mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-06 05:13:18 +00:00
617a814f14
this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ...
3141 lines
81 KiB
Plaintext
3141 lines
81 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0
|
|
config MIPS
|
|
bool
|
|
default y
|
|
select ARCH_32BIT_OFF_T if !64BIT
|
|
select ARCH_BINFMT_ELF_STATE if MIPS_FP_SUPPORT
|
|
select ARCH_HAS_CPU_CACHE_ALIASING
|
|
select ARCH_HAS_CPU_FINALIZE_INIT
|
|
select ARCH_HAS_CURRENT_STACK_POINTER if !CC_IS_CLANG || CLANG_VERSION >= 140000
|
|
select ARCH_HAS_DEBUG_VIRTUAL if !64BIT
|
|
select ARCH_HAS_DMA_OPS if MACH_JAZZ
|
|
select ARCH_HAS_FORTIFY_SOURCE
|
|
select ARCH_HAS_KCOV
|
|
select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE if !EVA
|
|
select ARCH_HAS_PTE_SPECIAL if !(32BIT && CPU_HAS_RIXI)
|
|
select ARCH_HAS_STRNCPY_FROM_USER
|
|
select ARCH_HAS_STRNLEN_USER
|
|
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
|
|
select ARCH_HAS_UBSAN
|
|
select ARCH_HAS_GCOV_PROFILE_ALL
|
|
select ARCH_KEEP_MEMBLOCK
|
|
select ARCH_USE_BUILTIN_BSWAP
|
|
select ARCH_USE_CMPXCHG_LOCKREF if 64BIT
|
|
select ARCH_USE_MEMTEST
|
|
select ARCH_USE_QUEUED_RWLOCKS
|
|
select ARCH_USE_QUEUED_SPINLOCKS
|
|
select ARCH_SUPPORTS_HUGETLBFS if CPU_SUPPORTS_HUGEPAGES
|
|
select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT if MMU
|
|
select ARCH_WANT_IPC_PARSE_VERSION
|
|
select ARCH_WANT_LD_ORPHAN_WARN
|
|
select BUILDTIME_TABLE_SORT
|
|
select CLONE_BACKWARDS
|
|
select CPU_NO_EFFICIENT_FFS if (TARGET_ISA_REV < 1)
|
|
select CPU_PM if CPU_IDLE || SUSPEND
|
|
select GENERIC_ATOMIC64 if !64BIT
|
|
select GENERIC_CMOS_UPDATE
|
|
select GENERIC_CPU_AUTOPROBE
|
|
select GENERIC_GETTIMEOFDAY
|
|
select GENERIC_IOMAP
|
|
select GENERIC_IRQ_PROBE
|
|
select GENERIC_IRQ_SHOW
|
|
select GENERIC_ISA_DMA if EISA
|
|
select GENERIC_LIB_ASHLDI3
|
|
select GENERIC_LIB_ASHRDI3
|
|
select GENERIC_LIB_CMPDI2
|
|
select GENERIC_LIB_LSHRDI3
|
|
select GENERIC_LIB_UCMPDI2
|
|
select GENERIC_SCHED_CLOCK if !CAVIUM_OCTEON_SOC
|
|
select GENERIC_SMP_IDLE_THREAD
|
|
select GENERIC_IDLE_POLL_SETUP
|
|
select GENERIC_TIME_VSYSCALL
|
|
select GUP_GET_PXX_LOW_HIGH if CPU_MIPS32 && PHYS_ADDR_T_64BIT
|
|
select HAS_IOPORT if !NO_IOPORT_MAP || ISA
|
|
select HAVE_ARCH_COMPILER_H
|
|
select HAVE_ARCH_JUMP_LABEL
|
|
select HAVE_ARCH_KGDB if MIPS_FP_SUPPORT
|
|
select HAVE_ARCH_MMAP_RND_BITS if MMU
|
|
select HAVE_ARCH_MMAP_RND_COMPAT_BITS if MMU && COMPAT
|
|
select HAVE_ARCH_SECCOMP_FILTER
|
|
select HAVE_ARCH_TRACEHOOK
|
|
select HAVE_ARCH_TRANSPARENT_HUGEPAGE if CPU_SUPPORTS_HUGEPAGES
|
|
select HAVE_ASM_MODVERSIONS
|
|
select HAVE_CONTEXT_TRACKING_USER
|
|
select HAVE_TIF_NOHZ
|
|
select HAVE_C_RECORDMCOUNT
|
|
select HAVE_DEBUG_KMEMLEAK
|
|
select HAVE_DEBUG_STACKOVERFLOW
|
|
select HAVE_DMA_CONTIGUOUS
|
|
select HAVE_DYNAMIC_FTRACE
|
|
select HAVE_EBPF_JIT if !CPU_MICROMIPS
|
|
select HAVE_EXIT_THREAD
|
|
select HAVE_GUP_FAST
|
|
select HAVE_FTRACE_MCOUNT_RECORD
|
|
select HAVE_FUNCTION_GRAPH_TRACER
|
|
select HAVE_FUNCTION_TRACER
|
|
select HAVE_GCC_PLUGINS
|
|
select HAVE_GENERIC_VDSO
|
|
select HAVE_IOREMAP_PROT
|
|
select HAVE_IRQ_EXIT_ON_IRQ_STACK
|
|
select HAVE_IRQ_TIME_ACCOUNTING
|
|
select HAVE_KPROBES
|
|
select HAVE_KRETPROBES
|
|
select HAVE_LD_DEAD_CODE_DATA_ELIMINATION
|
|
select HAVE_MOD_ARCH_SPECIFIC
|
|
select HAVE_NMI
|
|
select HAVE_PAGE_SIZE_4KB if !CPU_LOONGSON2EF && !CPU_LOONGSON64
|
|
select HAVE_PAGE_SIZE_16KB if !CPU_R3000
|
|
select HAVE_PAGE_SIZE_64KB if !CPU_R3000
|
|
select HAVE_PERF_EVENTS
|
|
select HAVE_PERF_REGS
|
|
select HAVE_PERF_USER_STACK_DUMP
|
|
select HAVE_REGS_AND_STACK_ACCESS_API
|
|
select HAVE_RSEQ
|
|
select HAVE_SPARSE_SYSCALL_NR
|
|
select HAVE_STACKPROTECTOR
|
|
select HAVE_SYSCALL_TRACEPOINTS
|
|
select HAVE_VIRT_CPU_ACCOUNTING_GEN if 64BIT || !SMP
|
|
select IRQ_FORCED_THREADING
|
|
select ISA if EISA
|
|
select LOCK_MM_AND_FIND_VMA
|
|
select MODULES_USE_ELF_REL if MODULES
|
|
select MODULES_USE_ELF_RELA if MODULES && 64BIT
|
|
select PERF_USE_VMALLOC
|
|
select PCI_MSI_ARCH_FALLBACKS if PCI_MSI
|
|
select RTC_LIB
|
|
select SYSCTL_EXCEPTION_TRACE
|
|
select TRACE_IRQFLAGS_SUPPORT
|
|
select ARCH_HAS_ELFCORE_COMPAT
|
|
select HAVE_ARCH_KCSAN if 64BIT
|
|
|
|
config MIPS_FIXUP_BIGPHYS_ADDR
|
|
bool
|
|
|
|
config MIPS_GENERIC
|
|
bool
|
|
|
|
config MACH_GENERIC_CORE
|
|
bool
|
|
|
|
config MACH_INGENIC
|
|
bool
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select DMA_NONCOHERENT
|
|
select IRQ_MIPS_CPU
|
|
select PINCTRL
|
|
select GPIOLIB
|
|
select COMMON_CLK
|
|
select GENERIC_IRQ_CHIP
|
|
select BUILTIN_DTB if MIPS_NO_APPENDED_DTB
|
|
select USE_OF
|
|
select CPU_SUPPORTS_CPUFREQ
|
|
select MIPS_EXTERNAL_TIMER
|
|
|
|
menu "Machine selection"
|
|
|
|
choice
|
|
prompt "System type"
|
|
default MIPS_GENERIC_KERNEL
|
|
|
|
config MIPS_GENERIC_KERNEL
|
|
bool "Generic board-agnostic MIPS kernel"
|
|
select MIPS_GENERIC
|
|
select BOOT_RAW
|
|
select BUILTIN_DTB
|
|
select CEVT_R4K
|
|
select CLKSRC_MIPS_GIC
|
|
select COMMON_CLK
|
|
select CPU_MIPSR2_IRQ_EI
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select HAVE_PCI
|
|
select IRQ_MIPS_CPU
|
|
select MACH_GENERIC_CORE
|
|
select MIPS_AUTO_PFN_OFFSET
|
|
select MIPS_CPU_SCACHE
|
|
select MIPS_GIC
|
|
select MIPS_L1_CACHE_SHIFT_7
|
|
select NO_EXCEPT_FILL
|
|
select PCI_DRIVERS_GENERIC
|
|
select SMP_UP if SMP
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_HAS_CPU_MIPS32_R5
|
|
select SYS_HAS_CPU_MIPS32_R6
|
|
select SYS_HAS_CPU_MIPS64_R1
|
|
select SYS_HAS_CPU_MIPS64_R2
|
|
select SYS_HAS_CPU_MIPS64_R5
|
|
select SYS_HAS_CPU_MIPS64_R6
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_MICROMIPS
|
|
select SYS_SUPPORTS_MIPS16
|
|
select SYS_SUPPORTS_MIPS_CPS
|
|
select SYS_SUPPORTS_MULTITHREADING
|
|
select SYS_SUPPORTS_RELOCATABLE
|
|
select SYS_SUPPORTS_SMARTMIPS
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select UHI_BOOT
|
|
select USB_EHCI_BIG_ENDIAN_DESC if CPU_BIG_ENDIAN
|
|
select USB_EHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select USB_OHCI_BIG_ENDIAN_DESC if CPU_BIG_ENDIAN
|
|
select USB_OHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select USB_UHCI_BIG_ENDIAN_DESC if CPU_BIG_ENDIAN
|
|
select USB_UHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select USE_OF
|
|
help
|
|
Select this to build a kernel which aims to support multiple boards,
|
|
generally using a flattened device tree passed from the bootloader
|
|
using the boot protocol defined in the UHI (Unified Hosting
|
|
Interface) specification.
|
|
|
|
config MIPS_ALCHEMY
|
|
bool "Alchemy processor based machines"
|
|
select PHYS_ADDR_T_64BIT
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select IRQ_MIPS_CPU
|
|
select DMA_NONCOHERENT # Au1000,1500,1100 aren't, rest is
|
|
select MIPS_FIXUP_BIGPHYS_ADDR if PCI
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_APM_EMULATION
|
|
select GPIOLIB
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select COMMON_CLK
|
|
|
|
config ATH25
|
|
bool "Atheros AR231x/AR531x SoC support"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select IRQ_MIPS_CPU
|
|
select IRQ_DOMAIN
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_HAS_EARLY_PRINTK
|
|
help
|
|
Support for Atheros AR231x and Atheros AR531x based boards
|
|
|
|
config ATH79
|
|
bool "Atheros AR71XX/AR724X/AR913X based boards"
|
|
select ARCH_HAS_RESET_CONTROLLER
|
|
select BOOT_RAW
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select GPIOLIB
|
|
select PINCTRL
|
|
select COMMON_CLK
|
|
select IRQ_MIPS_CPU
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_MIPS16
|
|
select SYS_SUPPORTS_ZBOOT_UART_PROM
|
|
select USE_OF
|
|
select USB_EHCI_ROOT_HUB_TT if USB_EHCI_HCD_PLATFORM
|
|
help
|
|
Support for the Atheros AR71XX/AR724X/AR913X SoCs.
|
|
|
|
config BMIPS_GENERIC
|
|
bool "Broadcom Generic BMIPS kernel"
|
|
select ARCH_HAS_RESET_CONTROLLER
|
|
select ARCH_HAS_SYNC_DMA_FOR_CPU_ALL
|
|
select BOOT_RAW
|
|
select NO_EXCEPT_FILL
|
|
select USE_OF
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select SYNC_R4K
|
|
select COMMON_CLK
|
|
select BCM6345_L1_IRQ
|
|
select BCM7038_L1_IRQ
|
|
select BCM7120_L2_IRQ
|
|
select BRCMSTB_L2_IRQ
|
|
select IRQ_MIPS_CPU
|
|
select DMA_NONCOHERENT
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_HAS_CPU_BMIPS32_3300
|
|
select SYS_HAS_CPU_BMIPS4350
|
|
select SYS_HAS_CPU_BMIPS4380
|
|
select SYS_HAS_CPU_BMIPS5000
|
|
select SWAP_IO_SPACE
|
|
select USB_EHCI_BIG_ENDIAN_DESC if CPU_BIG_ENDIAN
|
|
select USB_EHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select USB_OHCI_BIG_ENDIAN_DESC if CPU_BIG_ENDIAN
|
|
select USB_OHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select HARDIRQS_SW_RESEND
|
|
select HAVE_PCI
|
|
select PCI_DRIVERS_GENERIC
|
|
select FW_CFE
|
|
help
|
|
Build a generic DT-based kernel image that boots on select
|
|
BCM33xx cable modem chips, BCM63xx DSL chips, and BCM7xxx set-top
|
|
box chips. Note that CONFIG_CPU_BIG_ENDIAN/CONFIG_CPU_LITTLE_ENDIAN
|
|
must be set appropriately for your board.
|
|
|
|
config BCM47XX
|
|
bool "Broadcom BCM47XX based boards"
|
|
select BOOT_RAW
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select HAVE_PCI
|
|
select IRQ_MIPS_CPU
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select NO_EXCEPT_FILL
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_MIPS16
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select USE_GENERIC_EARLY_PRINTK_8250
|
|
select GPIOLIB
|
|
select LEDS_GPIO_REGISTER
|
|
select BCM47XX_NVRAM
|
|
select BCM47XX_SPROM
|
|
select BCM47XX_SSB if !BCM47XX_BCMA
|
|
help
|
|
Support for BCM47XX based boards
|
|
|
|
config BCM63XX
|
|
bool "Broadcom BCM63XX based boards"
|
|
select BOOT_RAW
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select SYNC_R4K
|
|
select DMA_NONCOHERENT
|
|
select IRQ_MIPS_CPU
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_HAS_CPU_BMIPS32_3300
|
|
select SYS_HAS_CPU_BMIPS4350
|
|
select SYS_HAS_CPU_BMIPS4380
|
|
select SWAP_IO_SPACE
|
|
select GPIOLIB
|
|
select MIPS_L1_CACHE_SHIFT_4
|
|
select HAVE_LEGACY_CLK
|
|
help
|
|
Support for BCM63XX based boards
|
|
|
|
config MIPS_COBALT
|
|
bool "Cobalt Server"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select CEVT_GT641XX
|
|
select DMA_NONCOHERENT
|
|
select FORCE_PCI
|
|
select I8253
|
|
select I8259
|
|
select IRQ_MIPS_CPU
|
|
select IRQ_GT641XX
|
|
select PCI_GT64XXX_PCI0
|
|
select SYS_HAS_CPU_NEVADA
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select USE_GENERIC_EARLY_PRINTK_8250
|
|
|
|
config MACH_DECSTATION
|
|
bool "DECstations"
|
|
select BOOT_ELF32
|
|
select CEVT_DS1287
|
|
select CEVT_R4K if CPU_R4X00
|
|
select CSRC_IOASIC
|
|
select CSRC_R4K if CPU_R4X00
|
|
select CPU_DADDI_WORKAROUNDS if 64BIT
|
|
select CPU_R4000_WORKAROUNDS if 64BIT
|
|
select CPU_R4400_WORKAROUNDS if 64BIT
|
|
select DMA_NONCOHERENT
|
|
select NO_IOPORT_MAP
|
|
select IRQ_MIPS_CPU
|
|
select SYS_HAS_CPU_R3000
|
|
select SYS_HAS_CPU_R4X00
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_128HZ
|
|
select SYS_SUPPORTS_256HZ
|
|
select SYS_SUPPORTS_1024HZ
|
|
select MIPS_L1_CACHE_SHIFT_4
|
|
help
|
|
This enables support for DEC's MIPS based workstations. For details
|
|
see the Linux/MIPS FAQ on <http://www.linux-mips.org/> and the
|
|
DECstation porting pages on <http://decstation.unix-ag.org/>.
|
|
|
|
If you have one of the following DECstation Models you definitely
|
|
want to choose R4xx0 for the CPU Type:
|
|
|
|
DECstation 5000/50
|
|
DECstation 5000/150
|
|
DECstation 5000/260
|
|
DECsystem 5900/260
|
|
|
|
otherwise choose R3000.
|
|
|
|
config MACH_JAZZ
|
|
bool "Jazz family of machines"
|
|
select ARC_MEMORY
|
|
select ARC_PROMLIB
|
|
select ARCH_MIGHT_HAVE_PC_PARPORT
|
|
select ARCH_MIGHT_HAVE_PC_SERIO
|
|
select FW_ARC
|
|
select FW_ARC32
|
|
select ARCH_MAY_HAVE_PC_FDC
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DEFAULT_SGI_PARTITION if CPU_BIG_ENDIAN
|
|
select GENERIC_ISA_DMA
|
|
select HAVE_PCSPKR_PLATFORM
|
|
select IRQ_MIPS_CPU
|
|
select I8253
|
|
select I8259
|
|
select ISA
|
|
select SYS_HAS_CPU_R4X00
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_100HZ
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
help
|
|
This a family of machines based on the MIPS R4030 chipset which was
|
|
used by several vendors to build RISC/os and Windows NT workstations.
|
|
Members include the Acer PICA, MIPS Magnum 4000, MIPS Millennium and
|
|
Olivetti M700-10 workstations.
|
|
|
|
config MACH_INGENIC_SOC
|
|
bool "Ingenic SoC based machines"
|
|
select MIPS_GENERIC
|
|
select MACH_INGENIC
|
|
select MACH_GENERIC_CORE
|
|
select SYS_SUPPORTS_ZBOOT_UART16550
|
|
select CPU_SUPPORTS_CPUFREQ
|
|
select MIPS_EXTERNAL_TIMER
|
|
|
|
config LANTIQ
|
|
bool "Lantiq based platforms"
|
|
select DMA_NONCOHERENT
|
|
select IRQ_MIPS_CPU
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select NO_EXCEPT_FILL
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_MIPS16
|
|
select SYS_SUPPORTS_MULTITHREADING
|
|
select SYS_SUPPORTS_VPE_LOADER
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select GPIOLIB
|
|
select SWAP_IO_SPACE
|
|
select BOOT_RAW
|
|
select HAVE_LEGACY_CLK
|
|
select USE_OF
|
|
select PINCTRL
|
|
select PINCTRL_LANTIQ
|
|
select ARCH_HAS_RESET_CONTROLLER
|
|
select RESET_CONTROLLER
|
|
|
|
config MACH_LOONGSON32
|
|
bool "Loongson 32-bit family of machines"
|
|
select SYS_SUPPORTS_ZBOOT
|
|
help
|
|
This enables support for the Loongson-1 family of machines.
|
|
|
|
Loongson-1 is a family of 32-bit MIPS-compatible SoCs developed by
|
|
the Institute of Computing Technology (ICT), Chinese Academy of
|
|
Sciences (CAS).
|
|
|
|
config MACH_LOONGSON2EF
|
|
bool "Loongson-2E/F family of machines"
|
|
select SYS_SUPPORTS_ZBOOT
|
|
help
|
|
This enables the support of early Loongson-2E/F family of machines.
|
|
|
|
config MACH_LOONGSON64
|
|
bool "Loongson 64-bit family of machines"
|
|
select ARCH_DMA_DEFAULT_COHERENT
|
|
select ARCH_SPARSEMEM_ENABLE
|
|
select ARCH_MIGHT_HAVE_PC_PARPORT
|
|
select ARCH_MIGHT_HAVE_PC_SERIO
|
|
select GENERIC_ISA_DMA_SUPPORT_BROKEN
|
|
select BOOT_ELF32
|
|
select BOARD_SCACHE
|
|
select CSRC_R4K
|
|
select CEVT_R4K
|
|
select SYNC_R4K
|
|
select FORCE_PCI
|
|
select ISA
|
|
select I8259
|
|
select IRQ_MIPS_CPU
|
|
select NO_EXCEPT_FILL
|
|
select NR_CPUS_DEFAULT_64
|
|
select USE_GENERIC_EARLY_PRINTK_8250
|
|
select PCI_DRIVERS_GENERIC
|
|
select SYS_HAS_CPU_LOONGSON64
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_SMP
|
|
select SYS_SUPPORTS_HOTPLUG_CPU
|
|
select SYS_SUPPORTS_NUMA
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select SYS_SUPPORTS_RELOCATABLE
|
|
select ZONE_DMA32
|
|
select COMMON_CLK
|
|
select USE_OF
|
|
select BUILTIN_DTB
|
|
select PCI_HOST_GENERIC
|
|
help
|
|
This enables the support of Loongson-2/3 family of machines.
|
|
|
|
Loongson-2 and Loongson-3 are 64-bit general-purpose processors with
|
|
GS264/GS464/GS464E/GS464V microarchitecture (except old Loongson-2E
|
|
and Loongson-2F which will be removed), developed by the Institute
|
|
of Computing Technology (ICT), Chinese Academy of Sciences (CAS).
|
|
|
|
config MIPS_MALTA
|
|
bool "MIPS Malta board"
|
|
select ARCH_MAY_HAVE_PC_FDC
|
|
select ARCH_MIGHT_HAVE_PC_PARPORT
|
|
select ARCH_MIGHT_HAVE_PC_SERIO
|
|
select BOOT_ELF32
|
|
select BOOT_RAW
|
|
select BUILTIN_DTB
|
|
select CEVT_R4K
|
|
select CLKSRC_MIPS_GIC
|
|
select COMMON_CLK
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select GENERIC_ISA_DMA
|
|
select HAVE_PCSPKR_PLATFORM
|
|
select HAVE_PCI
|
|
select I8253
|
|
select I8259
|
|
select IRQ_MIPS_CPU
|
|
select MIPS_BONITO64
|
|
select MIPS_CPU_SCACHE
|
|
select MIPS_GIC
|
|
select MIPS_L1_CACHE_SHIFT_6
|
|
select MIPS_MSC
|
|
select PCI_GT64XXX_PCI0
|
|
select SMP_UP if SMP
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_HAS_CPU_MIPS32_R3_5
|
|
select SYS_HAS_CPU_MIPS32_R5
|
|
select SYS_HAS_CPU_MIPS32_R6
|
|
select SYS_HAS_CPU_MIPS64_R1
|
|
select SYS_HAS_CPU_MIPS64_R2
|
|
select SYS_HAS_CPU_MIPS64_R6
|
|
select SYS_HAS_CPU_NEVADA
|
|
select SYS_HAS_CPU_RM7000
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_MICROMIPS
|
|
select SYS_SUPPORTS_MIPS16
|
|
select SYS_SUPPORTS_MIPS_CPS
|
|
select SYS_SUPPORTS_MULTITHREADING
|
|
select SYS_SUPPORTS_RELOCATABLE
|
|
select SYS_SUPPORTS_SMARTMIPS
|
|
select SYS_SUPPORTS_VPE_LOADER
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select USE_OF
|
|
select WAR_ICACHE_REFILLS
|
|
select ZONE_DMA32 if 64BIT
|
|
help
|
|
This enables support for the MIPS Technologies Malta evaluation
|
|
board.
|
|
|
|
config MACH_PIC32
|
|
bool "Microchip PIC32 Family"
|
|
help
|
|
This enables support for the Microchip PIC32 family of platforms.
|
|
|
|
Microchip PIC32 is a family of general-purpose 32 bit MIPS core
|
|
microcontrollers.
|
|
|
|
config EYEQ
|
|
bool "Mobileye EyeQ SoC"
|
|
select MACH_GENERIC_CORE
|
|
select ARM_AMBA
|
|
select PHYSICAL_START_BOOL
|
|
select ARCH_SPARSEMEM_DEFAULT if 64BIT
|
|
select BOOT_RAW
|
|
select BUILTIN_DTB
|
|
select CEVT_R4K
|
|
select CLKSRC_MIPS_GIC
|
|
select COMMON_CLK
|
|
select CPU_MIPSR2_IRQ_EI
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select HAVE_PCI
|
|
select IRQ_MIPS_CPU
|
|
select MIPS_AUTO_PFN_OFFSET
|
|
select MIPS_CPU_SCACHE
|
|
select MIPS_GIC
|
|
select MIPS_L1_CACHE_SHIFT_7
|
|
select PCI_DRIVERS_GENERIC
|
|
select SMP_UP if SMP
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_MIPS64_R6
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_MIPS_CPS
|
|
select SYS_SUPPORTS_RELOCATABLE
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select UHI_BOOT
|
|
select USB_EHCI_BIG_ENDIAN_DESC if CPU_BIG_ENDIAN
|
|
select USB_EHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select USB_OHCI_BIG_ENDIAN_DESC if CPU_BIG_ENDIAN
|
|
select USB_OHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select USB_UHCI_BIG_ENDIAN_DESC if CPU_BIG_ENDIAN
|
|
select USB_UHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select USE_OF
|
|
help
|
|
Select this to build a kernel supporting EyeQ SoC from Mobileye.
|
|
|
|
bool
|
|
|
|
config MACH_NINTENDO64
|
|
bool "Nintendo 64 console"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select SYS_HAS_CPU_R4300
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select DMA_NONCOHERENT
|
|
select IRQ_MIPS_CPU
|
|
|
|
config RALINK
|
|
bool "Ralink based machines"
|
|
select CEVT_R4K
|
|
select COMMON_CLK
|
|
select CSRC_R4K
|
|
select BOOT_RAW
|
|
select DMA_NONCOHERENT
|
|
select IRQ_MIPS_CPU
|
|
select USE_OF
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_MIPS16
|
|
select SYS_SUPPORTS_ZBOOT
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select ARCH_HAS_RESET_CONTROLLER
|
|
select RESET_CONTROLLER
|
|
|
|
config MACH_REALTEK_RTL
|
|
bool "Realtek RTL838x/RTL839x based machines"
|
|
select MIPS_GENERIC
|
|
select MACH_GENERIC_CORE
|
|
select DMA_NONCOHERENT
|
|
select IRQ_MIPS_CPU
|
|
select CSRC_R4K
|
|
select CEVT_R4K
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_MIPS16
|
|
select SYS_SUPPORTS_MULTITHREADING
|
|
select SYS_SUPPORTS_VPE_LOADER
|
|
select BOOT_RAW
|
|
select PINCTRL
|
|
select USE_OF
|
|
select REALTEK_OTTO_TIMER
|
|
|
|
config SGI_IP22
|
|
bool "SGI IP22 (Indy/Indigo2)"
|
|
select ARC_MEMORY
|
|
select ARC_PROMLIB
|
|
select FW_ARC
|
|
select FW_ARC32
|
|
select ARCH_MIGHT_HAVE_PC_SERIO
|
|
select BOOT_ELF32
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DEFAULT_SGI_PARTITION
|
|
select DMA_NONCOHERENT
|
|
select HAVE_EISA
|
|
select I8253
|
|
select I8259
|
|
select IP22_CPU_SCACHE
|
|
select IRQ_MIPS_CPU
|
|
select GENERIC_ISA_DMA_SUPPORT_BROKEN
|
|
select SGI_HAS_I8042
|
|
select SGI_HAS_INDYDOG
|
|
select SGI_HAS_HAL2
|
|
select SGI_HAS_SEEQ
|
|
select SGI_HAS_WD93
|
|
select SGI_HAS_ZILOG
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_R4X00
|
|
select SYS_HAS_CPU_R5000
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select WAR_R4600_V1_INDEX_ICACHEOP
|
|
select WAR_R4600_V1_HIT_CACHEOP
|
|
select WAR_R4600_V2_HIT_CACHEOP
|
|
select MIPS_L1_CACHE_SHIFT_7
|
|
help
|
|
This are the SGI Indy, Challenge S and Indigo2, as well as certain
|
|
OEM variants like the Tandem CMN B006S. To compile a Linux kernel
|
|
that runs on these, say Y here.
|
|
|
|
config SGI_IP27
|
|
bool "SGI IP27 (Origin200/2000)"
|
|
select ARCH_HAS_PHYS_TO_DMA
|
|
select ARCH_SPARSEMEM_ENABLE
|
|
select FW_ARC
|
|
select FW_ARC64
|
|
select ARC_CMDLINE_ONLY
|
|
select BOOT_ELF64
|
|
select DEFAULT_SGI_PARTITION
|
|
select FORCE_PCI
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select HAVE_PCI
|
|
select IRQ_MIPS_CPU
|
|
select IRQ_DOMAIN_HIERARCHY
|
|
select NR_CPUS_DEFAULT_64
|
|
select PCI_DRIVERS_GENERIC
|
|
select PCI_XTALK_BRIDGE
|
|
select SYS_HAS_CPU_R10000
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_NUMA
|
|
select SYS_SUPPORTS_SMP
|
|
select WAR_R10000_LLSC
|
|
select MIPS_L1_CACHE_SHIFT_7
|
|
select NUMA
|
|
help
|
|
This are the SGI Origin 200, Origin 2000 and Onyx 2 Graphics
|
|
workstations. To compile a Linux kernel that runs on these, say Y
|
|
here.
|
|
|
|
config SGI_IP28
|
|
bool "SGI IP28 (Indigo2 R10k)"
|
|
select ARC_MEMORY
|
|
select ARC_PROMLIB
|
|
select FW_ARC
|
|
select FW_ARC64
|
|
select ARCH_MIGHT_HAVE_PC_SERIO
|
|
select BOOT_ELF64
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DEFAULT_SGI_PARTITION
|
|
select DMA_NONCOHERENT
|
|
select GENERIC_ISA_DMA_SUPPORT_BROKEN
|
|
select IRQ_MIPS_CPU
|
|
select HAVE_EISA
|
|
select I8253
|
|
select I8259
|
|
select SGI_HAS_I8042
|
|
select SGI_HAS_INDYDOG
|
|
select SGI_HAS_HAL2
|
|
select SGI_HAS_SEEQ
|
|
select SGI_HAS_WD93
|
|
select SGI_HAS_ZILOG
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_R10000
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select WAR_R10000_LLSC
|
|
select MIPS_L1_CACHE_SHIFT_7
|
|
help
|
|
This is the SGI Indigo2 with R10000 processor. To compile a Linux
|
|
kernel that runs on these, say Y here.
|
|
|
|
config SGI_IP30
|
|
bool "SGI IP30 (Octane/Octane2)"
|
|
select ARCH_HAS_PHYS_TO_DMA
|
|
select FW_ARC
|
|
select FW_ARC64
|
|
select BOOT_ELF64
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select FORCE_PCI
|
|
select SYNC_R4K if SMP
|
|
select ZONE_DMA32
|
|
select HAVE_PCI
|
|
select IRQ_MIPS_CPU
|
|
select IRQ_DOMAIN_HIERARCHY
|
|
select PCI_DRIVERS_GENERIC
|
|
select PCI_XTALK_BRIDGE
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_HAS_CPU_R10000
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_SMP
|
|
select WAR_R10000_LLSC
|
|
select MIPS_L1_CACHE_SHIFT_7
|
|
select ARC_MEMORY
|
|
help
|
|
These are the SGI Octane and Octane2 graphics workstations. To
|
|
compile a Linux kernel that runs on these, say Y here.
|
|
|
|
config SGI_IP32
|
|
bool "SGI IP32 (O2)"
|
|
select ARC_MEMORY
|
|
select ARC_PROMLIB
|
|
select ARCH_HAS_PHYS_TO_DMA
|
|
select FW_ARC
|
|
select FW_ARC32
|
|
select BOOT_ELF32
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select HAVE_PCI
|
|
select IRQ_MIPS_CPU
|
|
select R5000_CPU_SCACHE
|
|
select RM7000_CPU_SCACHE
|
|
select SYS_HAS_CPU_R5000
|
|
select SYS_HAS_CPU_R10000 if BROKEN
|
|
select SYS_HAS_CPU_RM7000
|
|
select SYS_HAS_CPU_NEVADA
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select WAR_ICACHE_REFILLS
|
|
help
|
|
If you want this kernel to run on SGI O2 workstation, say Y here.
|
|
|
|
config SIBYTE_CRHONE
|
|
bool "Sibyte BCM91125C-CRhone"
|
|
select BOOT_ELF32
|
|
select SIBYTE_BCM1125
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config SIBYTE_RHONE
|
|
bool "Sibyte BCM91125E-Rhone"
|
|
select BOOT_ELF32
|
|
select SIBYTE_SB1250
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config SIBYTE_SWARM
|
|
bool "Sibyte BCM91250A-SWARM"
|
|
select BOOT_ELF32
|
|
select HAVE_PATA_PLATFORM
|
|
select SIBYTE_SB1250
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select ZONE_DMA32 if 64BIT
|
|
select SWIOTLB if ARCH_DMA_ADDR_T_64BIT && PCI
|
|
|
|
config SIBYTE_LITTLESUR
|
|
bool "Sibyte BCM91250C2-LittleSur"
|
|
select BOOT_ELF32
|
|
select HAVE_PATA_PLATFORM
|
|
select SIBYTE_SB1250
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select ZONE_DMA32 if 64BIT
|
|
|
|
config SIBYTE_SENTOSA
|
|
bool "Sibyte BCM91250E-Sentosa"
|
|
select BOOT_ELF32
|
|
select SIBYTE_SB1250
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SWIOTLB if ARCH_DMA_ADDR_T_64BIT && PCI
|
|
|
|
config SIBYTE_BIGSUR
|
|
bool "Sibyte BCM91480B-BigSur"
|
|
select BOOT_ELF32
|
|
select NR_CPUS_DEFAULT_4
|
|
select SIBYTE_BCM1x80
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select ZONE_DMA32 if 64BIT
|
|
select SWIOTLB if ARCH_DMA_ADDR_T_64BIT && PCI
|
|
|
|
config SNI_RM
|
|
bool "SNI RM200/300/400"
|
|
select ARC_MEMORY
|
|
select ARC_PROMLIB
|
|
select FW_ARC if CPU_LITTLE_ENDIAN
|
|
select FW_ARC32 if CPU_LITTLE_ENDIAN
|
|
select FW_SNIPROM if CPU_BIG_ENDIAN
|
|
select ARCH_MAY_HAVE_PC_FDC
|
|
select ARCH_MIGHT_HAVE_PC_PARPORT
|
|
select ARCH_MIGHT_HAVE_PC_SERIO
|
|
select BOOT_ELF32
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DEFAULT_SGI_PARTITION if CPU_BIG_ENDIAN
|
|
select DMA_NONCOHERENT
|
|
select GENERIC_ISA_DMA
|
|
select HAVE_EISA
|
|
select HAVE_PCSPKR_PLATFORM
|
|
select HAVE_PCI
|
|
select IRQ_MIPS_CPU
|
|
select I8253
|
|
select I8259
|
|
select ISA
|
|
select MIPS_L1_CACHE_SHIFT_6
|
|
select SWAP_IO_SPACE if CPU_BIG_ENDIAN
|
|
select SYS_HAS_CPU_R4X00
|
|
select SYS_HAS_CPU_R5000
|
|
select SYS_HAS_CPU_R10000
|
|
select R5000_CPU_SCACHE
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select WAR_R4600_V2_HIT_CACHEOP
|
|
help
|
|
The SNI RM200/300/400 are MIPS-based machines manufactured by
|
|
Siemens Nixdorf Informationssysteme (SNI), parent company of Pyramid
|
|
Technology and now in turn merged with Fujitsu. Say Y here to
|
|
support this machine type.
|
|
|
|
config MACH_TX49XX
|
|
bool "Toshiba TX49 series based machines"
|
|
select WAR_TX49XX_ICACHE_INDEX_INV
|
|
|
|
config MIKROTIK_RB532
|
|
bool "Mikrotik RB532 boards"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select HAVE_PCI
|
|
select IRQ_MIPS_CPU
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SWAP_IO_SPACE
|
|
select BOOT_RAW
|
|
select GPIOLIB
|
|
select MIPS_L1_CACHE_SHIFT_4
|
|
help
|
|
Support the Mikrotik(tm) RouterBoard 532 series,
|
|
based on the IDT RC32434 SoC.
|
|
|
|
config CAVIUM_OCTEON_SOC
|
|
bool "Cavium Networks Octeon SoC based boards"
|
|
select CEVT_R4K
|
|
select ARCH_HAS_PHYS_TO_DMA
|
|
select HAVE_RAPIDIO
|
|
select PHYS_ADDR_T_64BIT
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select EDAC_SUPPORT
|
|
select EDAC_ATOMIC_SCRUB
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_HOTPLUG_CPU if CPU_BIG_ENDIAN
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_HAS_CPU_CAVIUM_OCTEON
|
|
select HAVE_PCI
|
|
select HAVE_PLAT_DELAY
|
|
select HAVE_PLAT_FW_INIT_CMDLINE
|
|
select HAVE_PLAT_MEMCPY
|
|
select ZONE_DMA32
|
|
select GPIOLIB
|
|
select USE_OF
|
|
select ARCH_SPARSEMEM_ENABLE
|
|
select SYS_SUPPORTS_SMP
|
|
select NR_CPUS_DEFAULT_64
|
|
select MIPS_NR_CPU_NR_MAP_1024
|
|
select BUILTIN_DTB
|
|
select MTD
|
|
select MTD_COMPLEX_MAPPINGS
|
|
select SWIOTLB
|
|
select SYS_SUPPORTS_RELOCATABLE
|
|
help
|
|
This option supports all of the Octeon reference boards from Cavium
|
|
Networks. It builds a kernel that dynamically determines the Octeon
|
|
CPU type and supports all known board reference implementations.
|
|
Some of the supported boards are:
|
|
EBT3000
|
|
EBH3000
|
|
EBH3100
|
|
Thunder
|
|
Kodama
|
|
Hikari
|
|
Say Y here for most Octeon reference boards.
|
|
|
|
endchoice
|
|
|
|
config FIT_IMAGE_FDT_EPM5
|
|
bool "Include FDT for Mobileye EyeQ5 development platforms"
|
|
depends on MACH_EYEQ5
|
|
default n
|
|
help
|
|
Enable this to include the FDT for the EyeQ5 development platforms
|
|
from Mobileye in the FIT kernel image.
|
|
This requires u-boot on the platform.
|
|
|
|
source "arch/mips/alchemy/Kconfig"
|
|
source "arch/mips/ath25/Kconfig"
|
|
source "arch/mips/ath79/Kconfig"
|
|
source "arch/mips/bcm47xx/Kconfig"
|
|
source "arch/mips/bcm63xx/Kconfig"
|
|
source "arch/mips/bmips/Kconfig"
|
|
source "arch/mips/generic/Kconfig"
|
|
source "arch/mips/ingenic/Kconfig"
|
|
source "arch/mips/jazz/Kconfig"
|
|
source "arch/mips/lantiq/Kconfig"
|
|
source "arch/mips/mobileye/Kconfig"
|
|
source "arch/mips/pic32/Kconfig"
|
|
source "arch/mips/ralink/Kconfig"
|
|
source "arch/mips/sgi-ip27/Kconfig"
|
|
source "arch/mips/sibyte/Kconfig"
|
|
source "arch/mips/txx9/Kconfig"
|
|
source "arch/mips/cavium-octeon/Kconfig"
|
|
source "arch/mips/loongson2ef/Kconfig"
|
|
source "arch/mips/loongson32/Kconfig"
|
|
source "arch/mips/loongson64/Kconfig"
|
|
|
|
endmenu
|
|
|
|
config GENERIC_HWEIGHT
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_CALIBRATE_DELAY
|
|
bool
|
|
default y
|
|
|
|
config SCHED_OMIT_FRAME_POINTER
|
|
bool
|
|
default y
|
|
|
|
#
|
|
# Select some configuration options automatically based on user selections.
|
|
#
|
|
config FW_ARC
|
|
bool
|
|
|
|
config ARCH_MAY_HAVE_PC_FDC
|
|
bool
|
|
|
|
config BOOT_RAW
|
|
bool
|
|
|
|
config CEVT_BCM1480
|
|
bool
|
|
|
|
config CEVT_DS1287
|
|
bool
|
|
|
|
config CEVT_GT641XX
|
|
bool
|
|
|
|
config CEVT_R4K
|
|
bool
|
|
|
|
config CEVT_SB1250
|
|
bool
|
|
|
|
config CEVT_TXX9
|
|
bool
|
|
|
|
config CSRC_BCM1480
|
|
bool
|
|
|
|
config CSRC_IOASIC
|
|
bool
|
|
|
|
config CSRC_R4K
|
|
select CLOCKSOURCE_WATCHDOG if CPU_FREQ
|
|
select HAVE_UNSTABLE_SCHED_CLOCK if SMP && 64BIT
|
|
bool
|
|
|
|
config CSRC_SB1250
|
|
bool
|
|
|
|
config MIPS_CLOCK_VSYSCALL
|
|
def_bool CSRC_R4K || CLKSRC_MIPS_GIC
|
|
|
|
config GPIO_TXX9
|
|
select GPIOLIB
|
|
bool
|
|
|
|
config FW_CFE
|
|
bool
|
|
|
|
config ARCH_SUPPORTS_UPROBES
|
|
def_bool y
|
|
|
|
config DMA_NONCOHERENT
|
|
bool
|
|
#
|
|
# MIPS allows mixing "slightly different" Cacheability and Coherency
|
|
# Attribute bits. It is believed that the uncached access through
|
|
# KSEG1 and the implementation specific "uncached accelerated" used
|
|
# by pgprot_writcombine can be mixed, and the latter sometimes provides
|
|
# significant advantages.
|
|
#
|
|
select ARCH_HAS_SETUP_DMA_OPS
|
|
select ARCH_HAS_DMA_WRITE_COMBINE
|
|
select ARCH_HAS_DMA_PREP_COHERENT
|
|
select ARCH_HAS_SYNC_DMA_FOR_CPU
|
|
select ARCH_HAS_SYNC_DMA_FOR_DEVICE
|
|
select ARCH_HAS_DMA_SET_UNCACHED
|
|
select DMA_NONCOHERENT_MMAP
|
|
select NEED_DMA_MAP_STATE
|
|
|
|
config SYS_HAS_EARLY_PRINTK
|
|
bool
|
|
|
|
config SYS_SUPPORTS_HOTPLUG_CPU
|
|
bool
|
|
|
|
config MIPS_BONITO64
|
|
bool
|
|
|
|
config MIPS_MSC
|
|
bool
|
|
|
|
config SYNC_R4K
|
|
bool
|
|
|
|
config NO_IOPORT_MAP
|
|
def_bool n
|
|
|
|
config GENERIC_CSUM
|
|
def_bool CPU_NO_LOAD_STORE_LR
|
|
|
|
config GENERIC_ISA_DMA
|
|
bool
|
|
select ZONE_DMA if GENERIC_ISA_DMA_SUPPORT_BROKEN=n
|
|
select ISA_DMA_API
|
|
|
|
config GENERIC_ISA_DMA_SUPPORT_BROKEN
|
|
bool
|
|
select GENERIC_ISA_DMA
|
|
|
|
config HAVE_PLAT_DELAY
|
|
bool
|
|
|
|
config HAVE_PLAT_FW_INIT_CMDLINE
|
|
bool
|
|
|
|
config HAVE_PLAT_MEMCPY
|
|
bool
|
|
|
|
config ISA_DMA_API
|
|
bool
|
|
|
|
config SYS_SUPPORTS_RELOCATABLE
|
|
bool
|
|
help
|
|
Selected if the platform supports relocating the kernel.
|
|
The platform must provide plat_get_fdt() if it selects CONFIG_USE_OF
|
|
to allow access to command line and entropy sources.
|
|
|
|
#
|
|
# Endianness selection. Sufficiently obscure so many users don't know what to
|
|
# answer,so we try hard to limit the available choices. Also the use of a
|
|
# choice statement should be more obvious to the user.
|
|
#
|
|
choice
|
|
prompt "Endianness selection"
|
|
help
|
|
Some MIPS machines can be configured for either little or big endian
|
|
byte order. These modes require different kernels and a different
|
|
Linux distribution. In general there is one preferred byteorder for a
|
|
particular system but some systems are just as commonly used in the
|
|
one or the other endianness.
|
|
|
|
config CPU_BIG_ENDIAN
|
|
bool "Big endian"
|
|
depends on SYS_SUPPORTS_BIG_ENDIAN
|
|
|
|
config CPU_LITTLE_ENDIAN
|
|
bool "Little endian"
|
|
depends on SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
endchoice
|
|
|
|
config EXPORT_UASM
|
|
bool
|
|
|
|
config SYS_SUPPORTS_APM_EMULATION
|
|
bool
|
|
|
|
config SYS_SUPPORTS_BIG_ENDIAN
|
|
bool
|
|
|
|
config SYS_SUPPORTS_LITTLE_ENDIAN
|
|
bool
|
|
|
|
config MIPS_HUGE_TLB_SUPPORT
|
|
def_bool HUGETLB_PAGE || TRANSPARENT_HUGEPAGE
|
|
|
|
config IRQ_TXX9
|
|
bool
|
|
|
|
config IRQ_GT641XX
|
|
bool
|
|
|
|
config PCI_GT64XXX_PCI0
|
|
bool
|
|
|
|
config PCI_XTALK_BRIDGE
|
|
bool
|
|
|
|
config NO_EXCEPT_FILL
|
|
bool
|
|
|
|
config MIPS_SPRAM
|
|
bool
|
|
|
|
config SWAP_IO_SPACE
|
|
bool
|
|
|
|
config SGI_HAS_INDYDOG
|
|
bool
|
|
|
|
config SGI_HAS_HAL2
|
|
bool
|
|
|
|
config SGI_HAS_SEEQ
|
|
bool
|
|
|
|
config SGI_HAS_WD93
|
|
bool
|
|
|
|
config SGI_HAS_ZILOG
|
|
bool
|
|
|
|
config SGI_HAS_I8042
|
|
bool
|
|
|
|
config DEFAULT_SGI_PARTITION
|
|
bool
|
|
|
|
config FW_ARC32
|
|
bool
|
|
|
|
config FW_SNIPROM
|
|
bool
|
|
|
|
config BOOT_ELF32
|
|
bool
|
|
|
|
config MIPS_L1_CACHE_SHIFT_4
|
|
bool
|
|
|
|
config MIPS_L1_CACHE_SHIFT_5
|
|
bool
|
|
|
|
config MIPS_L1_CACHE_SHIFT_6
|
|
bool
|
|
|
|
config MIPS_L1_CACHE_SHIFT_7
|
|
bool
|
|
|
|
config MIPS_L1_CACHE_SHIFT
|
|
int
|
|
default "7" if MIPS_L1_CACHE_SHIFT_7
|
|
default "6" if MIPS_L1_CACHE_SHIFT_6
|
|
default "5" if MIPS_L1_CACHE_SHIFT_5
|
|
default "4" if MIPS_L1_CACHE_SHIFT_4
|
|
default "5"
|
|
|
|
config ARC_CMDLINE_ONLY
|
|
bool
|
|
|
|
config ARC_CONSOLE
|
|
bool "ARC console support"
|
|
depends on SGI_IP22 || SGI_IP28 || (SNI_RM && CPU_LITTLE_ENDIAN)
|
|
|
|
config ARC_MEMORY
|
|
bool
|
|
|
|
config ARC_PROMLIB
|
|
bool
|
|
|
|
config FW_ARC64
|
|
bool
|
|
|
|
config BOOT_ELF64
|
|
bool
|
|
|
|
menu "CPU selection"
|
|
|
|
choice
|
|
prompt "CPU type"
|
|
default CPU_R4X00
|
|
|
|
config CPU_LOONGSON64
|
|
bool "Loongson 64-bit CPU"
|
|
depends on SYS_HAS_CPU_LOONGSON64
|
|
select ARCH_HAS_PHYS_TO_DMA
|
|
select CPU_MIPSR2
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
select CPU_SUPPORTS_MSA
|
|
select CPU_SUPPORTS_VZ
|
|
select CPU_DIEI_BROKEN if !LOONGSON3_ENHANCEMENT
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select DMA_NONCOHERENT
|
|
select WEAK_ORDERING
|
|
select WEAK_REORDERING_BEYOND_LLSC
|
|
select MIPS_ASID_BITS_VARIABLE
|
|
select MIPS_PGD_C0_CONTEXT
|
|
select MIPS_L1_CACHE_SHIFT_6
|
|
select MIPS_FP_SUPPORT
|
|
select GPIOLIB
|
|
select SWIOTLB
|
|
help
|
|
The Loongson GSx64(GS264/GS464/GS464E/GS464V) series of processor
|
|
cores implements the MIPS64R2 instruction set with many extensions,
|
|
including most 64-bit Loongson-2 (2H, 2K) and Loongson-3 (3A1000,
|
|
3B1000, 3B1500, 3A2000, 3A3000 and 3A4000) processors. However, old
|
|
Loongson-2E/2F is not covered here and will be removed in future.
|
|
|
|
config CPU_LOONGSON2E
|
|
bool "Loongson 2E"
|
|
depends on SYS_HAS_CPU_LOONGSON2E
|
|
select CPU_LOONGSON2EF
|
|
help
|
|
The Loongson 2E processor implements the MIPS III instruction set
|
|
with many extensions.
|
|
|
|
It has an internal FPGA northbridge, which is compatible to
|
|
bonito64.
|
|
|
|
config CPU_LOONGSON2F
|
|
bool "Loongson 2F"
|
|
depends on SYS_HAS_CPU_LOONGSON2F
|
|
select CPU_LOONGSON2EF
|
|
help
|
|
The Loongson 2F processor implements the MIPS III instruction set
|
|
with many extensions.
|
|
|
|
Loongson2F have built-in DDR2 and PCIX controller. The PCIX controller
|
|
have a similar programming interface with FPGA northbridge used in
|
|
Loongson2E.
|
|
|
|
config CPU_LOONGSON1B
|
|
bool "Loongson 1B"
|
|
depends on SYS_HAS_CPU_LOONGSON1B
|
|
select CPU_LOONGSON32
|
|
select LEDS_GPIO_REGISTER
|
|
help
|
|
The Loongson 1B is a 32-bit SoC, which implements the MIPS32
|
|
Release 1 instruction set and part of the MIPS32 Release 2
|
|
instruction set.
|
|
|
|
config CPU_LOONGSON1C
|
|
bool "Loongson 1C"
|
|
depends on SYS_HAS_CPU_LOONGSON1C
|
|
select CPU_LOONGSON32
|
|
select LEDS_GPIO_REGISTER
|
|
help
|
|
The Loongson 1C is a 32-bit SoC, which implements the MIPS32
|
|
Release 1 instruction set and part of the MIPS32 Release 2
|
|
instruction set.
|
|
|
|
config CPU_MIPS32_R1
|
|
bool "MIPS32 Release 1"
|
|
depends on SYS_HAS_CPU_MIPS32_R1
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
Choose this option to build a kernel for release 1 or later of the
|
|
MIPS32 architecture. Most modern embedded systems with a 32-bit
|
|
MIPS processor are based on a MIPS32 processor. If you know the
|
|
specific type of processor in your system, choose those that one
|
|
otherwise CPU_MIPS32_R1 is a safe bet for any MIPS32 system.
|
|
Release 2 of the MIPS32 architecture is available since several
|
|
years so chances are you even have a MIPS32 Release 2 processor
|
|
in which case you should choose CPU_MIPS32_R2 instead for better
|
|
performance.
|
|
|
|
config CPU_MIPS32_R2
|
|
bool "MIPS32 Release 2"
|
|
depends on SYS_HAS_CPU_MIPS32_R2
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_MSA
|
|
help
|
|
Choose this option to build a kernel for release 2 or later of the
|
|
MIPS32 architecture. Most modern embedded systems with a 32-bit
|
|
MIPS processor are based on a MIPS32 processor. If you know the
|
|
specific type of processor in your system, choose those that one
|
|
otherwise CPU_MIPS32_R1 is a safe bet for any MIPS32 system.
|
|
|
|
config CPU_MIPS32_R5
|
|
bool "MIPS32 Release 5"
|
|
depends on SYS_HAS_CPU_MIPS32_R5
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_MSA
|
|
select CPU_SUPPORTS_VZ
|
|
select MIPS_O32_FP64_SUPPORT
|
|
help
|
|
Choose this option to build a kernel for release 5 or later of the
|
|
MIPS32 architecture. New MIPS processors, starting with the Warrior
|
|
family, are based on a MIPS32r5 processor. If you own an older
|
|
processor, you probably need to select MIPS32r1 or MIPS32r2 instead.
|
|
|
|
config CPU_MIPS32_R6
|
|
bool "MIPS32 Release 6"
|
|
depends on SYS_HAS_CPU_MIPS32_R6
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_NO_LOAD_STORE_LR
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_MSA
|
|
select CPU_SUPPORTS_VZ
|
|
select MIPS_O32_FP64_SUPPORT
|
|
help
|
|
Choose this option to build a kernel for release 6 or later of the
|
|
MIPS32 architecture. New MIPS processors, starting with the Warrior
|
|
family, are based on a MIPS32r6 processor. If you own an older
|
|
processor, you probably need to select MIPS32r1 or MIPS32r2 instead.
|
|
|
|
config CPU_MIPS64_R1
|
|
bool "MIPS64 Release 1"
|
|
depends on SYS_HAS_CPU_MIPS64_R1
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
help
|
|
Choose this option to build a kernel for release 1 or later of the
|
|
MIPS64 architecture. Many modern embedded systems with a 64-bit
|
|
MIPS processor are based on a MIPS64 processor. If you know the
|
|
specific type of processor in your system, choose those that one
|
|
otherwise CPU_MIPS64_R1 is a safe bet for any MIPS64 system.
|
|
Release 2 of the MIPS64 architecture is available since several
|
|
years so chances are you even have a MIPS64 Release 2 processor
|
|
in which case you should choose CPU_MIPS64_R2 instead for better
|
|
performance.
|
|
|
|
config CPU_MIPS64_R2
|
|
bool "MIPS64 Release 2"
|
|
depends on SYS_HAS_CPU_MIPS64_R2
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
select CPU_SUPPORTS_MSA
|
|
help
|
|
Choose this option to build a kernel for release 2 or later of the
|
|
MIPS64 architecture. Many modern embedded systems with a 64-bit
|
|
MIPS processor are based on a MIPS64 processor. If you know the
|
|
specific type of processor in your system, choose those that one
|
|
otherwise CPU_MIPS64_R1 is a safe bet for any MIPS64 system.
|
|
|
|
config CPU_MIPS64_R5
|
|
bool "MIPS64 Release 5"
|
|
depends on SYS_HAS_CPU_MIPS64_R5
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
select CPU_SUPPORTS_MSA
|
|
select MIPS_O32_FP64_SUPPORT if 32BIT || MIPS32_O32
|
|
select CPU_SUPPORTS_VZ
|
|
help
|
|
Choose this option to build a kernel for release 5 or later of the
|
|
MIPS64 architecture. This is a intermediate MIPS architecture
|
|
release partly implementing release 6 features. Though there is no
|
|
any hardware known to be based on this release.
|
|
|
|
config CPU_MIPS64_R6
|
|
bool "MIPS64 Release 6"
|
|
depends on SYS_HAS_CPU_MIPS64_R6
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_NO_LOAD_STORE_LR
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
select CPU_SUPPORTS_MSA
|
|
select MIPS_O32_FP64_SUPPORT if 32BIT || MIPS32_O32
|
|
select CPU_SUPPORTS_VZ
|
|
help
|
|
Choose this option to build a kernel for release 6 or later of the
|
|
MIPS64 architecture. New MIPS processors, starting with the Warrior
|
|
family, are based on a MIPS64r6 processor. If you own an older
|
|
processor, you probably need to select MIPS64r1 or MIPS64r2 instead.
|
|
|
|
config CPU_P5600
|
|
bool "MIPS Warrior P5600"
|
|
depends on SYS_HAS_CPU_P5600
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_MSA
|
|
select CPU_SUPPORTS_CPUFREQ
|
|
select CPU_SUPPORTS_VZ
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select CPU_MIPSR2_IRQ_EI
|
|
select MIPS_O32_FP64_SUPPORT
|
|
help
|
|
Choose this option to build a kernel for MIPS Warrior P5600 CPU.
|
|
It's based on MIPS32r5 ISA with XPA, EVA, dual/quad issue exec pipes,
|
|
MMU with two-levels TLB, UCA, MSA, MDU core level features and system
|
|
level features like up to six P5600 calculation cores, CM2 with L2
|
|
cache, IOCU/IOMMU (though might be unused depending on the system-
|
|
specific IP core configuration), GIC, CPC, virtualisation module,
|
|
eJTAG and PDtrace.
|
|
|
|
config CPU_R3000
|
|
bool "R3000"
|
|
depends on SYS_HAS_CPU_R3000
|
|
select CPU_HAS_WB
|
|
select CPU_R3K_TLB
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
Please make sure to pick the right CPU type. Linux/MIPS is not
|
|
designed to be generic, i.e. Kernels compiled for R3000 CPUs will
|
|
*not* work on R4000 machines and vice versa. However, since most
|
|
of the supported machines have an R4000 (or similar) CPU, R4x00
|
|
might be a safe bet. If the resulting kernel does not work,
|
|
try to recompile with R3000.
|
|
|
|
config CPU_R4300
|
|
bool "R4300"
|
|
depends on SYS_HAS_CPU_R4300
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
MIPS Technologies R4300-series processors.
|
|
|
|
config CPU_R4X00
|
|
bool "R4x00"
|
|
depends on SYS_HAS_CPU_R4X00
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
help
|
|
MIPS Technologies R4000-series processors other than 4300, including
|
|
the R4000, R4400, R4600, and 4700.
|
|
|
|
config CPU_TX49XX
|
|
bool "R49XX"
|
|
depends on SYS_HAS_CPU_TX49XX
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
|
|
config CPU_R5000
|
|
bool "R5000"
|
|
depends on SYS_HAS_CPU_R5000
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
help
|
|
MIPS Technologies R5000-series processors other than the Nevada.
|
|
|
|
config CPU_R5500
|
|
bool "R5500"
|
|
depends on SYS_HAS_CPU_R5500
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
help
|
|
NEC VR5500 and VR5500A series processors implement 64-bit MIPS IV
|
|
instruction set.
|
|
|
|
config CPU_NEVADA
|
|
bool "RM52xx"
|
|
depends on SYS_HAS_CPU_NEVADA
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
help
|
|
QED / PMC-Sierra RM52xx-series ("Nevada") processors.
|
|
|
|
config CPU_R10000
|
|
bool "R10000"
|
|
depends on SYS_HAS_CPU_R10000
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
help
|
|
MIPS Technologies R10000-series processors.
|
|
|
|
config CPU_RM7000
|
|
bool "RM7000"
|
|
depends on SYS_HAS_CPU_RM7000
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
|
|
config CPU_SB1
|
|
bool "SB1"
|
|
depends on SYS_HAS_CPU_SB1
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
select WEAK_ORDERING
|
|
|
|
config CPU_CAVIUM_OCTEON
|
|
bool "Cavium Octeon processor"
|
|
depends on SYS_HAS_CPU_CAVIUM_OCTEON
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select HAVE_PAGE_SIZE_8KB if !MIPS_VA_BITS_48
|
|
select HAVE_PAGE_SIZE_32KB if !MIPS_VA_BITS_48
|
|
select WEAK_ORDERING
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
select USB_EHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select USB_OHCI_BIG_ENDIAN_MMIO if CPU_BIG_ENDIAN
|
|
select MIPS_L1_CACHE_SHIFT_7
|
|
select CPU_SUPPORTS_VZ
|
|
help
|
|
The Cavium Octeon processor is a highly integrated chip containing
|
|
many ethernet hardware widgets for networking tasks. The processor
|
|
can have up to 16 Mips64v2 cores and 8 integrated gigabit ethernets.
|
|
Full details can be found at http://www.caviumnetworks.com.
|
|
|
|
config CPU_BMIPS
|
|
bool "Broadcom BMIPS"
|
|
depends on SYS_HAS_CPU_BMIPS
|
|
select CPU_MIPS32
|
|
select CPU_BMIPS32_3300 if SYS_HAS_CPU_BMIPS32_3300
|
|
select CPU_BMIPS4350 if SYS_HAS_CPU_BMIPS4350
|
|
select CPU_BMIPS4380 if SYS_HAS_CPU_BMIPS4380
|
|
select CPU_BMIPS5000 if SYS_HAS_CPU_BMIPS5000
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select DMA_NONCOHERENT
|
|
select IRQ_MIPS_CPU
|
|
select SWAP_IO_SPACE
|
|
select WEAK_ORDERING
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_CPUFREQ
|
|
select MIPS_EXTERNAL_TIMER
|
|
select GENERIC_IRQ_MIGRATION if HOTPLUG_CPU
|
|
help
|
|
Support for BMIPS32/3300/4350/4380 and BMIPS5000 processors.
|
|
|
|
endchoice
|
|
|
|
config LOONGSON3_ENHANCEMENT
|
|
bool "New Loongson-3 CPU Enhancements"
|
|
default n
|
|
depends on CPU_LOONGSON64
|
|
help
|
|
New Loongson-3 cores (since Loongson-3A R2, as opposed to Loongson-3A
|
|
R1, Loongson-3B R1 and Loongson-3B R2) has many enhancements, such as
|
|
FTLB, L1-VCache, EI/DI/Wait/Prefetch instruction, DSP/DSPr2 ASE, User
|
|
Local register, Read-Inhibit/Execute-Inhibit, SFB (Store Fill Buffer),
|
|
Fast TLB refill support, etc.
|
|
|
|
This option enable those enhancements which are not probed at run
|
|
time. If you want a generic kernel to run on all Loongson 3 machines,
|
|
please say 'N' here. If you want a high-performance kernel to run on
|
|
new Loongson-3 machines only, please say 'Y' here.
|
|
|
|
config CPU_LOONGSON3_WORKAROUNDS
|
|
bool "Loongson-3 LLSC Workarounds"
|
|
default y if SMP
|
|
depends on CPU_LOONGSON64
|
|
help
|
|
Loongson-3 processors have the llsc issues which require workarounds.
|
|
Without workarounds the system may hang unexpectedly.
|
|
|
|
Say Y, unless you know what you are doing.
|
|
|
|
config CPU_LOONGSON3_CPUCFG_EMULATION
|
|
bool "Emulate the CPUCFG instruction on older Loongson cores"
|
|
default y
|
|
depends on CPU_LOONGSON64
|
|
help
|
|
Loongson-3A R4 and newer have the CPUCFG instruction available for
|
|
userland to query CPU capabilities, much like CPUID on x86. This
|
|
option provides emulation of the instruction on older Loongson
|
|
cores, back to Loongson-3A1000.
|
|
|
|
If unsure, please say Y.
|
|
|
|
config CPU_MIPS32_3_5_FEATURES
|
|
bool "MIPS32 Release 3.5 Features"
|
|
depends on SYS_HAS_CPU_MIPS32_R3_5
|
|
depends on CPU_MIPS32_R2 || CPU_MIPS32_R5 || CPU_MIPS32_R6 || \
|
|
CPU_P5600
|
|
help
|
|
Choose this option to build a kernel for release 2 or later of the
|
|
MIPS32 architecture including features from the 3.5 release such as
|
|
support for Enhanced Virtual Addressing (EVA).
|
|
|
|
config CPU_MIPS32_3_5_EVA
|
|
bool "Enhanced Virtual Addressing (EVA)"
|
|
depends on CPU_MIPS32_3_5_FEATURES
|
|
select EVA
|
|
default y
|
|
help
|
|
Choose this option if you want to enable the Enhanced Virtual
|
|
Addressing (EVA) on your MIPS32 core (such as proAptiv).
|
|
One of its primary benefits is an increase in the maximum size
|
|
of lowmem (up to 3GB). If unsure, say 'N' here.
|
|
|
|
config CPU_MIPS32_R5_FEATURES
|
|
bool "MIPS32 Release 5 Features"
|
|
depends on SYS_HAS_CPU_MIPS32_R5
|
|
depends on CPU_MIPS32_R2 || CPU_MIPS32_R5 || CPU_P5600
|
|
help
|
|
Choose this option to build a kernel for release 2 or later of the
|
|
MIPS32 architecture including features from release 5 such as
|
|
support for Extended Physical Addressing (XPA).
|
|
|
|
config CPU_MIPS32_R5_XPA
|
|
bool "Extended Physical Addressing (XPA)"
|
|
depends on CPU_MIPS32_R5_FEATURES
|
|
depends on !EVA
|
|
depends on !PAGE_SIZE_4KB
|
|
depends on SYS_SUPPORTS_HIGHMEM
|
|
select XPA
|
|
select HIGHMEM
|
|
select PHYS_ADDR_T_64BIT
|
|
default n
|
|
help
|
|
Choose this option if you want to enable the Extended Physical
|
|
Addressing (XPA) on your MIPS32 core (such as P5600 series). The
|
|
benefit is to increase physical addressing equal to or greater
|
|
than 40 bits. Note that this has the side effect of turning on
|
|
64-bit addressing which in turn makes the PTEs 64-bit in size.
|
|
If unsure, say 'N' here.
|
|
|
|
if CPU_LOONGSON2F
|
|
config CPU_NOP_WORKAROUNDS
|
|
bool
|
|
|
|
config CPU_JUMP_WORKAROUNDS
|
|
bool
|
|
|
|
config CPU_LOONGSON2F_WORKAROUNDS
|
|
bool "Loongson 2F Workarounds"
|
|
default y
|
|
select CPU_NOP_WORKAROUNDS
|
|
select CPU_JUMP_WORKAROUNDS
|
|
help
|
|
Loongson 2F01 / 2F02 processors have the NOP & JUMP issues which
|
|
require workarounds. Without workarounds the system may hang
|
|
unexpectedly. For more information please refer to the gas
|
|
-mfix-loongson2f-nop and -mfix-loongson2f-jump options.
|
|
|
|
Loongson 2F03 and later have fixed these issues and no workarounds
|
|
are needed. The workarounds have no significant side effect on them
|
|
but may decrease the performance of the system so this option should
|
|
be disabled unless the kernel is intended to be run on 2F01 or 2F02
|
|
systems.
|
|
|
|
If unsure, please say Y.
|
|
endif # CPU_LOONGSON2F
|
|
|
|
config SYS_SUPPORTS_ZBOOT
|
|
bool
|
|
select HAVE_KERNEL_GZIP
|
|
select HAVE_KERNEL_BZIP2
|
|
select HAVE_KERNEL_LZ4
|
|
select HAVE_KERNEL_LZMA
|
|
select HAVE_KERNEL_LZO
|
|
select HAVE_KERNEL_XZ
|
|
select HAVE_KERNEL_ZSTD
|
|
|
|
config SYS_SUPPORTS_ZBOOT_UART16550
|
|
bool
|
|
select SYS_SUPPORTS_ZBOOT
|
|
|
|
config SYS_SUPPORTS_ZBOOT_UART_PROM
|
|
bool
|
|
select SYS_SUPPORTS_ZBOOT
|
|
|
|
config CPU_LOONGSON2EF
|
|
bool
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_HUGEPAGES
|
|
|
|
config CPU_LOONGSON32
|
|
bool
|
|
select CPU_MIPS32
|
|
select CPU_MIPSR2
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select CPU_SUPPORTS_CPUFREQ
|
|
|
|
config CPU_BMIPS32_3300
|
|
select SMP_UP if SMP
|
|
bool
|
|
|
|
config CPU_BMIPS4350
|
|
bool
|
|
select SYS_SUPPORTS_SMP
|
|
select SYS_SUPPORTS_HOTPLUG_CPU
|
|
|
|
config CPU_BMIPS4380
|
|
bool
|
|
select MIPS_L1_CACHE_SHIFT_6
|
|
select SYS_SUPPORTS_SMP
|
|
select SYS_SUPPORTS_HOTPLUG_CPU
|
|
select CPU_HAS_RIXI
|
|
|
|
config CPU_BMIPS5000
|
|
bool
|
|
select MIPS_CPU_SCACHE
|
|
select MIPS_L1_CACHE_SHIFT_7
|
|
select SYS_SUPPORTS_SMP
|
|
select SYS_SUPPORTS_HOTPLUG_CPU
|
|
select CPU_HAS_RIXI
|
|
|
|
config SYS_HAS_CPU_LOONGSON64
|
|
bool
|
|
select CPU_SUPPORTS_CPUFREQ
|
|
select CPU_HAS_RIXI
|
|
|
|
config SYS_HAS_CPU_LOONGSON2E
|
|
bool
|
|
|
|
config SYS_HAS_CPU_LOONGSON2F
|
|
bool
|
|
select CPU_SUPPORTS_CPUFREQ
|
|
select CPU_SUPPORTS_ADDRWINCFG if 64BIT
|
|
|
|
config SYS_HAS_CPU_LOONGSON1B
|
|
bool
|
|
|
|
config SYS_HAS_CPU_LOONGSON1C
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS32_R1
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS32_R2
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS32_R3_5
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS32_R5
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS32_R6
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS64_R1
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS64_R2
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS64_R5
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS64_R6
|
|
bool
|
|
|
|
config SYS_HAS_CPU_P5600
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R3000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R4300
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R4X00
|
|
bool
|
|
|
|
config SYS_HAS_CPU_TX49XX
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R5000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R5500
|
|
bool
|
|
|
|
config SYS_HAS_CPU_NEVADA
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R10000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_RM7000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_SB1
|
|
bool
|
|
|
|
config SYS_HAS_CPU_CAVIUM_OCTEON
|
|
bool
|
|
|
|
config SYS_HAS_CPU_BMIPS
|
|
bool
|
|
|
|
config SYS_HAS_CPU_BMIPS32_3300
|
|
bool
|
|
select SYS_HAS_CPU_BMIPS
|
|
|
|
config SYS_HAS_CPU_BMIPS4350
|
|
bool
|
|
select SYS_HAS_CPU_BMIPS
|
|
|
|
config SYS_HAS_CPU_BMIPS4380
|
|
bool
|
|
select SYS_HAS_CPU_BMIPS
|
|
|
|
config SYS_HAS_CPU_BMIPS5000
|
|
bool
|
|
select SYS_HAS_CPU_BMIPS
|
|
|
|
#
|
|
# CPU may reorder R->R, R->W, W->R, W->W
|
|
# Reordering beyond LL and SC is handled in WEAK_REORDERING_BEYOND_LLSC
|
|
#
|
|
config WEAK_ORDERING
|
|
bool
|
|
|
|
#
|
|
# CPU may reorder reads and writes beyond LL/SC
|
|
# CPU may reorder R->LL, R->LL, W->LL, W->LL, R->SC, R->SC, W->SC, W->SC
|
|
#
|
|
config WEAK_REORDERING_BEYOND_LLSC
|
|
bool
|
|
endmenu
|
|
|
|
#
|
|
# These two indicate any level of the MIPS32 and MIPS64 architecture
|
|
#
|
|
config CPU_MIPS32
|
|
bool
|
|
default y if CPU_MIPS32_R1 || CPU_MIPS32_R2 || CPU_MIPS32_R5 || \
|
|
CPU_MIPS32_R6 || CPU_P5600
|
|
|
|
config CPU_MIPS64
|
|
bool
|
|
default y if CPU_MIPS64_R1 || CPU_MIPS64_R2 || CPU_MIPS64_R5 || \
|
|
CPU_MIPS64_R6 || CPU_LOONGSON64 || CPU_CAVIUM_OCTEON
|
|
|
|
#
|
|
# These indicate the revision of the architecture
|
|
#
|
|
config CPU_MIPSR1
|
|
bool
|
|
default y if CPU_MIPS32_R1 || CPU_MIPS64_R1
|
|
|
|
config CPU_MIPSR2
|
|
bool
|
|
default y if CPU_MIPS32_R2 || CPU_MIPS64_R2 || CPU_CAVIUM_OCTEON
|
|
select CPU_HAS_RIXI
|
|
select CPU_HAS_DIEI if !CPU_DIEI_BROKEN
|
|
select MIPS_SPRAM
|
|
|
|
config CPU_MIPSR5
|
|
bool
|
|
default y if CPU_MIPS32_R5 || CPU_MIPS64_R5 || CPU_P5600
|
|
select CPU_HAS_RIXI
|
|
select CPU_HAS_DIEI if !CPU_DIEI_BROKEN
|
|
select MIPS_SPRAM
|
|
|
|
config CPU_MIPSR6
|
|
bool
|
|
default y if CPU_MIPS32_R6 || CPU_MIPS64_R6
|
|
select CPU_HAS_RIXI
|
|
select CPU_HAS_DIEI if !CPU_DIEI_BROKEN
|
|
select HAVE_ARCH_BITREVERSE
|
|
select MIPS_ASID_BITS_VARIABLE
|
|
select MIPS_CRC_SUPPORT
|
|
select MIPS_SPRAM
|
|
|
|
config TARGET_ISA_REV
|
|
int
|
|
default 1 if CPU_MIPSR1
|
|
default 2 if CPU_MIPSR2
|
|
default 5 if CPU_MIPSR5
|
|
default 6 if CPU_MIPSR6
|
|
default 0
|
|
help
|
|
Reflects the ISA revision being targeted by the kernel build. This
|
|
is effectively the Kconfig equivalent of MIPS_ISA_REV.
|
|
|
|
config EVA
|
|
bool
|
|
|
|
config XPA
|
|
bool
|
|
|
|
config SYS_SUPPORTS_32BIT_KERNEL
|
|
bool
|
|
config SYS_SUPPORTS_64BIT_KERNEL
|
|
bool
|
|
config CPU_SUPPORTS_32BIT_KERNEL
|
|
bool
|
|
config CPU_SUPPORTS_64BIT_KERNEL
|
|
bool
|
|
config CPU_SUPPORTS_CPUFREQ
|
|
bool
|
|
config CPU_SUPPORTS_ADDRWINCFG
|
|
bool
|
|
config CPU_SUPPORTS_HUGEPAGES
|
|
bool
|
|
depends on !(32BIT && (PHYS_ADDR_T_64BIT || EVA))
|
|
config CPU_SUPPORTS_VZ
|
|
bool
|
|
config MIPS_PGD_C0_CONTEXT
|
|
bool
|
|
depends on 64BIT
|
|
default y if (CPU_MIPSR2 || CPU_MIPSR6)
|
|
|
|
#
|
|
# Set to y for ptrace access to watch registers.
|
|
#
|
|
config HARDWARE_WATCHPOINTS
|
|
bool
|
|
default y if CPU_MIPSR1 || CPU_MIPSR2 || CPU_MIPSR6
|
|
|
|
menu "Kernel type"
|
|
|
|
choice
|
|
prompt "Kernel code model"
|
|
help
|
|
You should only select this option if you have a workload that
|
|
actually benefits from 64-bit processing or if your machine has
|
|
large memory. You will only be presented a single option in this
|
|
menu if your system does not support both 32-bit and 64-bit kernels.
|
|
|
|
config 32BIT
|
|
bool "32-bit kernel"
|
|
depends on CPU_SUPPORTS_32BIT_KERNEL && SYS_SUPPORTS_32BIT_KERNEL
|
|
select TRAD_SIGNALS
|
|
help
|
|
Select this option if you want to build a 32-bit kernel.
|
|
|
|
config 64BIT
|
|
bool "64-bit kernel"
|
|
depends on CPU_SUPPORTS_64BIT_KERNEL && SYS_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
Select this option if you want to build a 64-bit kernel.
|
|
|
|
endchoice
|
|
|
|
config MIPS_VA_BITS_48
|
|
bool "48 bits virtual memory"
|
|
depends on 64BIT
|
|
help
|
|
Support a maximum at least 48 bits of application virtual
|
|
memory. Default is 40 bits or less, depending on the CPU.
|
|
For page sizes 16k and above, this option results in a small
|
|
memory overhead for page tables. For 4k page size, a fourth
|
|
level of page tables is added which imposes both a memory
|
|
overhead as well as slower TLB fault handling.
|
|
|
|
If unsure, say N.
|
|
|
|
config ZBOOT_LOAD_ADDRESS
|
|
hex "Compressed kernel load address"
|
|
default 0xffffffff80400000 if BCM47XX
|
|
default 0x0
|
|
depends on SYS_SUPPORTS_ZBOOT
|
|
help
|
|
The address to load compressed kernel, aka vmlinuz.
|
|
|
|
This is only used if non-zero.
|
|
|
|
config ARCH_FORCE_MAX_ORDER
|
|
int "Maximum zone order"
|
|
default "13" if MIPS_HUGE_TLB_SUPPORT && PAGE_SIZE_64KB
|
|
default "12" if MIPS_HUGE_TLB_SUPPORT && PAGE_SIZE_32KB
|
|
default "11" if MIPS_HUGE_TLB_SUPPORT && PAGE_SIZE_16KB
|
|
default "10"
|
|
help
|
|
The kernel memory allocator divides physically contiguous memory
|
|
blocks into "zones", where each zone is a power of two number of
|
|
pages. This option selects the largest power of two that the kernel
|
|
keeps in the memory allocator. If you need to allocate very large
|
|
blocks of physically contiguous memory, then you may need to
|
|
increase this value.
|
|
|
|
The page size is not necessarily 4KB. Keep this in mind
|
|
when choosing a value for this option.
|
|
|
|
config BOARD_SCACHE
|
|
bool
|
|
|
|
config IP22_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
#
|
|
# Support for a MIPS32 / MIPS64 style S-caches
|
|
#
|
|
config MIPS_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config R5000_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config RM7000_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config SIBYTE_DMA_PAGEOPS
|
|
bool "Use DMA to clear/copy pages"
|
|
depends on CPU_SB1
|
|
help
|
|
Instead of using the CPU to zero and copy pages, use a Data Mover
|
|
channel. These DMA channels are otherwise unused by the standard
|
|
SiByte Linux port. Seems to give a small performance benefit.
|
|
|
|
config CPU_HAS_PREFETCH
|
|
bool
|
|
|
|
config CPU_GENERIC_DUMP_TLB
|
|
bool
|
|
default y if !CPU_R3000
|
|
|
|
config MIPS_FP_SUPPORT
|
|
bool "Floating Point support" if EXPERT
|
|
default y
|
|
help
|
|
Select y to include support for floating point in the kernel
|
|
including initialization of FPU hardware, FP context save & restore
|
|
and emulation of an FPU where necessary. Without this support any
|
|
userland program attempting to use floating point instructions will
|
|
receive a SIGILL.
|
|
|
|
If you know that your userland will not attempt to use floating point
|
|
instructions then you can say n here to shrink the kernel a little.
|
|
|
|
If unsure, say y.
|
|
|
|
config CPU_R2300_FPU
|
|
bool
|
|
depends on MIPS_FP_SUPPORT
|
|
default y if CPU_R3000
|
|
|
|
config CPU_R3K_TLB
|
|
bool
|
|
|
|
config CPU_R4K_FPU
|
|
bool
|
|
depends on MIPS_FP_SUPPORT
|
|
default y if !CPU_R2300_FPU
|
|
|
|
config CPU_R4K_CACHE_TLB
|
|
bool
|
|
default y if !(CPU_R3K_TLB || CPU_SB1 || CPU_CAVIUM_OCTEON)
|
|
|
|
config MIPS_MT_SMP
|
|
bool "MIPS MT SMP support (1 TC on each available VPE)"
|
|
default y
|
|
depends on TARGET_ISA_REV > 0 && TARGET_ISA_REV < 6
|
|
depends on SYS_SUPPORTS_MULTITHREADING && !CPU_MICROMIPS
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select CPU_MIPSR2_IRQ_EI
|
|
select SYNC_R4K
|
|
select MIPS_MT
|
|
select SMP
|
|
select SMP_UP
|
|
select SYS_SUPPORTS_SMP
|
|
select SYS_SUPPORTS_SCHED_SMT
|
|
select MIPS_PERF_SHARED_TC_COUNTERS
|
|
help
|
|
This is a kernel model which is known as SMVP. This is supported
|
|
on cores with the MT ASE and uses the available VPEs to implement
|
|
virtual processors which supports SMP. This is equivalent to the
|
|
Intel Hyperthreading feature. For further information go to
|
|
<http://www.imgtec.com/mips/mips-multithreading.asp>.
|
|
|
|
config MIPS_MT
|
|
bool
|
|
|
|
config SCHED_SMT
|
|
bool "SMT (multithreading) scheduler support"
|
|
depends on SYS_SUPPORTS_SCHED_SMT
|
|
default n
|
|
help
|
|
SMT scheduler support improves the CPU scheduler's decision making
|
|
when dealing with MIPS MT enabled cores at a cost of slightly
|
|
increased overhead in some places. If unsure say N here.
|
|
|
|
config SYS_SUPPORTS_SCHED_SMT
|
|
bool
|
|
|
|
config SYS_SUPPORTS_MULTITHREADING
|
|
bool
|
|
|
|
config MIPS_MT_FPAFF
|
|
bool "Dynamic FPU affinity for FP-intensive threads"
|
|
default y
|
|
depends on MIPS_MT_SMP
|
|
|
|
config MIPSR2_TO_R6_EMULATOR
|
|
bool "MIPS R2-to-R6 emulator"
|
|
depends on CPU_MIPSR6
|
|
depends on MIPS_FP_SUPPORT
|
|
default y
|
|
help
|
|
Choose this option if you want to run non-R6 MIPS userland code.
|
|
Even if you say 'Y' here, the emulator will still be disabled by
|
|
default. You can enable it using the 'mipsr2emu' kernel option.
|
|
The only reason this is a build-time option is to save ~14K from the
|
|
final kernel image.
|
|
|
|
config SYS_SUPPORTS_VPE_LOADER
|
|
bool
|
|
depends on SYS_SUPPORTS_MULTITHREADING
|
|
help
|
|
Indicates that the platform supports the VPE loader, and provides
|
|
physical_memsize.
|
|
|
|
config MIPS_VPE_LOADER
|
|
bool "VPE loader support."
|
|
depends on SYS_SUPPORTS_VPE_LOADER && MODULES
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select CPU_MIPSR2_IRQ_EI
|
|
select MIPS_MT
|
|
help
|
|
Includes a loader for loading an elf relocatable object
|
|
onto another VPE and running it.
|
|
|
|
config MIPS_VPE_LOADER_MT
|
|
bool
|
|
default "y"
|
|
depends on MIPS_VPE_LOADER
|
|
|
|
config MIPS_VPE_LOADER_TOM
|
|
bool "Load VPE program into memory hidden from linux"
|
|
depends on MIPS_VPE_LOADER
|
|
default y
|
|
help
|
|
The loader can use memory that is present but has been hidden from
|
|
Linux using the kernel command line option "mem=xxMB". It's up to
|
|
you to ensure the amount you put in the option and the space your
|
|
program requires is less or equal to the amount physically present.
|
|
|
|
config MIPS_VPE_APSP_API
|
|
bool "Enable support for AP/SP API (RTLX)"
|
|
depends on MIPS_VPE_LOADER
|
|
|
|
config MIPS_VPE_APSP_API_MT
|
|
bool
|
|
default "y"
|
|
depends on MIPS_VPE_APSP_API
|
|
|
|
config MIPS_CPS
|
|
bool "MIPS Coherent Processing System support"
|
|
depends on SYS_SUPPORTS_MIPS_CPS
|
|
select MIPS_CM
|
|
select MIPS_CPS_PM if HOTPLUG_CPU
|
|
select SMP
|
|
select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
|
|
select SYNC_R4K if (CEVT_R4K || CSRC_R4K)
|
|
select SYS_SUPPORTS_HOTPLUG_CPU
|
|
select SYS_SUPPORTS_SCHED_SMT if CPU_MIPSR6
|
|
select SYS_SUPPORTS_SMP
|
|
select WEAK_ORDERING
|
|
select GENERIC_IRQ_MIGRATION if HOTPLUG_CPU
|
|
help
|
|
Select this if you wish to run an SMP kernel across multiple cores
|
|
within a MIPS Coherent Processing System. When this option is
|
|
enabled the kernel will probe for other cores and boot them with
|
|
no external assistance. It is safe to enable this when hardware
|
|
support is unavailable.
|
|
|
|
config MIPS_CPS_PM
|
|
depends on MIPS_CPS
|
|
bool
|
|
|
|
config MIPS_CM
|
|
bool
|
|
select MIPS_CPC
|
|
|
|
config MIPS_CPC
|
|
bool
|
|
|
|
config SB1_PASS_2_WORKAROUNDS
|
|
bool
|
|
depends on CPU_SB1 && (CPU_SB1_PASS_2_2 || CPU_SB1_PASS_2)
|
|
default y
|
|
|
|
config SB1_PASS_2_1_WORKAROUNDS
|
|
bool
|
|
depends on CPU_SB1 && CPU_SB1_PASS_2
|
|
default y
|
|
|
|
choice
|
|
prompt "SmartMIPS or microMIPS ASE support"
|
|
|
|
config CPU_NEEDS_NO_SMARTMIPS_OR_MICROMIPS
|
|
bool "None"
|
|
help
|
|
Select this if you want neither microMIPS nor SmartMIPS support
|
|
|
|
config CPU_HAS_SMARTMIPS
|
|
depends on SYS_SUPPORTS_SMARTMIPS
|
|
bool "SmartMIPS"
|
|
help
|
|
SmartMIPS is a extension of the MIPS32 architecture aimed at
|
|
increased security at both hardware and software level for
|
|
smartcards. Enabling this option will allow proper use of the
|
|
SmartMIPS instructions by Linux applications. However a kernel with
|
|
this option will not work on a MIPS core without SmartMIPS core. If
|
|
you don't know you probably don't have SmartMIPS and should say N
|
|
here.
|
|
|
|
config CPU_MICROMIPS
|
|
depends on 32BIT && SYS_SUPPORTS_MICROMIPS && !CPU_MIPSR6
|
|
bool "microMIPS"
|
|
help
|
|
When this option is enabled the kernel will be built using the
|
|
microMIPS ISA
|
|
|
|
endchoice
|
|
|
|
config CPU_HAS_MSA
|
|
bool "Support for the MIPS SIMD Architecture"
|
|
depends on CPU_SUPPORTS_MSA
|
|
depends on MIPS_FP_SUPPORT
|
|
depends on 64BIT || MIPS_O32_FP64_SUPPORT
|
|
help
|
|
MIPS SIMD Architecture (MSA) introduces 128 bit wide vector registers
|
|
and a set of SIMD instructions to operate on them. When this option
|
|
is enabled the kernel will support allocating & switching MSA
|
|
vector register contexts. If you know that your kernel will only be
|
|
running on CPUs which do not support MSA or that your userland will
|
|
not be making use of it then you may wish to say N here to reduce
|
|
the size & complexity of your kernel.
|
|
|
|
If unsure, say Y.
|
|
|
|
config CPU_HAS_WB
|
|
bool
|
|
|
|
config XKS01
|
|
bool
|
|
|
|
config CPU_HAS_DIEI
|
|
depends on !CPU_DIEI_BROKEN
|
|
bool
|
|
|
|
config CPU_DIEI_BROKEN
|
|
bool
|
|
|
|
config CPU_HAS_RIXI
|
|
bool
|
|
|
|
config CPU_NO_LOAD_STORE_LR
|
|
bool
|
|
help
|
|
CPU lacks support for unaligned load and store instructions:
|
|
LWL, LWR, SWL, SWR (Load/store word left/right).
|
|
LDL, LDR, SDL, SDR (Load/store doubleword left/right, for 64bit
|
|
systems).
|
|
|
|
#
|
|
# Vectored interrupt mode is an R2 feature
|
|
#
|
|
config CPU_MIPSR2_IRQ_VI
|
|
bool
|
|
|
|
#
|
|
# Extended interrupt mode is an R2 feature
|
|
#
|
|
config CPU_MIPSR2_IRQ_EI
|
|
bool
|
|
|
|
config CPU_HAS_SYNC
|
|
bool
|
|
depends on !CPU_R3000
|
|
default y
|
|
|
|
#
|
|
# CPU non-features
|
|
#
|
|
|
|
# Work around the "daddi" and "daddiu" CPU errata:
|
|
#
|
|
# - The `daddi' instruction fails to trap on overflow.
|
|
# "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0",
|
|
# erratum #23
|
|
#
|
|
# - The `daddiu' instruction can produce an incorrect result.
|
|
# "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0",
|
|
# erratum #41
|
|
# "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0", erratum
|
|
# #15
|
|
# "MIPS R4400PC/SC Errata, Processor Revision 1.0", erratum #7
|
|
# "MIPS R4400MC Errata, Processor Revision 1.0", erratum #5
|
|
config CPU_DADDI_WORKAROUNDS
|
|
bool
|
|
|
|
# Work around certain R4000 CPU errata (as implemented by GCC):
|
|
#
|
|
# - A double-word or a variable shift may give an incorrect result
|
|
# if executed immediately after starting an integer division:
|
|
# "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0",
|
|
# erratum #28
|
|
# "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0", erratum
|
|
# #19
|
|
#
|
|
# - A double-word or a variable shift may give an incorrect result
|
|
# if executed while an integer multiplication is in progress:
|
|
# "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0",
|
|
# errata #16 & #28
|
|
#
|
|
# - An integer division may give an incorrect result if started in
|
|
# a delay slot of a taken branch or a jump:
|
|
# "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0",
|
|
# erratum #52
|
|
config CPU_R4000_WORKAROUNDS
|
|
bool
|
|
select CPU_R4400_WORKAROUNDS
|
|
|
|
# Work around certain R4400 CPU errata (as implemented by GCC):
|
|
#
|
|
# - A double-word or a variable shift may give an incorrect result
|
|
# if executed immediately after starting an integer division:
|
|
# "MIPS R4400MC Errata, Processor Revision 1.0", erratum #10
|
|
# "MIPS R4400MC Errata, Processor Revision 2.0 & 3.0", erratum #4
|
|
config CPU_R4400_WORKAROUNDS
|
|
bool
|
|
|
|
config CPU_R4X00_BUGS64
|
|
bool
|
|
default y if SYS_HAS_CPU_R4X00 && 64BIT && (TARGET_ISA_REV < 1)
|
|
|
|
config MIPS_ASID_SHIFT
|
|
int
|
|
default 6 if CPU_R3000
|
|
default 0
|
|
|
|
config MIPS_ASID_BITS
|
|
int
|
|
default 0 if MIPS_ASID_BITS_VARIABLE
|
|
default 6 if CPU_R3000
|
|
default 8
|
|
|
|
config MIPS_ASID_BITS_VARIABLE
|
|
bool
|
|
|
|
config MIPS_CRC_SUPPORT
|
|
bool
|
|
|
|
# R4600 erratum. Due to the lack of errata information the exact
|
|
# technical details aren't known. I've experimentally found that disabling
|
|
# interrupts during indexed I-cache flushes seems to be sufficient to deal
|
|
# with the issue.
|
|
config WAR_R4600_V1_INDEX_ICACHEOP
|
|
bool
|
|
|
|
# Pleasures of the R4600 V1.x. Cite from the IDT R4600 V1.7 errata:
|
|
#
|
|
# 18. The CACHE instructions Hit_Writeback_Invalidate_D, Hit_Writeback_D,
|
|
# Hit_Invalidate_D and Create_Dirty_Excl_D should only be
|
|
# executed if there is no other dcache activity. If the dcache is
|
|
# accessed for another instruction immediately preceding when these
|
|
# cache instructions are executing, it is possible that the dcache
|
|
# tag match outputs used by these cache instructions will be
|
|
# incorrect. These cache instructions should be preceded by at least
|
|
# four instructions that are not any kind of load or store
|
|
# instruction.
|
|
#
|
|
# This is not allowed: lw
|
|
# nop
|
|
# nop
|
|
# nop
|
|
# cache Hit_Writeback_Invalidate_D
|
|
#
|
|
# This is allowed: lw
|
|
# nop
|
|
# nop
|
|
# nop
|
|
# nop
|
|
# cache Hit_Writeback_Invalidate_D
|
|
config WAR_R4600_V1_HIT_CACHEOP
|
|
bool
|
|
|
|
# Writeback and invalidate the primary cache dcache before DMA.
|
|
#
|
|
# R4600 v2.0 bug: "The CACHE instructions Hit_Writeback_Inv_D,
|
|
# Hit_Writeback_D, Hit_Invalidate_D and Create_Dirty_Exclusive_D will only
|
|
# operate correctly if the internal data cache refill buffer is empty. These
|
|
# CACHE instructions should be separated from any potential data cache miss
|
|
# by a load instruction to an uncached address to empty the response buffer."
|
|
# (Revision 2.0 device errata from IDT available on https://www.idt.com/
|
|
# in .pdf format.)
|
|
config WAR_R4600_V2_HIT_CACHEOP
|
|
bool
|
|
|
|
# From TX49/H2 manual: "If the instruction (i.e. CACHE) is issued for
|
|
# the line which this instruction itself exists, the following
|
|
# operation is not guaranteed."
|
|
#
|
|
# Workaround: do two phase flushing for Index_Invalidate_I
|
|
config WAR_TX49XX_ICACHE_INDEX_INV
|
|
bool
|
|
|
|
# The RM7000 processors and the E9000 cores have a bug (though PMC-Sierra
|
|
# opposes it being called that) where invalid instructions in the same
|
|
# I-cache line worth of instructions being fetched may case spurious
|
|
# exceptions.
|
|
config WAR_ICACHE_REFILLS
|
|
bool
|
|
|
|
# On the R10000 up to version 2.6 (not sure about 2.7) there is a bug that
|
|
# may cause ll / sc and lld / scd sequences to execute non-atomically.
|
|
config WAR_R10000_LLSC
|
|
bool
|
|
|
|
# 34K core erratum: "Problems Executing the TLBR Instruction"
|
|
config WAR_MIPS34K_MISSED_ITLB
|
|
bool
|
|
|
|
#
|
|
# - Highmem only makes sense for the 32-bit kernel.
|
|
# - The current highmem code will only work properly on physically indexed
|
|
# caches such as R3000, SB1, R7000 or those that look like they're virtually
|
|
# indexed such as R4000/R4400 SC and MC versions or R10000. So for the
|
|
# moment we protect the user and offer the highmem option only on machines
|
|
# where it's known to be safe. This will not offer highmem on a few systems
|
|
# such as MIPS32 and MIPS64 CPUs which may have virtual and physically
|
|
# indexed CPUs but we're playing safe.
|
|
# - We use SYS_SUPPORTS_HIGHMEM to offer highmem only for systems where we
|
|
# know they might have memory configurations that could make use of highmem
|
|
# support.
|
|
#
|
|
config HIGHMEM
|
|
bool "High Memory Support"
|
|
depends on 32BIT && CPU_SUPPORTS_HIGHMEM && SYS_SUPPORTS_HIGHMEM && !CPU_MIPS32_3_5_EVA
|
|
select KMAP_LOCAL
|
|
|
|
config CPU_SUPPORTS_HIGHMEM
|
|
bool
|
|
|
|
config SYS_SUPPORTS_HIGHMEM
|
|
bool
|
|
|
|
config SYS_SUPPORTS_SMARTMIPS
|
|
bool
|
|
|
|
config SYS_SUPPORTS_MICROMIPS
|
|
bool
|
|
|
|
config SYS_SUPPORTS_MIPS16
|
|
bool
|
|
help
|
|
This option must be set if a kernel might be executed on a MIPS16-
|
|
enabled CPU even if MIPS16 is not actually being used. In other
|
|
words, it makes the kernel MIPS16-tolerant.
|
|
|
|
config CPU_SUPPORTS_MSA
|
|
bool
|
|
|
|
config ARCH_FLATMEM_ENABLE
|
|
def_bool y
|
|
depends on !NUMA && !CPU_LOONGSON2EF
|
|
|
|
config ARCH_SPARSEMEM_ENABLE
|
|
bool
|
|
|
|
config NUMA
|
|
bool "NUMA Support"
|
|
depends on SYS_SUPPORTS_NUMA
|
|
select SMP
|
|
select HAVE_SETUP_PER_CPU_AREA
|
|
select NEED_PER_CPU_EMBED_FIRST_CHUNK
|
|
help
|
|
Say Y to compile the kernel to support NUMA (Non-Uniform Memory
|
|
Access). This option improves performance on systems with more
|
|
than two nodes; on two node systems it is generally better to
|
|
leave it disabled; on single node systems leave this option
|
|
disabled.
|
|
|
|
config SYS_SUPPORTS_NUMA
|
|
bool
|
|
|
|
config RELOCATABLE
|
|
bool "Relocatable kernel"
|
|
depends on SYS_SUPPORTS_RELOCATABLE
|
|
depends on CPU_MIPS32_R2 || CPU_MIPS64_R2 || \
|
|
CPU_MIPS32_R5 || CPU_MIPS64_R5 || \
|
|
CPU_MIPS32_R6 || CPU_MIPS64_R6 || \
|
|
CPU_P5600 || CAVIUM_OCTEON_SOC || \
|
|
CPU_LOONGSON64
|
|
help
|
|
This builds a kernel image that retains relocation information
|
|
so it can be loaded someplace besides the default 1MB.
|
|
The relocations make the kernel binary about 15% larger,
|
|
but are discarded at runtime
|
|
|
|
config RELOCATION_TABLE_SIZE
|
|
hex "Relocation table size"
|
|
depends on RELOCATABLE
|
|
range 0x0 0x01000000
|
|
default "0x00200000" if CPU_LOONGSON64
|
|
default "0x00100000"
|
|
help
|
|
A table of relocation data will be appended to the kernel binary
|
|
and parsed at boot to fix up the relocated kernel.
|
|
|
|
This option allows the amount of space reserved for the table to be
|
|
adjusted, although the default of 1Mb should be ok in most cases.
|
|
|
|
The build will fail and a valid size suggested if this is too small.
|
|
|
|
If unsure, leave at the default value.
|
|
|
|
config RANDOMIZE_BASE
|
|
bool "Randomize the address of the kernel image"
|
|
depends on RELOCATABLE
|
|
help
|
|
Randomizes the physical and virtual address at which the
|
|
kernel image is loaded, as a security feature that
|
|
deters exploit attempts relying on knowledge of the location
|
|
of kernel internals.
|
|
|
|
Entropy is generated using any coprocessor 0 registers available.
|
|
|
|
The kernel will be offset by up to RANDOMIZE_BASE_MAX_OFFSET.
|
|
|
|
If unsure, say N.
|
|
|
|
config RANDOMIZE_BASE_MAX_OFFSET
|
|
hex "Maximum kASLR offset" if EXPERT
|
|
depends on RANDOMIZE_BASE
|
|
range 0x0 0x40000000 if EVA || 64BIT
|
|
range 0x0 0x08000000
|
|
default "0x01000000"
|
|
help
|
|
When kASLR is active, this provides the maximum offset that will
|
|
be applied to the kernel image. It should be set according to the
|
|
amount of physical RAM available in the target system minus
|
|
PHYSICAL_START and must be a power of 2.
|
|
|
|
This is limited by the size of KSEG0, 256Mb on 32-bit or 1Gb with
|
|
EVA or 64-bit. The default is 16Mb.
|
|
|
|
config NODES_SHIFT
|
|
int
|
|
default "6"
|
|
depends on NUMA
|
|
|
|
config HW_PERF_EVENTS
|
|
bool "Enable hardware performance counter support for perf events"
|
|
depends on PERF_EVENTS && (CPU_MIPS32 || CPU_MIPS64 || CPU_R10000 || CPU_SB1 || CPU_CAVIUM_OCTEON || CPU_LOONGSON64)
|
|
default y
|
|
help
|
|
Enable hardware performance counter support for perf events. If
|
|
disabled, perf events will use software events only.
|
|
|
|
config DMI
|
|
bool "Enable DMI scanning"
|
|
depends on MACH_LOONGSON64
|
|
select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
|
|
default y
|
|
help
|
|
Enabled scanning of DMI to identify machine quirks. Say Y
|
|
here unless you have verified that your setup is not
|
|
affected by entries in the DMI blacklist. Required by PNP
|
|
BIOS code.
|
|
|
|
config SMP
|
|
bool "Multi-Processing support"
|
|
depends on SYS_SUPPORTS_SMP
|
|
help
|
|
This enables support for systems with more than one CPU. If you have
|
|
a system with only one CPU, say N. If you have a system with more
|
|
than one CPU, say Y.
|
|
|
|
If you say N here, the kernel will run on uni- and multiprocessor
|
|
machines, but will use only one CPU of a multiprocessor machine. If
|
|
you say Y here, the kernel will run on many, but not all,
|
|
uniprocessor machines. On a uniprocessor machine, the kernel
|
|
will run faster if you say N here.
|
|
|
|
People using multiprocessor machines who say Y here should also say
|
|
Y to "Enhanced Real Time Clock Support", below.
|
|
|
|
See also the SMP-HOWTO available at
|
|
<https://www.tldp.org/docs.html#howto>.
|
|
|
|
If you don't know what to do here, say N.
|
|
|
|
config HOTPLUG_CPU
|
|
bool "Support for hot-pluggable CPUs"
|
|
depends on SMP && SYS_SUPPORTS_HOTPLUG_CPU
|
|
help
|
|
Say Y here to allow turning CPUs off and on. CPUs can be
|
|
controlled through /sys/devices/system/cpu.
|
|
(Note: power management support will enable this option
|
|
automatically on SMP systems. )
|
|
Say N if you want to disable CPU hotplug.
|
|
|
|
config SMP_UP
|
|
bool
|
|
|
|
config SYS_SUPPORTS_MIPS_CPS
|
|
bool
|
|
|
|
config SYS_SUPPORTS_SMP
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_4
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_8
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_16
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_32
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_64
|
|
bool
|
|
|
|
config NR_CPUS
|
|
int "Maximum number of CPUs (2-256)"
|
|
range 2 256
|
|
depends on SMP
|
|
default "4" if NR_CPUS_DEFAULT_4
|
|
default "8" if NR_CPUS_DEFAULT_8
|
|
default "16" if NR_CPUS_DEFAULT_16
|
|
default "32" if NR_CPUS_DEFAULT_32
|
|
default "64" if NR_CPUS_DEFAULT_64
|
|
help
|
|
This allows you to specify the maximum number of CPUs which this
|
|
kernel will support. The maximum supported value is 32 for 32-bit
|
|
kernel and 64 for 64-bit kernels; the minimum value which makes
|
|
sense is 1 for Qemu (useful only for kernel debugging purposes)
|
|
and 2 for all others.
|
|
|
|
This is purely to save memory - each supported CPU adds
|
|
approximately eight kilobytes to the kernel image. For best
|
|
performance should round up your number of processors to the next
|
|
power of two.
|
|
|
|
config MIPS_PERF_SHARED_TC_COUNTERS
|
|
bool
|
|
|
|
config MIPS_NR_CPU_NR_MAP_1024
|
|
bool
|
|
|
|
config MIPS_NR_CPU_NR_MAP
|
|
int
|
|
depends on SMP
|
|
default 1024 if MIPS_NR_CPU_NR_MAP_1024
|
|
default NR_CPUS if !MIPS_NR_CPU_NR_MAP_1024
|
|
|
|
#
|
|
# Timer Interrupt Frequency Configuration
|
|
#
|
|
|
|
choice
|
|
prompt "Timer frequency"
|
|
default HZ_250
|
|
help
|
|
Allows the configuration of the timer frequency.
|
|
|
|
config HZ_24
|
|
bool "24 HZ" if SYS_SUPPORTS_24HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_48
|
|
bool "48 HZ" if SYS_SUPPORTS_48HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_100
|
|
bool "100 HZ" if SYS_SUPPORTS_100HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_128
|
|
bool "128 HZ" if SYS_SUPPORTS_128HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_250
|
|
bool "250 HZ" if SYS_SUPPORTS_250HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_256
|
|
bool "256 HZ" if SYS_SUPPORTS_256HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_1000
|
|
bool "1000 HZ" if SYS_SUPPORTS_1000HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_1024
|
|
bool "1024 HZ" if SYS_SUPPORTS_1024HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
endchoice
|
|
|
|
config SYS_SUPPORTS_24HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_48HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_100HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_128HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_250HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_256HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_1000HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_1024HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_ARBIT_HZ
|
|
bool
|
|
default y if !SYS_SUPPORTS_24HZ && \
|
|
!SYS_SUPPORTS_48HZ && \
|
|
!SYS_SUPPORTS_100HZ && \
|
|
!SYS_SUPPORTS_128HZ && \
|
|
!SYS_SUPPORTS_250HZ && \
|
|
!SYS_SUPPORTS_256HZ && \
|
|
!SYS_SUPPORTS_1000HZ && \
|
|
!SYS_SUPPORTS_1024HZ
|
|
|
|
config HZ
|
|
int
|
|
default 24 if HZ_24
|
|
default 48 if HZ_48
|
|
default 100 if HZ_100
|
|
default 128 if HZ_128
|
|
default 250 if HZ_250
|
|
default 256 if HZ_256
|
|
default 1000 if HZ_1000
|
|
default 1024 if HZ_1024
|
|
|
|
config SCHED_HRTICK
|
|
def_bool HIGH_RES_TIMERS
|
|
|
|
config ARCH_SUPPORTS_KEXEC
|
|
def_bool y
|
|
|
|
config ARCH_SUPPORTS_CRASH_DUMP
|
|
def_bool y
|
|
|
|
config PHYSICAL_START
|
|
hex "Physical address where the kernel is loaded"
|
|
default "0xffffffff84000000"
|
|
depends on CRASH_DUMP
|
|
help
|
|
This gives the CKSEG0 or KSEG0 address where the kernel is loaded.
|
|
If you plan to use kernel for capturing the crash dump change
|
|
this value to start of the reserved region (the "X" value as
|
|
specified in the "crashkernel=YM@XM" command line boot parameter
|
|
passed to the panic-ed kernel).
|
|
|
|
config MIPS_O32_FP64_SUPPORT
|
|
bool "Support for O32 binaries using 64-bit FP" if !CPU_MIPSR6
|
|
depends on 32BIT || MIPS32_O32
|
|
help
|
|
When this is enabled, the kernel will support use of 64-bit floating
|
|
point registers with binaries using the O32 ABI along with the
|
|
EF_MIPS_FP64 ELF header flag (typically built with -mfp64). On
|
|
32-bit MIPS systems this support is at the cost of increasing the
|
|
size and complexity of the compiled FPU emulator. Thus if you are
|
|
running a MIPS32 system and know that none of your userland binaries
|
|
will require 64-bit floating point, you may wish to reduce the size
|
|
of your kernel & potentially improve FP emulation performance by
|
|
saying N here.
|
|
|
|
Although binutils currently supports use of this flag the details
|
|
concerning its effect upon the O32 ABI in userland are still being
|
|
worked on. In order to avoid userland becoming dependent upon current
|
|
behaviour before the details have been finalised, this option should
|
|
be considered experimental and only enabled by those working upon
|
|
said details.
|
|
|
|
If unsure, say N.
|
|
|
|
config USE_OF
|
|
bool
|
|
select OF
|
|
select OF_EARLY_FLATTREE
|
|
select IRQ_DOMAIN
|
|
|
|
config UHI_BOOT
|
|
bool
|
|
|
|
config BUILTIN_DTB
|
|
bool
|
|
|
|
choice
|
|
prompt "Kernel appended dtb support"
|
|
depends on USE_OF
|
|
default MIPS_NO_APPENDED_DTB
|
|
|
|
config MIPS_NO_APPENDED_DTB
|
|
bool "None"
|
|
help
|
|
Do not enable appended dtb support.
|
|
|
|
config MIPS_ELF_APPENDED_DTB
|
|
bool "vmlinux"
|
|
help
|
|
With this option, the boot code will look for a device tree binary
|
|
DTB) included in the vmlinux ELF section .appended_dtb. By default
|
|
it is empty and the DTB can be appended using binutils command
|
|
objcopy:
|
|
|
|
objcopy --update-section .appended_dtb=<filename>.dtb vmlinux
|
|
|
|
This is meant as a backward compatibility convenience for those
|
|
systems with a bootloader that can't be upgraded to accommodate
|
|
the documented boot protocol using a device tree.
|
|
|
|
config MIPS_RAW_APPENDED_DTB
|
|
bool "vmlinux.bin or vmlinuz.bin"
|
|
help
|
|
With this option, the boot code will look for a device tree binary
|
|
DTB) appended to raw vmlinux.bin or vmlinuz.bin.
|
|
(e.g. cat vmlinux.bin <filename>.dtb > vmlinux_w_dtb).
|
|
|
|
This is meant as a backward compatibility convenience for those
|
|
systems with a bootloader that can't be upgraded to accommodate
|
|
the documented boot protocol using a device tree.
|
|
|
|
Beware that there is very little in terms of protection against
|
|
this option being confused by leftover garbage in memory that might
|
|
look like a DTB header after a reboot if no actual DTB is appended
|
|
to vmlinux.bin. Do not leave this option active in a production kernel
|
|
if you don't intend to always append a DTB.
|
|
endchoice
|
|
|
|
choice
|
|
prompt "Kernel command line type"
|
|
depends on !CMDLINE_OVERRIDE
|
|
default MIPS_CMDLINE_FROM_DTB if USE_OF && !ATH79 && !MACH_INGENIC && \
|
|
!MACH_LOONGSON64 && !MIPS_MALTA && \
|
|
!CAVIUM_OCTEON_SOC
|
|
default MIPS_CMDLINE_FROM_BOOTLOADER
|
|
|
|
config MIPS_CMDLINE_FROM_DTB
|
|
depends on USE_OF
|
|
bool "Dtb kernel arguments if available"
|
|
|
|
config MIPS_CMDLINE_DTB_EXTEND
|
|
depends on USE_OF
|
|
bool "Extend dtb kernel arguments with bootloader arguments"
|
|
|
|
config MIPS_CMDLINE_FROM_BOOTLOADER
|
|
bool "Bootloader kernel arguments if available"
|
|
|
|
config MIPS_CMDLINE_BUILTIN_EXTEND
|
|
depends on CMDLINE_BOOL
|
|
bool "Extend builtin kernel arguments with bootloader arguments"
|
|
endchoice
|
|
|
|
endmenu
|
|
|
|
config LOCKDEP_SUPPORT
|
|
bool
|
|
default y
|
|
|
|
config STACKTRACE_SUPPORT
|
|
bool
|
|
default y
|
|
|
|
config PGTABLE_LEVELS
|
|
int
|
|
default 4 if PAGE_SIZE_4KB && MIPS_VA_BITS_48
|
|
default 3 if 64BIT && (!PAGE_SIZE_64KB || MIPS_VA_BITS_48)
|
|
default 2
|
|
|
|
config MIPS_AUTO_PFN_OFFSET
|
|
bool
|
|
|
|
menu "Bus options (PCI, PCMCIA, EISA, ISA, TC)"
|
|
|
|
config PCI_DRIVERS_GENERIC
|
|
select PCI_DOMAINS_GENERIC if PCI
|
|
bool
|
|
|
|
config PCI_DRIVERS_LEGACY
|
|
def_bool !PCI_DRIVERS_GENERIC
|
|
select NO_GENERIC_PCI_IOPORT_MAP
|
|
select PCI_DOMAINS if PCI
|
|
|
|
#
|
|
# ISA support is now enabled via select. Too many systems still have the one
|
|
# or other ISA chip on the board that users don't know about so don't expect
|
|
# users to choose the right thing ...
|
|
#
|
|
config ISA
|
|
bool
|
|
|
|
config TC
|
|
bool "TURBOchannel support"
|
|
depends on MACH_DECSTATION
|
|
help
|
|
TURBOchannel is a DEC (now Compaq (now HP)) bus for Alpha and MIPS
|
|
processors. TURBOchannel programming specifications are available
|
|
at:
|
|
<ftp://ftp.hp.com/pub/alphaserver/archive/triadd/>
|
|
and:
|
|
<http://www.computer-refuge.org/classiccmp/ftp.digital.com/pub/DEC/TriAdd/>
|
|
Linux driver support status is documented at:
|
|
<http://www.linux-mips.org/wiki/DECstation>
|
|
|
|
config MMU
|
|
bool
|
|
default y
|
|
|
|
config ARCH_MMAP_RND_BITS_MIN
|
|
default 12 if 64BIT
|
|
default 8
|
|
|
|
config ARCH_MMAP_RND_BITS_MAX
|
|
default 18 if 64BIT
|
|
default 15
|
|
|
|
config ARCH_MMAP_RND_COMPAT_BITS_MIN
|
|
default 8
|
|
|
|
config ARCH_MMAP_RND_COMPAT_BITS_MAX
|
|
default 15
|
|
|
|
config I8253
|
|
bool
|
|
select CLKSRC_I8253
|
|
select CLKEVT_I8253
|
|
select MIPS_EXTERNAL_TIMER
|
|
endmenu
|
|
|
|
config TRAD_SIGNALS
|
|
bool
|
|
|
|
config MIPS32_COMPAT
|
|
bool
|
|
|
|
config COMPAT
|
|
bool
|
|
|
|
config MIPS32_O32
|
|
bool "Kernel support for o32 binaries"
|
|
depends on 64BIT
|
|
select ARCH_WANT_OLD_COMPAT_IPC
|
|
select COMPAT
|
|
select MIPS32_COMPAT
|
|
help
|
|
Select this option if you want to run o32 binaries. These are pure
|
|
32-bit binaries as used by the 32-bit Linux/MIPS port. Most of
|
|
existing binaries are in this format.
|
|
|
|
If unsure, say Y.
|
|
|
|
config MIPS32_N32
|
|
bool "Kernel support for n32 binaries"
|
|
depends on 64BIT
|
|
select ARCH_WANT_COMPAT_IPC_PARSE_VERSION
|
|
select COMPAT
|
|
select MIPS32_COMPAT
|
|
help
|
|
Select this option if you want to run n32 binaries. These are
|
|
64-bit binaries using 32-bit quantities for addressing and certain
|
|
data that would normally be 64-bit. They are used in special
|
|
cases.
|
|
|
|
If unsure, say N.
|
|
|
|
config CC_HAS_MNO_BRANCH_LIKELY
|
|
def_bool y
|
|
depends on $(cc-option,-mno-branch-likely)
|
|
|
|
# https://github.com/llvm/llvm-project/issues/61045
|
|
config CC_HAS_BROKEN_INLINE_COMPAT_BRANCH
|
|
def_bool y if CC_IS_CLANG
|
|
|
|
menu "Power management options"
|
|
|
|
config ARCH_HIBERNATION_POSSIBLE
|
|
def_bool y
|
|
depends on SYS_SUPPORTS_HOTPLUG_CPU || !SMP
|
|
|
|
config ARCH_SUSPEND_POSSIBLE
|
|
def_bool y
|
|
depends on SYS_SUPPORTS_HOTPLUG_CPU || !SMP
|
|
|
|
source "kernel/power/Kconfig"
|
|
|
|
endmenu
|
|
|
|
config MIPS_EXTERNAL_TIMER
|
|
bool
|
|
|
|
menu "CPU Power Management"
|
|
|
|
if CPU_SUPPORTS_CPUFREQ && MIPS_EXTERNAL_TIMER
|
|
source "drivers/cpufreq/Kconfig"
|
|
endif # CPU_SUPPORTS_CPUFREQ && MIPS_EXTERNAL_TIMER
|
|
|
|
source "drivers/cpuidle/Kconfig"
|
|
|
|
endmenu
|
|
|
|
source "arch/mips/kvm/Kconfig"
|
|
|
|
source "arch/mips/vdso/Kconfig"
|