)
return -ENETUNREACH;
if (usrose != NULL) {
if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
return -EINVAL;
memset(&srose, 0, sizeof(struct full_sockaddr_rose));
memcpy(&srose, usrose, msg->msg_namelen);
if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
return -EISCONN;
if (srose.srose_ndigis != rose->dest_ndigis)
return -EISCONN;
if (srose.srose_ndigis == rose->dest_ndigis) {
for (n = 0 ; n < srose.srose_ndigis ; n++)
if (ax25cmp(&rose->dest_digis[n],
&srose.srose_digis[n]))
return -EISCONN;
}
if (srose.srose_family != AF_ROSE)
return -EINVAL;
} else {
if (sk->sk_state != TCP_ESTABLISHED)
return -ENOTCONN;
srose.srose_family = AF_ROSE;
srose.srose_addr = rose->dest_addr;
srose.srose_call = rose->dest_call;
srose.srose_ndigis = rose->dest_ndigis;
for (n = 0 ; n < rose->dest_ndigis ; n++)
srose.srose_digis[n] = rose->dest_digis[n];
}
SOCK_DEBUG(sk, "ROSE: sendto: Addresses built.\n");
/* Build a packet */
SOCK_DEBUG(sk, "ROSE: sendto: building packet.\n");
size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
return err;
skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
/*
* Put the data on the end
*/
SOCK_DEBUG(sk, "ROSE: Appending user data\n");
skb_reset_transport_header(skb);
skb_put(skb, len);
err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
if (err) {
kfree_skb(skb);
return err;
}
/*
* If the Q BIT Include socket option is in force, the first
* byte of the user data is the logical value of the Q Bit.
*/
if (rose->qbitincl) {
qbit = skb->data[0];
skb_pull(skb, 1);
}
/*
* Push down the ROSE header
*/
asmptr = skb_push(skb, ROSE_MIN_LEN);
SOCK_DEBUG(sk, "ROSE: Building Network Header.\n");
/* Build a ROSE Network header */
asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
asmptr[1] = (rose->lci >> 0) & 0xFF;
asmptr[2] = ROSE_DATA;
if (qbit)
asmptr[0] |= ROSE_Q_BIT;
SOCK_DEBUG(sk, "ROSE: Built header.\n");
SOCK_DEBUG(sk, "ROSE: Transmitting buffer\n");
if (sk->sk_state != TCP_ESTABLISHED) {
kfree_skb(skb);
return -ENOTCONN;
}
#ifdef M_BIT
#define ROSE_PACLEN (256-ROSE_MIN_LEN)
if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
unsigned char header[ROSE_MIN_LEN];
struct sk_buff *skbn;
int frontlen;
int lg;
/* Save a copy of the Header */
skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
skb_pull(skb, ROSE_MIN_LEN);
frontlen = skb_headroom(skb);
while (skb->len > 0) {
if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
kfree_skb(skb);
return err;
}
skbn->sk = sk;
skbn->free = 1;
skbn->arp = 1;
skb_reserve(skbn, frontlen);
lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
/* Copy the user data */
skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
skb_pull(skb, lg);
/* Duplicate the Header */
skb_push(skbn, ROSE_MIN_LEN);
skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);
if (skb->len > 0)
skbn->data[2] |= M_BIT;
skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
}
skb->free = 1;
kfree_skb(skb);
} else {
skb_queue_tail(&sk->sk_write_queue, skb); /* Throw it on the queue */
}
#else
skb_queue_tail(&sk->sk_write_queue, skb); /* Shove it onto the queue */
#endif
rose_kick(sk);
return len;
}
static int rose_recvmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size, int flags)
{
struct sock *sk = sock->sk;
struct rose_sock *rose = rose_sk(sk);
struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
size_t copied;
unsigned char *asmptr;
struct sk_buff *skb;
int n, er, qbit;
/*
* This works for seqpacket too. The receiver has ordered the queue for
* us! We do one quick check first though
*/
if (sk->sk_state != TCP_ESTABLISHED)
return -ENOTCONN;
/* Now we can treat all alike */
if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
return er;
qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
skb_pull(skb, ROSE_MIN_LEN);
if (rose->qbitincl) {
asmptr = skb_push(skb, 1);
*asmptr = qbit;
}
skb_reset_transport_header(skb);
copied = skb->len;
if (copied > size) {
copied = size;
msg->msg_flags |= MSG_TRUNC;
}
skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
if (srose != NULL) {
srose->srose_family = AF_ROSE;
srose->srose_addr = rose->dest_addr;
srose->srose_call = rose->dest_call;
srose->srose_ndigis = rose->dest_ndigis;
if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
for (n = 0 ; n < rose->dest_ndigis ; n++)
full_srose->srose_digis[n] = rose->dest_digis[n];
msg->msg_namelen = sizeof(struct full_sockaddr_rose);
} else {
if (rose->dest_ndigis >= 1) {
srose->srose_ndigis = 1;
srose->srose_digi = rose->dest_digis[0];
}
msg->msg_namelen = sizeof(struct sockaddr_rose);
}
}
skb_free_datagram(sk, skb);
return copied;
}
static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
struct sock *sk = sock->sk;
struct rose_sock *rose = rose_sk(sk);
void __user *argp = (void __user *)arg;
switch (cmd) {
case TIOCOUTQ: {
long amount;
amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
if (amount < 0)
amount = 0;
return put_user(amount, (unsigned int __user *) argp);
}
case TIOCINQ: {
struct sk_buff *skb;
long amount = 0L;
/* These two are safe on a single CPU system as only user tasks fiddle here */
if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
amount = skb->len;
return put_user(amount, (unsigned int __user *) argp);
}
case SIOCGSTAMP:
return sock_get_timestamp(sk, (struct timeval __user *) argp);
case SIOCGSTAMPNS:
return sock_get_timestampns(sk, (struct timespec __user *) argp);
case SIOCGIFADDR:
case SIOCSIFADDR:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
case SIOCGIFMETRIC:
case SIOCSIFMETRIC:
return -EINVAL;
case SIOCADDRT:
case SIOCDELRT:
case SIOCRSCLRRT:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
return rose_rt_ioctl(cmd, argp);
case SIOCRSGCAUSE: {
struct rose_cause_struct rose_cause;
rose_cause.cause = rose->cause;
rose_cause.diagnostic = rose->diagnostic;
return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
}
case SIOCRSSCAUSE: {
struct rose_cause_struct rose_cause;
if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
return -EFAULT;
rose->cause = rose_cause.cause;
rose->diagnostic = rose_cause.diagnostic;
return 0;
}
case SIOCRSSL2CALL:
if (!capable(CAP_NET_ADMIN)) return -EPERM;
if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
ax25_listen_release(&rose_callsign, NULL);
if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
return -EFAULT;
if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
return ax25_listen_register(&rose_callsign, NULL);
return 0;
case SIOCRSGL2CALL:
return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
case SIOCRSACCEPT:
if (rose->state == ROSE_STATE_5) {
rose_write_internal(sk, ROSE_CALL_ACCEPTED);
rose_start_idletimer(sk);
rose->condition = 0x00;
rose->vs = 0;
rose->va = 0;
rose->vr = 0;
rose->vl = 0;
rose->state = ROSE_STATE_3;
}
return 0;
default:
return -ENOIOCTLCMD;
}
return 0;
}
#ifdef CONFIG_PROC_FS
static void *rose_info_start(struct seq_file *seq, loff_t *pos)
__acquires(rose_list_lock)
{
int i;
struct sock *s;
struct hlist_node *node;
spin_lock_bh(&rose_list_lock);
if (*pos == 0)
return SEQ_START_TOKEN;
i = 1;
sk_for_each(s, node, &rose_list) {
if (i == *pos)
return s;
++i;
}
return NULL;
}
static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
{
++*pos;
return (v == SEQ_START_TOKEN) ? sk_head(&rose_list)
: sk_next((struct sock *)v);
}
static void rose_info_stop(struct seq_file *seq, void *v)
__releases(rose_list_lock)
{
spin_unlock_bh(&rose_list_lock);
}
static int rose_info_show(struct seq_file *seq, void *v)
{
char buf[11];
if (v == SEQ_START_TOKEN)
seq_puts(seq,
"dest_addr dest_call src_addr src_call dev lci neigh st vs vr va t t1 t2 t3 hb idle Snd-Q Rcv-Q inode\n");
else {
struct sock *s = v;
struct rose_sock *rose = rose_sk(s);
const char *devname, *callsign;
const struct net_device *dev = rose->device;
if (!dev)
devname = "???";
else
devname = dev->name;
seq_printf(seq, "%-10s %-9s ",
rose2asc(&rose->dest_addr),
ax2asc(buf, &rose->dest_call));
if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
callsign = "??????-?";
else
callsign = ax2asc(buf, &rose->source_call);
seq_printf(seq,
"%-10s %-9s %-5s %3.3X %05d %d %d %d %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
rose2asc(&rose->source_addr),
callsign,
devname,
rose->lci & 0x0FFF,
(rose->neighbour) ? rose->neighbour->number : 0,
rose->state,
rose->vs,
rose->vr,
rose->va,
ax25_display_timer(&rose->timer) / HZ,
rose->t1 / HZ,
rose->t2 / HZ,
rose->t3 / HZ,
rose->hb / HZ,
ax25_display_timer(&rose->idletimer) / (60 * HZ),
rose->idle / (60 * HZ),
atomic_read(&s->sk_wmem_alloc),
atomic_read(&s->sk_rmem_alloc),
s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
}
return 0;
}
static const struct seq_operations rose_info_seqops = {
.start = rose_info_start,
.next = rose_info_next,
.stop = rose_info_stop,
.show = rose_info_show,
};
static int rose_info_open(struct inode *inode, struct file *file)
{
return seq_open(file, &rose_info_seqops);
}
static const struct file_operations rose_info_fops = {
.owner = THIS_MODULE,
.open = rose_info_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif /* CONFIG_PROC_FS */
static struct net_proto_family rose_family_ops = {
.family = PF_ROSE,
.create = rose_create,
.owner = THIS_MODULE,
};
static struct proto_ops rose_proto_ops = {
.family = PF_ROSE,
.owner = THIS_MODULE,
.release = rose_release,
.bind = rose_bind,
.connect = rose_connect,
.socketpair = sock_no_socketpair,
.accept = rose_accept,
.getname = rose_getname,
.poll = datagram_poll,
.ioctl = rose_ioctl,
.listen = rose_listen,
.shutdown = sock_no_shutdown,
.setsockopt = rose_setsockopt,
.getsockopt = rose_getsockopt,
.sendmsg = rose_sendmsg,
.recvmsg = rose_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static struct notifier_block rose_dev_notifier = {
.notifier_call = rose_device_event,
};
static struct net_device **dev_rose;
static struct ax25_protocol rose_pid = {
.pid = AX25_P_ROSE,
.func = rose_route_frame
};
static struct ax25_linkfail rose_linkfail_notifier = {
.func = rose_link_failed
};
static int __init rose_proto_init(void)
{
int i;
int rc;
if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
rc = -EINVAL;
goto out;
}
rc = proto_register(&rose_proto, 0);
if (rc != 0)
goto out;
rose_callsign = null_ax25_address;
dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
if (dev_rose == NULL) {
printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
rc = -ENOMEM;
goto out_proto_unregister;
}
for (i = 0; i < rose_ndevs; i++) {
struct net_device *dev;
char name[IFNAMSIZ];
sprintf(name, "rose%d", i);
dev = alloc_netdev(sizeof(struct net_device_stats),
name, rose_setup);
if (!dev) {
printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
rc = -ENOMEM;
goto fail;
}
rc = register_netdev(dev);
if (rc) {
printk(KERN_ERR "ROSE: netdevice registration failed\n");
free_netdev(dev);
goto fail;
}
lockdep_set_class(&dev->_xmit_lock, &rose_netdev_xmit_lock_key);
dev_rose[i] = dev;
}
sock_register(&rose_family_ops);
register_netdevice_notifier(&rose_dev_notifier);
ax25_register_pid(&rose_pid);
ax25_linkfail_register(&rose_linkfail_notifier);
#ifdef CONFIG_SYSCTL
rose_register_sysctl();
#endif
rose_loopback_init();
rose_add_loopback_neigh();
proc_net_fops_create(&init_net, "rose", S_IRUGO, &rose_info_fops);
proc_net_fops_create(&init_net, "rose_neigh", S_IRUGO, &rose_neigh_fops);
proc_net_fops_create(&init_net, "rose_nodes", S_IRUGO, &rose_nodes_fops);
proc_net_fops_create(&init_net, "rose_routes", S_IRUGO, &rose_routes_fops);
out:
return rc;
fail:
while (--i >= 0) {
unregister_netdev(dev_rose[i]);
free_netdev(dev_rose[i]);
}
kfree(dev_rose);
out_proto_unregister:
proto_unregister(&rose_proto);
goto out;
}
module_init(rose_proto_init);
module_param(rose_ndevs, int, 0);
MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_ROSE);
static void __exit rose_exit(void)
{
int i;
proc_net_remove(&init_net, "rose");
proc_net_remove(&init_net, "rose_neigh");
proc_net_remove(&init_net, "rose_nodes");
proc_net_remove(&init_net, "rose_routes");
rose_loopback_clear();
rose_rt_free();
ax25_protocol_release(AX25_P_ROSE);
ax25_linkfail_release(&rose_linkfail_notifier);
if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
ax25_listen_release(&rose_callsign, NULL);
#ifdef CONFIG_SYSCTL
rose_unregister_sysctl();
#endif
unregister_netdevice_notifier(&rose_dev_notifier);
sock_unregister(PF_ROSE);
for (i = 0; i < rose_ndevs; i++) {
struct net_device *dev = dev_rose[i];
if (dev) {
unregister_netdev(dev);
free_netdev(dev);
}
}
kfree(dev_rose);
proto_unregister(&rose_proto);
}
module_exit(rose_exit);