linux/drivers/hwmon/corsair-cpro.c
Aleksa Savic d02abd57e7 hwmon: (corsair-cpro) Protect ccp->wait_input_report with a spinlock
Through hidraw, userspace can cause a status report to be sent
from the device. The parsing in ccp_raw_event() may happen in
parallel to a send_usb_cmd() call (which resets the completion
for tracking the report) if it's running on a different CPU where
bottom half interrupts are not disabled.

Add a spinlock around the complete_all() in ccp_raw_event() and
reinit_completion() in send_usb_cmd() to prevent race issues.

Fixes: 40c3a4454225 ("hwmon: add Corsair Commander Pro driver")
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Acked-by: Marius Zachmann <mail@mariuszachmann.de>
Link: https://lore.kernel.org/r/20240504092504.24158-4-savicaleksa83@gmail.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2024-05-04 06:36:41 -07:00

603 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* corsair-cpro.c - Linux driver for Corsair Commander Pro
* Copyright (C) 2020 Marius Zachmann <mail@mariuszachmann.de>
*
* This driver uses hid reports to communicate with the device to allow hidraw userspace drivers
* still being used. The device does not use report ids. When using hidraw and this driver
* simultaniously, reports could be switched.
*/
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/hid.h>
#include <linux/hwmon.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#define USB_VENDOR_ID_CORSAIR 0x1b1c
#define USB_PRODUCT_ID_CORSAIR_COMMANDERPRO 0x0c10
#define USB_PRODUCT_ID_CORSAIR_1000D 0x1d00
#define OUT_BUFFER_SIZE 63
#define IN_BUFFER_SIZE 16
#define LABEL_LENGTH 11
#define REQ_TIMEOUT 300
#define CTL_GET_TMP_CNCT 0x10 /*
* returns in bytes 1-4 for each temp sensor:
* 0 not connected
* 1 connected
*/
#define CTL_GET_TMP 0x11 /*
* send: byte 1 is channel, rest zero
* rcv: returns temp for channel in centi-degree celsius
* in bytes 1 and 2
* returns 0x11 in byte 0 if no sensor is connected
*/
#define CTL_GET_VOLT 0x12 /*
* send: byte 1 is rail number: 0 = 12v, 1 = 5v, 2 = 3.3v
* rcv: returns millivolt in bytes 1,2
* returns error 0x10 if request is invalid
*/
#define CTL_GET_FAN_CNCT 0x20 /*
* returns in bytes 1-6 for each fan:
* 0 not connected
* 1 3pin
* 2 4pin
*/
#define CTL_GET_FAN_RPM 0x21 /*
* send: byte 1 is channel, rest zero
* rcv: returns rpm in bytes 1,2
*/
#define CTL_GET_FAN_PWM 0x22 /*
* send: byte 1 is channel, rest zero
* rcv: returns pwm in byte 1 if it was set
* returns error 0x12 if fan is controlled via
* fan_target or fan curve
*/
#define CTL_SET_FAN_FPWM 0x23 /*
* set fixed pwm
* send: byte 1 is fan number
* send: byte 2 is percentage from 0 - 100
*/
#define CTL_SET_FAN_TARGET 0x24 /*
* set target rpm
* send: byte 1 is fan number
* send: byte 2-3 is target
* device accepts all values from 0x00 - 0xFFFF
*/
#define NUM_FANS 6
#define NUM_TEMP_SENSORS 4
struct ccp_device {
struct hid_device *hdev;
struct device *hwmon_dev;
/* For reinitializing the completion below */
spinlock_t wait_input_report_lock;
struct completion wait_input_report;
struct mutex mutex; /* whenever buffer is used, lock before send_usb_cmd */
u8 *cmd_buffer;
u8 *buffer;
int target[6];
DECLARE_BITMAP(temp_cnct, NUM_TEMP_SENSORS);
DECLARE_BITMAP(fan_cnct, NUM_FANS);
char fan_label[6][LABEL_LENGTH];
};
/* converts response error in buffer to errno */
static int ccp_get_errno(struct ccp_device *ccp)
{
switch (ccp->buffer[0]) {
case 0x00: /* success */
return 0;
case 0x01: /* called invalid command */
return -EOPNOTSUPP;
case 0x10: /* called GET_VOLT / GET_TMP with invalid arguments */
return -EINVAL;
case 0x11: /* requested temps of disconnected sensors */
case 0x12: /* requested pwm of not pwm controlled channels */
return -ENODATA;
default:
hid_dbg(ccp->hdev, "unknown device response error: %d", ccp->buffer[0]);
return -EIO;
}
}
/* send command, check for error in response, response in ccp->buffer */
static int send_usb_cmd(struct ccp_device *ccp, u8 command, u8 byte1, u8 byte2, u8 byte3)
{
unsigned long t;
int ret;
memset(ccp->cmd_buffer, 0x00, OUT_BUFFER_SIZE);
ccp->cmd_buffer[0] = command;
ccp->cmd_buffer[1] = byte1;
ccp->cmd_buffer[2] = byte2;
ccp->cmd_buffer[3] = byte3;
/*
* Disable raw event parsing for a moment to safely reinitialize the
* completion. Reinit is done because hidraw could have triggered
* the raw event parsing and marked the ccp->wait_input_report
* completion as done.
*/
spin_lock_bh(&ccp->wait_input_report_lock);
reinit_completion(&ccp->wait_input_report);
spin_unlock_bh(&ccp->wait_input_report_lock);
ret = hid_hw_output_report(ccp->hdev, ccp->cmd_buffer, OUT_BUFFER_SIZE);
if (ret < 0)
return ret;
t = wait_for_completion_timeout(&ccp->wait_input_report, msecs_to_jiffies(REQ_TIMEOUT));
if (!t)
return -ETIMEDOUT;
return ccp_get_errno(ccp);
}
static int ccp_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, int size)
{
struct ccp_device *ccp = hid_get_drvdata(hdev);
/* only copy buffer when requested */
spin_lock(&ccp->wait_input_report_lock);
if (!completion_done(&ccp->wait_input_report)) {
memcpy(ccp->buffer, data, min(IN_BUFFER_SIZE, size));
complete_all(&ccp->wait_input_report);
}
spin_unlock(&ccp->wait_input_report_lock);
return 0;
}
/* requests and returns single data values depending on channel */
static int get_data(struct ccp_device *ccp, int command, int channel, bool two_byte_data)
{
int ret;
mutex_lock(&ccp->mutex);
ret = send_usb_cmd(ccp, command, channel, 0, 0);
if (ret)
goto out_unlock;
ret = ccp->buffer[1];
if (two_byte_data)
ret = (ret << 8) + ccp->buffer[2];
out_unlock:
mutex_unlock(&ccp->mutex);
return ret;
}
static int set_pwm(struct ccp_device *ccp, int channel, long val)
{
int ret;
if (val < 0 || val > 255)
return -EINVAL;
/* The Corsair Commander Pro uses values from 0-100 */
val = DIV_ROUND_CLOSEST(val * 100, 255);
mutex_lock(&ccp->mutex);
ret = send_usb_cmd(ccp, CTL_SET_FAN_FPWM, channel, val, 0);
if (!ret)
ccp->target[channel] = -ENODATA;
mutex_unlock(&ccp->mutex);
return ret;
}
static int set_target(struct ccp_device *ccp, int channel, long val)
{
int ret;
val = clamp_val(val, 0, 0xFFFF);
ccp->target[channel] = val;
mutex_lock(&ccp->mutex);
ret = send_usb_cmd(ccp, CTL_SET_FAN_TARGET, channel, val >> 8, val);
mutex_unlock(&ccp->mutex);
return ret;
}
static int ccp_read_string(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
struct ccp_device *ccp = dev_get_drvdata(dev);
switch (type) {
case hwmon_fan:
switch (attr) {
case hwmon_fan_label:
*str = ccp->fan_label[channel];
return 0;
default:
break;
}
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int ccp_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct ccp_device *ccp = dev_get_drvdata(dev);
int ret;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
ret = get_data(ccp, CTL_GET_TMP, channel, true);
if (ret < 0)
return ret;
*val = ret * 10;
return 0;
default:
break;
}
break;
case hwmon_fan:
switch (attr) {
case hwmon_fan_input:
ret = get_data(ccp, CTL_GET_FAN_RPM, channel, true);
if (ret < 0)
return ret;
*val = ret;
return 0;
case hwmon_fan_target:
/* how to read target values from the device is unknown */
/* driver returns last set value or 0 */
if (ccp->target[channel] < 0)
return -ENODATA;
*val = ccp->target[channel];
return 0;
default:
break;
}
break;
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_input:
ret = get_data(ccp, CTL_GET_FAN_PWM, channel, false);
if (ret < 0)
return ret;
*val = DIV_ROUND_CLOSEST(ret * 255, 100);
return 0;
default:
break;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
ret = get_data(ccp, CTL_GET_VOLT, channel, true);
if (ret < 0)
return ret;
*val = ret;
return 0;
default:
break;
}
break;
default:
break;
}
return -EOPNOTSUPP;
};
static int ccp_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
struct ccp_device *ccp = dev_get_drvdata(dev);
switch (type) {
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_input:
return set_pwm(ccp, channel, val);
default:
break;
}
break;
case hwmon_fan:
switch (attr) {
case hwmon_fan_target:
return set_target(ccp, channel, val);
default:
break;
}
break;
default:
break;
}
return -EOPNOTSUPP;
};
static umode_t ccp_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct ccp_device *ccp = data;
switch (type) {
case hwmon_temp:
if (!test_bit(channel, ccp->temp_cnct))
break;
switch (attr) {
case hwmon_temp_input:
return 0444;
case hwmon_temp_label:
return 0444;
default:
break;
}
break;
case hwmon_fan:
if (!test_bit(channel, ccp->fan_cnct))
break;
switch (attr) {
case hwmon_fan_input:
return 0444;
case hwmon_fan_label:
return 0444;
case hwmon_fan_target:
return 0644;
default:
break;
}
break;
case hwmon_pwm:
if (!test_bit(channel, ccp->fan_cnct))
break;
switch (attr) {
case hwmon_pwm_input:
return 0644;
default:
break;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
return 0444;
default:
break;
}
break;
default:
break;
}
return 0;
};
static const struct hwmon_ops ccp_hwmon_ops = {
.is_visible = ccp_is_visible,
.read = ccp_read,
.read_string = ccp_read_string,
.write = ccp_write,
};
static const struct hwmon_channel_info * const ccp_info[] = {
HWMON_CHANNEL_INFO(chip,
HWMON_C_REGISTER_TZ),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT,
HWMON_T_INPUT,
HWMON_T_INPUT,
HWMON_T_INPUT
),
HWMON_CHANNEL_INFO(fan,
HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET,
HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET,
HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET,
HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET,
HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET,
HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET
),
HWMON_CHANNEL_INFO(pwm,
HWMON_PWM_INPUT,
HWMON_PWM_INPUT,
HWMON_PWM_INPUT,
HWMON_PWM_INPUT,
HWMON_PWM_INPUT,
HWMON_PWM_INPUT
),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT,
HWMON_I_INPUT,
HWMON_I_INPUT
),
NULL
};
static const struct hwmon_chip_info ccp_chip_info = {
.ops = &ccp_hwmon_ops,
.info = ccp_info,
};
/* read fan connection status and set labels */
static int get_fan_cnct(struct ccp_device *ccp)
{
int channel;
int mode;
int ret;
ret = send_usb_cmd(ccp, CTL_GET_FAN_CNCT, 0, 0, 0);
if (ret)
return ret;
for (channel = 0; channel < NUM_FANS; channel++) {
mode = ccp->buffer[channel + 1];
if (mode == 0)
continue;
set_bit(channel, ccp->fan_cnct);
ccp->target[channel] = -ENODATA;
switch (mode) {
case 1:
scnprintf(ccp->fan_label[channel], LABEL_LENGTH,
"fan%d 3pin", channel + 1);
break;
case 2:
scnprintf(ccp->fan_label[channel], LABEL_LENGTH,
"fan%d 4pin", channel + 1);
break;
default:
scnprintf(ccp->fan_label[channel], LABEL_LENGTH,
"fan%d other", channel + 1);
break;
}
}
return 0;
}
/* read temp sensor connection status */
static int get_temp_cnct(struct ccp_device *ccp)
{
int channel;
int mode;
int ret;
ret = send_usb_cmd(ccp, CTL_GET_TMP_CNCT, 0, 0, 0);
if (ret)
return ret;
for (channel = 0; channel < NUM_TEMP_SENSORS; channel++) {
mode = ccp->buffer[channel + 1];
if (mode == 0)
continue;
set_bit(channel, ccp->temp_cnct);
}
return 0;
}
static int ccp_probe(struct hid_device *hdev, const struct hid_device_id *id)
{
struct ccp_device *ccp;
int ret;
ccp = devm_kzalloc(&hdev->dev, sizeof(*ccp), GFP_KERNEL);
if (!ccp)
return -ENOMEM;
ccp->cmd_buffer = devm_kmalloc(&hdev->dev, OUT_BUFFER_SIZE, GFP_KERNEL);
if (!ccp->cmd_buffer)
return -ENOMEM;
ccp->buffer = devm_kmalloc(&hdev->dev, IN_BUFFER_SIZE, GFP_KERNEL);
if (!ccp->buffer)
return -ENOMEM;
ret = hid_parse(hdev);
if (ret)
return ret;
ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
if (ret)
return ret;
ret = hid_hw_open(hdev);
if (ret)
goto out_hw_stop;
ccp->hdev = hdev;
hid_set_drvdata(hdev, ccp);
mutex_init(&ccp->mutex);
spin_lock_init(&ccp->wait_input_report_lock);
init_completion(&ccp->wait_input_report);
hid_device_io_start(hdev);
/* temp and fan connection status only updates when device is powered on */
ret = get_temp_cnct(ccp);
if (ret)
goto out_hw_close;
ret = get_fan_cnct(ccp);
if (ret)
goto out_hw_close;
ccp->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsaircpro",
ccp, &ccp_chip_info, NULL);
if (IS_ERR(ccp->hwmon_dev)) {
ret = PTR_ERR(ccp->hwmon_dev);
goto out_hw_close;
}
return 0;
out_hw_close:
hid_hw_close(hdev);
out_hw_stop:
hid_hw_stop(hdev);
return ret;
}
static void ccp_remove(struct hid_device *hdev)
{
struct ccp_device *ccp = hid_get_drvdata(hdev);
hwmon_device_unregister(ccp->hwmon_dev);
hid_hw_close(hdev);
hid_hw_stop(hdev);
}
static const struct hid_device_id ccp_devices[] = {
{ HID_USB_DEVICE(USB_VENDOR_ID_CORSAIR, USB_PRODUCT_ID_CORSAIR_COMMANDERPRO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CORSAIR, USB_PRODUCT_ID_CORSAIR_1000D) },
{ }
};
static struct hid_driver ccp_driver = {
.name = "corsair-cpro",
.id_table = ccp_devices,
.probe = ccp_probe,
.remove = ccp_remove,
.raw_event = ccp_raw_event,
};
MODULE_DEVICE_TABLE(hid, ccp_devices);
MODULE_LICENSE("GPL");
static int __init ccp_init(void)
{
return hid_register_driver(&ccp_driver);
}
static void __exit ccp_exit(void)
{
hid_unregister_driver(&ccp_driver);
}
/*
* When compiling this driver as built-in, hwmon initcalls will get called before the
* hid driver and this driver would fail to register. late_initcall solves this.
*/
late_initcall(ccp_init);
module_exit(ccp_exit);