mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-15 09:34:17 +00:00
cb3042d609
In arch_cpu_idle() we must enable %pil based interrupts before potentially invoking the hypervisor cpu yield call. As per the Hypervisor API documentation for cpu_yield: Interrupts which are blocked by some mechanism other that pstate.ie (for example %pil) are not guaranteed to cause a return from this service. It seems that only first generation Niagara chips are hit by this bug. My best guess is that later chips implement this in hardware and wake up anyways from %pil events, whereas in first generation chips the yield is implemented completely in hypervisor code and requires %pil to be enabled in order to wake properly from this call. Fixes: 87fa05aeb3a5 ("sparc: Use generic idle loop") Reported-by: Fabio M. Di Nitto <fabbione@fabbione.net> Reported-by: Jan Engelhardt <jengelh@inai.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Signed-off-by: David S. Miller <davem@davemloft.net>
767 lines
19 KiB
C
767 lines
19 KiB
C
/* arch/sparc64/kernel/process.c
|
|
*
|
|
* Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
|
|
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
|
|
* Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/sysrq.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/context_tracking.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pstate.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/fpumacro.h>
|
|
#include <asm/head.h>
|
|
#include <asm/cpudata.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/pcr.h>
|
|
|
|
#include "kstack.h"
|
|
|
|
/* Idle loop support on sparc64. */
|
|
void arch_cpu_idle(void)
|
|
{
|
|
if (tlb_type != hypervisor) {
|
|
touch_nmi_watchdog();
|
|
local_irq_enable();
|
|
} else {
|
|
unsigned long pstate;
|
|
|
|
local_irq_enable();
|
|
|
|
/* The sun4v sleeping code requires that we have PSTATE.IE cleared over
|
|
* the cpu sleep hypervisor call.
|
|
*/
|
|
__asm__ __volatile__(
|
|
"rdpr %%pstate, %0\n\t"
|
|
"andn %0, %1, %0\n\t"
|
|
"wrpr %0, %%g0, %%pstate"
|
|
: "=&r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
|
|
if (!need_resched() && !cpu_is_offline(smp_processor_id()))
|
|
sun4v_cpu_yield();
|
|
|
|
/* Re-enable interrupts. */
|
|
__asm__ __volatile__(
|
|
"rdpr %%pstate, %0\n\t"
|
|
"or %0, %1, %0\n\t"
|
|
"wrpr %0, %%g0, %%pstate"
|
|
: "=&r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void arch_cpu_idle_dead()
|
|
{
|
|
sched_preempt_enable_no_resched();
|
|
cpu_play_dead();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static void show_regwindow32(struct pt_regs *regs)
|
|
{
|
|
struct reg_window32 __user *rw;
|
|
struct reg_window32 r_w;
|
|
mm_segment_t old_fs;
|
|
|
|
__asm__ __volatile__ ("flushw");
|
|
rw = compat_ptr((unsigned)regs->u_regs[14]);
|
|
old_fs = get_fs();
|
|
set_fs (USER_DS);
|
|
if (copy_from_user (&r_w, rw, sizeof(r_w))) {
|
|
set_fs (old_fs);
|
|
return;
|
|
}
|
|
|
|
set_fs (old_fs);
|
|
printk("l0: %08x l1: %08x l2: %08x l3: %08x "
|
|
"l4: %08x l5: %08x l6: %08x l7: %08x\n",
|
|
r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
|
|
r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
|
|
printk("i0: %08x i1: %08x i2: %08x i3: %08x "
|
|
"i4: %08x i5: %08x i6: %08x i7: %08x\n",
|
|
r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
|
|
r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
|
|
}
|
|
#else
|
|
#define show_regwindow32(regs) do { } while (0)
|
|
#endif
|
|
|
|
static void show_regwindow(struct pt_regs *regs)
|
|
{
|
|
struct reg_window __user *rw;
|
|
struct reg_window *rwk;
|
|
struct reg_window r_w;
|
|
mm_segment_t old_fs;
|
|
|
|
if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
|
|
__asm__ __volatile__ ("flushw");
|
|
rw = (struct reg_window __user *)
|
|
(regs->u_regs[14] + STACK_BIAS);
|
|
rwk = (struct reg_window *)
|
|
(regs->u_regs[14] + STACK_BIAS);
|
|
if (!(regs->tstate & TSTATE_PRIV)) {
|
|
old_fs = get_fs();
|
|
set_fs (USER_DS);
|
|
if (copy_from_user (&r_w, rw, sizeof(r_w))) {
|
|
set_fs (old_fs);
|
|
return;
|
|
}
|
|
rwk = &r_w;
|
|
set_fs (old_fs);
|
|
}
|
|
} else {
|
|
show_regwindow32(regs);
|
|
return;
|
|
}
|
|
printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
|
|
rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
|
|
printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
|
|
rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
|
|
printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
|
|
rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
|
|
printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
|
|
rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
|
|
if (regs->tstate & TSTATE_PRIV)
|
|
printk("I7: <%pS>\n", (void *) rwk->ins[7]);
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
|
|
printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
|
|
regs->tpc, regs->tnpc, regs->y, print_tainted());
|
|
printk("TPC: <%pS>\n", (void *) regs->tpc);
|
|
printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
|
|
regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
|
|
regs->u_regs[3]);
|
|
printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
|
|
regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
|
|
regs->u_regs[7]);
|
|
printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
|
|
regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
|
|
regs->u_regs[11]);
|
|
printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
|
|
regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
|
|
regs->u_regs[15]);
|
|
printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
|
|
show_regwindow(regs);
|
|
show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
|
|
}
|
|
|
|
union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
|
|
static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
|
|
|
|
static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
|
|
int this_cpu)
|
|
{
|
|
struct global_reg_snapshot *rp;
|
|
|
|
flushw_all();
|
|
|
|
rp = &global_cpu_snapshot[this_cpu].reg;
|
|
|
|
rp->tstate = regs->tstate;
|
|
rp->tpc = regs->tpc;
|
|
rp->tnpc = regs->tnpc;
|
|
rp->o7 = regs->u_regs[UREG_I7];
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
struct reg_window *rw;
|
|
|
|
rw = (struct reg_window *)
|
|
(regs->u_regs[UREG_FP] + STACK_BIAS);
|
|
if (kstack_valid(tp, (unsigned long) rw)) {
|
|
rp->i7 = rw->ins[7];
|
|
rw = (struct reg_window *)
|
|
(rw->ins[6] + STACK_BIAS);
|
|
if (kstack_valid(tp, (unsigned long) rw))
|
|
rp->rpc = rw->ins[7];
|
|
}
|
|
} else {
|
|
rp->i7 = 0;
|
|
rp->rpc = 0;
|
|
}
|
|
rp->thread = tp;
|
|
}
|
|
|
|
/* In order to avoid hangs we do not try to synchronize with the
|
|
* global register dump client cpus. The last store they make is to
|
|
* the thread pointer, so do a short poll waiting for that to become
|
|
* non-NULL.
|
|
*/
|
|
static void __global_reg_poll(struct global_reg_snapshot *gp)
|
|
{
|
|
int limit = 0;
|
|
|
|
while (!gp->thread && ++limit < 100) {
|
|
barrier();
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
void arch_trigger_all_cpu_backtrace(void)
|
|
{
|
|
struct thread_info *tp = current_thread_info();
|
|
struct pt_regs *regs = get_irq_regs();
|
|
unsigned long flags;
|
|
int this_cpu, cpu;
|
|
|
|
if (!regs)
|
|
regs = tp->kregs;
|
|
|
|
spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
|
|
|
|
memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
|
|
|
|
this_cpu = raw_smp_processor_id();
|
|
|
|
__global_reg_self(tp, regs, this_cpu);
|
|
|
|
smp_fetch_global_regs();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
|
|
|
|
__global_reg_poll(gp);
|
|
|
|
tp = gp->thread;
|
|
printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
|
|
(cpu == this_cpu ? '*' : ' '), cpu,
|
|
gp->tstate, gp->tpc, gp->tnpc,
|
|
((tp && tp->task) ? tp->task->comm : "NULL"),
|
|
((tp && tp->task) ? tp->task->pid : -1));
|
|
|
|
if (gp->tstate & TSTATE_PRIV) {
|
|
printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
|
|
(void *) gp->tpc,
|
|
(void *) gp->o7,
|
|
(void *) gp->i7,
|
|
(void *) gp->rpc);
|
|
} else {
|
|
printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
|
|
gp->tpc, gp->o7, gp->i7, gp->rpc);
|
|
}
|
|
}
|
|
|
|
memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
|
|
|
|
spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
|
|
static void sysrq_handle_globreg(int key)
|
|
{
|
|
arch_trigger_all_cpu_backtrace();
|
|
}
|
|
|
|
static struct sysrq_key_op sparc_globalreg_op = {
|
|
.handler = sysrq_handle_globreg,
|
|
.help_msg = "global-regs(y)",
|
|
.action_msg = "Show Global CPU Regs",
|
|
};
|
|
|
|
static void __global_pmu_self(int this_cpu)
|
|
{
|
|
struct global_pmu_snapshot *pp;
|
|
int i, num;
|
|
|
|
pp = &global_cpu_snapshot[this_cpu].pmu;
|
|
|
|
num = 1;
|
|
if (tlb_type == hypervisor &&
|
|
sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
|
|
num = 4;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
pp->pcr[i] = pcr_ops->read_pcr(i);
|
|
pp->pic[i] = pcr_ops->read_pic(i);
|
|
}
|
|
}
|
|
|
|
static void __global_pmu_poll(struct global_pmu_snapshot *pp)
|
|
{
|
|
int limit = 0;
|
|
|
|
while (!pp->pcr[0] && ++limit < 100) {
|
|
barrier();
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
static void pmu_snapshot_all_cpus(void)
|
|
{
|
|
unsigned long flags;
|
|
int this_cpu, cpu;
|
|
|
|
spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
|
|
|
|
memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
|
|
|
|
this_cpu = raw_smp_processor_id();
|
|
|
|
__global_pmu_self(this_cpu);
|
|
|
|
smp_fetch_global_pmu();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
|
|
|
|
__global_pmu_poll(pp);
|
|
|
|
printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
|
|
(cpu == this_cpu ? '*' : ' '), cpu,
|
|
pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
|
|
pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
|
|
}
|
|
|
|
memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
|
|
|
|
spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
|
|
}
|
|
|
|
static void sysrq_handle_globpmu(int key)
|
|
{
|
|
pmu_snapshot_all_cpus();
|
|
}
|
|
|
|
static struct sysrq_key_op sparc_globalpmu_op = {
|
|
.handler = sysrq_handle_globpmu,
|
|
.help_msg = "global-pmu(x)",
|
|
.action_msg = "Show Global PMU Regs",
|
|
};
|
|
|
|
static int __init sparc_sysrq_init(void)
|
|
{
|
|
int ret = register_sysrq_key('y', &sparc_globalreg_op);
|
|
|
|
if (!ret)
|
|
ret = register_sysrq_key('x', &sparc_globalpmu_op);
|
|
return ret;
|
|
}
|
|
|
|
core_initcall(sparc_sysrq_init);
|
|
|
|
#endif
|
|
|
|
unsigned long thread_saved_pc(struct task_struct *tsk)
|
|
{
|
|
struct thread_info *ti = task_thread_info(tsk);
|
|
unsigned long ret = 0xdeadbeefUL;
|
|
|
|
if (ti && ti->ksp) {
|
|
unsigned long *sp;
|
|
sp = (unsigned long *)(ti->ksp + STACK_BIAS);
|
|
if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
|
|
sp[14]) {
|
|
unsigned long *fp;
|
|
fp = (unsigned long *)(sp[14] + STACK_BIAS);
|
|
if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
|
|
ret = fp[15];
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Free current thread data structures etc.. */
|
|
void exit_thread(void)
|
|
{
|
|
struct thread_info *t = current_thread_info();
|
|
|
|
if (t->utraps) {
|
|
if (t->utraps[0] < 2)
|
|
kfree (t->utraps);
|
|
else
|
|
t->utraps[0]--;
|
|
}
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
struct thread_info *t = current_thread_info();
|
|
struct mm_struct *mm;
|
|
|
|
mm = t->task->mm;
|
|
if (mm)
|
|
tsb_context_switch(mm);
|
|
|
|
set_thread_wsaved(0);
|
|
|
|
/* Clear FPU register state. */
|
|
t->fpsaved[0] = 0;
|
|
}
|
|
|
|
/* It's a bit more tricky when 64-bit tasks are involved... */
|
|
static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
|
|
{
|
|
bool stack_64bit = test_thread_64bit_stack(psp);
|
|
unsigned long fp, distance, rval;
|
|
|
|
if (stack_64bit) {
|
|
csp += STACK_BIAS;
|
|
psp += STACK_BIAS;
|
|
__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
|
|
fp += STACK_BIAS;
|
|
if (test_thread_flag(TIF_32BIT))
|
|
fp &= 0xffffffff;
|
|
} else
|
|
__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
|
|
|
|
/* Now align the stack as this is mandatory in the Sparc ABI
|
|
* due to how register windows work. This hides the
|
|
* restriction from thread libraries etc.
|
|
*/
|
|
csp &= ~15UL;
|
|
|
|
distance = fp - psp;
|
|
rval = (csp - distance);
|
|
if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
|
|
rval = 0;
|
|
else if (!stack_64bit) {
|
|
if (put_user(((u32)csp),
|
|
&(((struct reg_window32 __user *)rval)->ins[6])))
|
|
rval = 0;
|
|
} else {
|
|
if (put_user(((u64)csp - STACK_BIAS),
|
|
&(((struct reg_window __user *)rval)->ins[6])))
|
|
rval = 0;
|
|
else
|
|
rval = rval - STACK_BIAS;
|
|
}
|
|
|
|
return rval;
|
|
}
|
|
|
|
/* Standard stuff. */
|
|
static inline void shift_window_buffer(int first_win, int last_win,
|
|
struct thread_info *t)
|
|
{
|
|
int i;
|
|
|
|
for (i = first_win; i < last_win; i++) {
|
|
t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
|
|
memcpy(&t->reg_window[i], &t->reg_window[i+1],
|
|
sizeof(struct reg_window));
|
|
}
|
|
}
|
|
|
|
void synchronize_user_stack(void)
|
|
{
|
|
struct thread_info *t = current_thread_info();
|
|
unsigned long window;
|
|
|
|
flush_user_windows();
|
|
if ((window = get_thread_wsaved()) != 0) {
|
|
window -= 1;
|
|
do {
|
|
struct reg_window *rwin = &t->reg_window[window];
|
|
int winsize = sizeof(struct reg_window);
|
|
unsigned long sp;
|
|
|
|
sp = t->rwbuf_stkptrs[window];
|
|
|
|
if (test_thread_64bit_stack(sp))
|
|
sp += STACK_BIAS;
|
|
else
|
|
winsize = sizeof(struct reg_window32);
|
|
|
|
if (!copy_to_user((char __user *)sp, rwin, winsize)) {
|
|
shift_window_buffer(window, get_thread_wsaved() - 1, t);
|
|
set_thread_wsaved(get_thread_wsaved() - 1);
|
|
}
|
|
} while (window--);
|
|
}
|
|
}
|
|
|
|
static void stack_unaligned(unsigned long sp)
|
|
{
|
|
siginfo_t info;
|
|
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRALN;
|
|
info.si_addr = (void __user *) sp;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGBUS, &info, current);
|
|
}
|
|
|
|
void fault_in_user_windows(void)
|
|
{
|
|
struct thread_info *t = current_thread_info();
|
|
unsigned long window;
|
|
|
|
flush_user_windows();
|
|
window = get_thread_wsaved();
|
|
|
|
if (likely(window != 0)) {
|
|
window -= 1;
|
|
do {
|
|
struct reg_window *rwin = &t->reg_window[window];
|
|
int winsize = sizeof(struct reg_window);
|
|
unsigned long sp;
|
|
|
|
sp = t->rwbuf_stkptrs[window];
|
|
|
|
if (test_thread_64bit_stack(sp))
|
|
sp += STACK_BIAS;
|
|
else
|
|
winsize = sizeof(struct reg_window32);
|
|
|
|
if (unlikely(sp & 0x7UL))
|
|
stack_unaligned(sp);
|
|
|
|
if (unlikely(copy_to_user((char __user *)sp,
|
|
rwin, winsize)))
|
|
goto barf;
|
|
} while (window--);
|
|
}
|
|
set_thread_wsaved(0);
|
|
return;
|
|
|
|
barf:
|
|
set_thread_wsaved(window + 1);
|
|
user_exit();
|
|
do_exit(SIGILL);
|
|
}
|
|
|
|
asmlinkage long sparc_do_fork(unsigned long clone_flags,
|
|
unsigned long stack_start,
|
|
struct pt_regs *regs,
|
|
unsigned long stack_size)
|
|
{
|
|
int __user *parent_tid_ptr, *child_tid_ptr;
|
|
unsigned long orig_i1 = regs->u_regs[UREG_I1];
|
|
long ret;
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
|
|
child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
|
|
} else
|
|
#endif
|
|
{
|
|
parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
|
|
child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
|
|
}
|
|
|
|
ret = do_fork(clone_flags, stack_start, stack_size,
|
|
parent_tid_ptr, child_tid_ptr);
|
|
|
|
/* If we get an error and potentially restart the system
|
|
* call, we're screwed because copy_thread() clobbered
|
|
* the parent's %o1. So detect that case and restore it
|
|
* here.
|
|
*/
|
|
if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
|
|
regs->u_regs[UREG_I1] = orig_i1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Copy a Sparc thread. The fork() return value conventions
|
|
* under SunOS are nothing short of bletcherous:
|
|
* Parent --> %o0 == childs pid, %o1 == 0
|
|
* Child --> %o0 == parents pid, %o1 == 1
|
|
*/
|
|
int copy_thread(unsigned long clone_flags, unsigned long sp,
|
|
unsigned long arg, struct task_struct *p)
|
|
{
|
|
struct thread_info *t = task_thread_info(p);
|
|
struct pt_regs *regs = current_pt_regs();
|
|
struct sparc_stackf *parent_sf;
|
|
unsigned long child_stack_sz;
|
|
char *child_trap_frame;
|
|
|
|
/* Calculate offset to stack_frame & pt_regs */
|
|
child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
|
|
child_trap_frame = (task_stack_page(p) +
|
|
(THREAD_SIZE - child_stack_sz));
|
|
|
|
t->new_child = 1;
|
|
t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
|
|
t->kregs = (struct pt_regs *) (child_trap_frame +
|
|
sizeof(struct sparc_stackf));
|
|
t->fpsaved[0] = 0;
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
memset(child_trap_frame, 0, child_stack_sz);
|
|
__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
|
|
(current_pt_regs()->tstate + 1) & TSTATE_CWP;
|
|
t->current_ds = ASI_P;
|
|
t->kregs->u_regs[UREG_G1] = sp; /* function */
|
|
t->kregs->u_regs[UREG_G2] = arg;
|
|
return 0;
|
|
}
|
|
|
|
parent_sf = ((struct sparc_stackf *) regs) - 1;
|
|
memcpy(child_trap_frame, parent_sf, child_stack_sz);
|
|
if (t->flags & _TIF_32BIT) {
|
|
sp &= 0x00000000ffffffffUL;
|
|
regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
|
|
}
|
|
t->kregs->u_regs[UREG_FP] = sp;
|
|
__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
|
|
(regs->tstate + 1) & TSTATE_CWP;
|
|
t->current_ds = ASI_AIUS;
|
|
if (sp != regs->u_regs[UREG_FP]) {
|
|
unsigned long csp;
|
|
|
|
csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
|
|
if (!csp)
|
|
return -EFAULT;
|
|
t->kregs->u_regs[UREG_FP] = csp;
|
|
}
|
|
if (t->utraps)
|
|
t->utraps[0]++;
|
|
|
|
/* Set the return value for the child. */
|
|
t->kregs->u_regs[UREG_I0] = current->pid;
|
|
t->kregs->u_regs[UREG_I1] = 1;
|
|
|
|
/* Set the second return value for the parent. */
|
|
regs->u_regs[UREG_I1] = 0;
|
|
|
|
if (clone_flags & CLONE_SETTLS)
|
|
t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef struct {
|
|
union {
|
|
unsigned int pr_regs[32];
|
|
unsigned long pr_dregs[16];
|
|
} pr_fr;
|
|
unsigned int __unused;
|
|
unsigned int pr_fsr;
|
|
unsigned char pr_qcnt;
|
|
unsigned char pr_q_entrysize;
|
|
unsigned char pr_en;
|
|
unsigned int pr_q[64];
|
|
} elf_fpregset_t32;
|
|
|
|
/*
|
|
* fill in the fpu structure for a core dump.
|
|
*/
|
|
int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
|
|
{
|
|
unsigned long *kfpregs = current_thread_info()->fpregs;
|
|
unsigned long fprs = current_thread_info()->fpsaved[0];
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
|
|
|
|
if (fprs & FPRS_DL)
|
|
memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
|
|
sizeof(unsigned int) * 32);
|
|
else
|
|
memset(&fpregs32->pr_fr.pr_regs[0], 0,
|
|
sizeof(unsigned int) * 32);
|
|
fpregs32->pr_qcnt = 0;
|
|
fpregs32->pr_q_entrysize = 8;
|
|
memset(&fpregs32->pr_q[0], 0,
|
|
(sizeof(unsigned int) * 64));
|
|
if (fprs & FPRS_FEF) {
|
|
fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
|
|
fpregs32->pr_en = 1;
|
|
} else {
|
|
fpregs32->pr_fsr = 0;
|
|
fpregs32->pr_en = 0;
|
|
}
|
|
} else {
|
|
if(fprs & FPRS_DL)
|
|
memcpy(&fpregs->pr_regs[0], kfpregs,
|
|
sizeof(unsigned int) * 32);
|
|
else
|
|
memset(&fpregs->pr_regs[0], 0,
|
|
sizeof(unsigned int) * 32);
|
|
if(fprs & FPRS_DU)
|
|
memcpy(&fpregs->pr_regs[16], kfpregs+16,
|
|
sizeof(unsigned int) * 32);
|
|
else
|
|
memset(&fpregs->pr_regs[16], 0,
|
|
sizeof(unsigned int) * 32);
|
|
if(fprs & FPRS_FEF) {
|
|
fpregs->pr_fsr = current_thread_info()->xfsr[0];
|
|
fpregs->pr_gsr = current_thread_info()->gsr[0];
|
|
} else {
|
|
fpregs->pr_fsr = fpregs->pr_gsr = 0;
|
|
}
|
|
fpregs->pr_fprs = fprs;
|
|
}
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(dump_fpu);
|
|
|
|
unsigned long get_wchan(struct task_struct *task)
|
|
{
|
|
unsigned long pc, fp, bias = 0;
|
|
struct thread_info *tp;
|
|
struct reg_window *rw;
|
|
unsigned long ret = 0;
|
|
int count = 0;
|
|
|
|
if (!task || task == current ||
|
|
task->state == TASK_RUNNING)
|
|
goto out;
|
|
|
|
tp = task_thread_info(task);
|
|
bias = STACK_BIAS;
|
|
fp = task_thread_info(task)->ksp + bias;
|
|
|
|
do {
|
|
if (!kstack_valid(tp, fp))
|
|
break;
|
|
rw = (struct reg_window *) fp;
|
|
pc = rw->ins[7];
|
|
if (!in_sched_functions(pc)) {
|
|
ret = pc;
|
|
goto out;
|
|
}
|
|
fp = rw->ins[6] + bias;
|
|
} while (++count < 16);
|
|
|
|
out:
|
|
return ret;
|
|
}
|