mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-14 17:14:09 +00:00
4612c715a6
With this .config: http://busybox.net/~vda/kernel_config, after uninlining these functions have sizes and callsite counts as follows: cfi_udelay(): 74 bytes, 26 callsites cfi_send_gen_cmd(): 153 bytes, 95 callsites cfi_build_cmd(): 274 bytes, 123 callsites cfi_build_cmd_addr(): 49 bytes, 15 callsites cfi_merge_status(): 230 bytes, 3 callsites Reduction in code size is about 50,000: text data bss dec hex filename 85842882 22294584 20627456 128764922 7accbfa vmlinux.before 85789648 22294616 20627456 128711720 7abfc28 vmlinux Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: Dan Carpenter <dan.carpenter@oracle.com> CC: Jingoo Han <jg1.han@samsung.com> CC: Brian Norris <computersforpeace@gmail.com> CC: Aaron Sierra <asierra@xes-inc.com> CC: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com> CC: David Woodhouse <David.Woodhouse@intel.com> CC: linux-mtd@lists.infradead.org CC: linux-kernel@vger.kernel.org Signed-off-by: Brian Norris <computersforpeace@gmail.com>
440 lines
11 KiB
C
440 lines
11 KiB
C
/*
|
|
* Common Flash Interface support:
|
|
* Generic utility functions not dependent on command set
|
|
*
|
|
* Copyright (C) 2002 Red Hat
|
|
* Copyright (C) 2003 STMicroelectronics Limited
|
|
*
|
|
* This code is covered by the GPL.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <asm/io.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mtd/xip.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/map.h>
|
|
#include <linux/mtd/cfi.h>
|
|
|
|
void cfi_udelay(int us)
|
|
{
|
|
if (us >= 1000) {
|
|
msleep((us+999)/1000);
|
|
} else {
|
|
udelay(us);
|
|
cond_resched();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(cfi_udelay);
|
|
|
|
/*
|
|
* Returns the command address according to the given geometry.
|
|
*/
|
|
uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
|
|
struct map_info *map, struct cfi_private *cfi)
|
|
{
|
|
unsigned bankwidth = map_bankwidth(map);
|
|
unsigned interleave = cfi_interleave(cfi);
|
|
unsigned type = cfi->device_type;
|
|
uint32_t addr;
|
|
|
|
addr = (cmd_ofs * type) * interleave;
|
|
|
|
/* Modify the unlock address if we are in compatibility mode.
|
|
* For 16bit devices on 8 bit busses
|
|
* and 32bit devices on 16 bit busses
|
|
* set the low bit of the alternating bit sequence of the address.
|
|
*/
|
|
if (((type * interleave) > bankwidth) && ((cmd_ofs & 0xff) == 0xaa))
|
|
addr |= (type >> 1)*interleave;
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(cfi_build_cmd_addr);
|
|
|
|
/*
|
|
* Transforms the CFI command for the given geometry (bus width & interleave).
|
|
* It looks too long to be inline, but in the common case it should almost all
|
|
* get optimised away.
|
|
*/
|
|
map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
|
|
{
|
|
map_word val = { {0} };
|
|
int wordwidth, words_per_bus, chip_mode, chips_per_word;
|
|
unsigned long onecmd;
|
|
int i;
|
|
|
|
/* We do it this way to give the compiler a fighting chance
|
|
of optimising away all the crap for 'bankwidth' larger than
|
|
an unsigned long, in the common case where that support is
|
|
disabled */
|
|
if (map_bankwidth_is_large(map)) {
|
|
wordwidth = sizeof(unsigned long);
|
|
words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
|
|
} else {
|
|
wordwidth = map_bankwidth(map);
|
|
words_per_bus = 1;
|
|
}
|
|
|
|
chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
|
|
chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
|
|
|
|
/* First, determine what the bit-pattern should be for a single
|
|
device, according to chip mode and endianness... */
|
|
switch (chip_mode) {
|
|
default: BUG();
|
|
case 1:
|
|
onecmd = cmd;
|
|
break;
|
|
case 2:
|
|
onecmd = cpu_to_cfi16(map, cmd);
|
|
break;
|
|
case 4:
|
|
onecmd = cpu_to_cfi32(map, cmd);
|
|
break;
|
|
}
|
|
|
|
/* Now replicate it across the size of an unsigned long, or
|
|
just to the bus width as appropriate */
|
|
switch (chips_per_word) {
|
|
default: BUG();
|
|
#if BITS_PER_LONG >= 64
|
|
case 8:
|
|
onecmd |= (onecmd << (chip_mode * 32));
|
|
#endif
|
|
case 4:
|
|
onecmd |= (onecmd << (chip_mode * 16));
|
|
case 2:
|
|
onecmd |= (onecmd << (chip_mode * 8));
|
|
case 1:
|
|
;
|
|
}
|
|
|
|
/* And finally, for the multi-word case, replicate it
|
|
in all words in the structure */
|
|
for (i=0; i < words_per_bus; i++) {
|
|
val.x[i] = onecmd;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
EXPORT_SYMBOL(cfi_build_cmd);
|
|
|
|
unsigned long cfi_merge_status(map_word val, struct map_info *map,
|
|
struct cfi_private *cfi)
|
|
{
|
|
int wordwidth, words_per_bus, chip_mode, chips_per_word;
|
|
unsigned long onestat, res = 0;
|
|
int i;
|
|
|
|
/* We do it this way to give the compiler a fighting chance
|
|
of optimising away all the crap for 'bankwidth' larger than
|
|
an unsigned long, in the common case where that support is
|
|
disabled */
|
|
if (map_bankwidth_is_large(map)) {
|
|
wordwidth = sizeof(unsigned long);
|
|
words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
|
|
} else {
|
|
wordwidth = map_bankwidth(map);
|
|
words_per_bus = 1;
|
|
}
|
|
|
|
chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
|
|
chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
|
|
|
|
onestat = val.x[0];
|
|
/* Or all status words together */
|
|
for (i=1; i < words_per_bus; i++) {
|
|
onestat |= val.x[i];
|
|
}
|
|
|
|
res = onestat;
|
|
switch(chips_per_word) {
|
|
default: BUG();
|
|
#if BITS_PER_LONG >= 64
|
|
case 8:
|
|
res |= (onestat >> (chip_mode * 32));
|
|
#endif
|
|
case 4:
|
|
res |= (onestat >> (chip_mode * 16));
|
|
case 2:
|
|
res |= (onestat >> (chip_mode * 8));
|
|
case 1:
|
|
;
|
|
}
|
|
|
|
/* Last, determine what the bit-pattern should be for a single
|
|
device, according to chip mode and endianness... */
|
|
switch (chip_mode) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
res = cfi16_to_cpu(map, res);
|
|
break;
|
|
case 4:
|
|
res = cfi32_to_cpu(map, res);
|
|
break;
|
|
default: BUG();
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(cfi_merge_status);
|
|
|
|
/*
|
|
* Sends a CFI command to a bank of flash for the given geometry.
|
|
*
|
|
* Returns the offset in flash where the command was written.
|
|
* If prev_val is non-null, it will be set to the value at the command address,
|
|
* before the command was written.
|
|
*/
|
|
uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
|
|
struct map_info *map, struct cfi_private *cfi,
|
|
int type, map_word *prev_val)
|
|
{
|
|
map_word val;
|
|
uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
|
|
val = cfi_build_cmd(cmd, map, cfi);
|
|
|
|
if (prev_val)
|
|
*prev_val = map_read(map, addr);
|
|
|
|
map_write(map, val, addr);
|
|
|
|
return addr - base;
|
|
}
|
|
EXPORT_SYMBOL(cfi_send_gen_cmd);
|
|
|
|
int __xipram cfi_qry_present(struct map_info *map, __u32 base,
|
|
struct cfi_private *cfi)
|
|
{
|
|
int osf = cfi->interleave * cfi->device_type; /* scale factor */
|
|
map_word val[3];
|
|
map_word qry[3];
|
|
|
|
qry[0] = cfi_build_cmd('Q', map, cfi);
|
|
qry[1] = cfi_build_cmd('R', map, cfi);
|
|
qry[2] = cfi_build_cmd('Y', map, cfi);
|
|
|
|
val[0] = map_read(map, base + osf*0x10);
|
|
val[1] = map_read(map, base + osf*0x11);
|
|
val[2] = map_read(map, base + osf*0x12);
|
|
|
|
if (!map_word_equal(map, qry[0], val[0]))
|
|
return 0;
|
|
|
|
if (!map_word_equal(map, qry[1], val[1]))
|
|
return 0;
|
|
|
|
if (!map_word_equal(map, qry[2], val[2]))
|
|
return 0;
|
|
|
|
return 1; /* "QRY" found */
|
|
}
|
|
EXPORT_SYMBOL_GPL(cfi_qry_present);
|
|
|
|
int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
|
|
struct cfi_private *cfi)
|
|
{
|
|
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
|
|
if (cfi_qry_present(map, base, cfi))
|
|
return 1;
|
|
/* QRY not found probably we deal with some odd CFI chips */
|
|
/* Some revisions of some old Intel chips? */
|
|
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
|
|
if (cfi_qry_present(map, base, cfi))
|
|
return 1;
|
|
/* ST M29DW chips */
|
|
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
|
|
if (cfi_qry_present(map, base, cfi))
|
|
return 1;
|
|
/* some old SST chips, e.g. 39VF160x/39VF320x */
|
|
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xAA, 0x5555, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, 0x2AAA, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x98, 0x5555, base, map, cfi, cfi->device_type, NULL);
|
|
if (cfi_qry_present(map, base, cfi))
|
|
return 1;
|
|
/* SST 39VF640xB */
|
|
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xAA, 0x555, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, 0x2AA, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
|
|
if (cfi_qry_present(map, base, cfi))
|
|
return 1;
|
|
/* QRY not found */
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cfi_qry_mode_on);
|
|
|
|
void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
|
|
struct cfi_private *cfi)
|
|
{
|
|
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
|
|
/* M29W128G flashes require an additional reset command
|
|
when exit qry mode */
|
|
if ((cfi->mfr == CFI_MFR_ST) && (cfi->id == 0x227E || cfi->id == 0x7E))
|
|
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cfi_qry_mode_off);
|
|
|
|
struct cfi_extquery *
|
|
__xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
__u32 base = 0; // cfi->chips[0].start;
|
|
int ofs_factor = cfi->interleave * cfi->device_type;
|
|
int i;
|
|
struct cfi_extquery *extp = NULL;
|
|
|
|
if (!adr)
|
|
goto out;
|
|
|
|
printk(KERN_INFO "%s Extended Query Table at 0x%4.4X\n", name, adr);
|
|
|
|
extp = kmalloc(size, GFP_KERNEL);
|
|
if (!extp)
|
|
goto out;
|
|
|
|
#ifdef CONFIG_MTD_XIP
|
|
local_irq_disable();
|
|
#endif
|
|
|
|
/* Switch it into Query Mode */
|
|
cfi_qry_mode_on(base, map, cfi);
|
|
/* Read in the Extended Query Table */
|
|
for (i=0; i<size; i++) {
|
|
((unsigned char *)extp)[i] =
|
|
cfi_read_query(map, base+((adr+i)*ofs_factor));
|
|
}
|
|
|
|
/* Make sure it returns to read mode */
|
|
cfi_qry_mode_off(base, map, cfi);
|
|
|
|
#ifdef CONFIG_MTD_XIP
|
|
(void) map_read(map, base);
|
|
xip_iprefetch();
|
|
local_irq_enable();
|
|
#endif
|
|
|
|
out: return extp;
|
|
}
|
|
|
|
EXPORT_SYMBOL(cfi_read_pri);
|
|
|
|
void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_fixup *f;
|
|
|
|
for (f=fixups; f->fixup; f++) {
|
|
if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) &&
|
|
((f->id == CFI_ID_ANY) || (f->id == cfi->id))) {
|
|
f->fixup(mtd);
|
|
}
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(cfi_fixup);
|
|
|
|
int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
|
|
loff_t ofs, size_t len, void *thunk)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long adr;
|
|
int chipnum, ret = 0;
|
|
int i, first;
|
|
struct mtd_erase_region_info *regions = mtd->eraseregions;
|
|
|
|
/* Check that both start and end of the requested erase are
|
|
* aligned with the erasesize at the appropriate addresses.
|
|
*/
|
|
|
|
i = 0;
|
|
|
|
/* Skip all erase regions which are ended before the start of
|
|
the requested erase. Actually, to save on the calculations,
|
|
we skip to the first erase region which starts after the
|
|
start of the requested erase, and then go back one.
|
|
*/
|
|
|
|
while (i < mtd->numeraseregions && ofs >= regions[i].offset)
|
|
i++;
|
|
i--;
|
|
|
|
/* OK, now i is pointing at the erase region in which this
|
|
erase request starts. Check the start of the requested
|
|
erase range is aligned with the erase size which is in
|
|
effect here.
|
|
*/
|
|
|
|
if (ofs & (regions[i].erasesize-1))
|
|
return -EINVAL;
|
|
|
|
/* Remember the erase region we start on */
|
|
first = i;
|
|
|
|
/* Next, check that the end of the requested erase is aligned
|
|
* with the erase region at that address.
|
|
*/
|
|
|
|
while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset)
|
|
i++;
|
|
|
|
/* As before, drop back one to point at the region in which
|
|
the address actually falls
|
|
*/
|
|
i--;
|
|
|
|
if ((ofs + len) & (regions[i].erasesize-1))
|
|
return -EINVAL;
|
|
|
|
chipnum = ofs >> cfi->chipshift;
|
|
adr = ofs - (chipnum << cfi->chipshift);
|
|
|
|
i=first;
|
|
|
|
while(len) {
|
|
int size = regions[i].erasesize;
|
|
|
|
ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
adr += size;
|
|
ofs += size;
|
|
len -= size;
|
|
|
|
if (ofs == regions[i].offset + size * regions[i].numblocks)
|
|
i++;
|
|
|
|
if (adr >> cfi->chipshift) {
|
|
adr = 0;
|
|
chipnum++;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(cfi_varsize_frob);
|
|
|
|
MODULE_LICENSE("GPL");
|