linux/arch/arm/crypto/speck-neon-core.S
Eric Biggers a068b94d74 crypto: arm/speck - fix building in Thumb2 mode
Building the kernel with CONFIG_THUMB2_KERNEL=y and
CONFIG_CRYPTO_SPECK_NEON set fails with the following errors:

    arch/arm/crypto/speck-neon-core.S: Assembler messages:

    arch/arm/crypto/speck-neon-core.S:419: Error: r13 not allowed here -- `bic sp,#0xf'
    arch/arm/crypto/speck-neon-core.S:423: Error: r13 not allowed here -- `bic sp,#0xf'
    arch/arm/crypto/speck-neon-core.S:427: Error: r13 not allowed here -- `bic sp,#0xf'
    arch/arm/crypto/speck-neon-core.S:431: Error: r13 not allowed here -- `bic sp,#0xf'

The problem is that the 'bic' instruction can't operate on the 'sp'
register in Thumb2 mode.  Fix it by using a temporary register.  This
isn't in the main loop, so the performance difference is negligible.
This also matches what aes-neonbs-core.S does.

Reported-by: Stefan Agner <stefan@agner.ch>
Fixes: ede9622162fa ("crypto: arm/speck - add NEON-accelerated implementation of Speck-XTS")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-01 23:31:46 +08:00

435 lines
10 KiB
ArmAsm

// SPDX-License-Identifier: GPL-2.0
/*
* NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
*
* Copyright (c) 2018 Google, Inc
*
* Author: Eric Biggers <ebiggers@google.com>
*/
#include <linux/linkage.h>
.text
.fpu neon
// arguments
ROUND_KEYS .req r0 // const {u64,u32} *round_keys
NROUNDS .req r1 // int nrounds
DST .req r2 // void *dst
SRC .req r3 // const void *src
NBYTES .req r4 // unsigned int nbytes
TWEAK .req r5 // void *tweak
// registers which hold the data being encrypted/decrypted
X0 .req q0
X0_L .req d0
X0_H .req d1
Y0 .req q1
Y0_H .req d3
X1 .req q2
X1_L .req d4
X1_H .req d5
Y1 .req q3
Y1_H .req d7
X2 .req q4
X2_L .req d8
X2_H .req d9
Y2 .req q5
Y2_H .req d11
X3 .req q6
X3_L .req d12
X3_H .req d13
Y3 .req q7
Y3_H .req d15
// the round key, duplicated in all lanes
ROUND_KEY .req q8
ROUND_KEY_L .req d16
ROUND_KEY_H .req d17
// index vector for vtbl-based 8-bit rotates
ROTATE_TABLE .req d18
// multiplication table for updating XTS tweaks
GF128MUL_TABLE .req d19
GF64MUL_TABLE .req d19
// current XTS tweak value(s)
TWEAKV .req q10
TWEAKV_L .req d20
TWEAKV_H .req d21
TMP0 .req q12
TMP0_L .req d24
TMP0_H .req d25
TMP1 .req q13
TMP2 .req q14
TMP3 .req q15
.align 4
.Lror64_8_table:
.byte 1, 2, 3, 4, 5, 6, 7, 0
.Lror32_8_table:
.byte 1, 2, 3, 0, 5, 6, 7, 4
.Lrol64_8_table:
.byte 7, 0, 1, 2, 3, 4, 5, 6
.Lrol32_8_table:
.byte 3, 0, 1, 2, 7, 4, 5, 6
.Lgf128mul_table:
.byte 0, 0x87
.fill 14
.Lgf64mul_table:
.byte 0, 0x1b, (0x1b << 1), (0x1b << 1) ^ 0x1b
.fill 12
/*
* _speck_round_128bytes() - Speck encryption round on 128 bytes at a time
*
* Do one Speck encryption round on the 128 bytes (8 blocks for Speck128, 16 for
* Speck64) stored in X0-X3 and Y0-Y3, using the round key stored in all lanes
* of ROUND_KEY. 'n' is the lane size: 64 for Speck128, or 32 for Speck64.
*
* The 8-bit rotates are implemented using vtbl instead of vshr + vsli because
* the vtbl approach is faster on some processors and the same speed on others.
*/
.macro _speck_round_128bytes n
// x = ror(x, 8)
vtbl.8 X0_L, {X0_L}, ROTATE_TABLE
vtbl.8 X0_H, {X0_H}, ROTATE_TABLE
vtbl.8 X1_L, {X1_L}, ROTATE_TABLE
vtbl.8 X1_H, {X1_H}, ROTATE_TABLE
vtbl.8 X2_L, {X2_L}, ROTATE_TABLE
vtbl.8 X2_H, {X2_H}, ROTATE_TABLE
vtbl.8 X3_L, {X3_L}, ROTATE_TABLE
vtbl.8 X3_H, {X3_H}, ROTATE_TABLE
// x += y
vadd.u\n X0, Y0
vadd.u\n X1, Y1
vadd.u\n X2, Y2
vadd.u\n X3, Y3
// x ^= k
veor X0, ROUND_KEY
veor X1, ROUND_KEY
veor X2, ROUND_KEY
veor X3, ROUND_KEY
// y = rol(y, 3)
vshl.u\n TMP0, Y0, #3
vshl.u\n TMP1, Y1, #3
vshl.u\n TMP2, Y2, #3
vshl.u\n TMP3, Y3, #3
vsri.u\n TMP0, Y0, #(\n - 3)
vsri.u\n TMP1, Y1, #(\n - 3)
vsri.u\n TMP2, Y2, #(\n - 3)
vsri.u\n TMP3, Y3, #(\n - 3)
// y ^= x
veor Y0, TMP0, X0
veor Y1, TMP1, X1
veor Y2, TMP2, X2
veor Y3, TMP3, X3
.endm
/*
* _speck_unround_128bytes() - Speck decryption round on 128 bytes at a time
*
* This is the inverse of _speck_round_128bytes().
*/
.macro _speck_unround_128bytes n
// y ^= x
veor TMP0, Y0, X0
veor TMP1, Y1, X1
veor TMP2, Y2, X2
veor TMP3, Y3, X3
// y = ror(y, 3)
vshr.u\n Y0, TMP0, #3
vshr.u\n Y1, TMP1, #3
vshr.u\n Y2, TMP2, #3
vshr.u\n Y3, TMP3, #3
vsli.u\n Y0, TMP0, #(\n - 3)
vsli.u\n Y1, TMP1, #(\n - 3)
vsli.u\n Y2, TMP2, #(\n - 3)
vsli.u\n Y3, TMP3, #(\n - 3)
// x ^= k
veor X0, ROUND_KEY
veor X1, ROUND_KEY
veor X2, ROUND_KEY
veor X3, ROUND_KEY
// x -= y
vsub.u\n X0, Y0
vsub.u\n X1, Y1
vsub.u\n X2, Y2
vsub.u\n X3, Y3
// x = rol(x, 8);
vtbl.8 X0_L, {X0_L}, ROTATE_TABLE
vtbl.8 X0_H, {X0_H}, ROTATE_TABLE
vtbl.8 X1_L, {X1_L}, ROTATE_TABLE
vtbl.8 X1_H, {X1_H}, ROTATE_TABLE
vtbl.8 X2_L, {X2_L}, ROTATE_TABLE
vtbl.8 X2_H, {X2_H}, ROTATE_TABLE
vtbl.8 X3_L, {X3_L}, ROTATE_TABLE
vtbl.8 X3_H, {X3_H}, ROTATE_TABLE
.endm
.macro _xts128_precrypt_one dst_reg, tweak_buf, tmp
// Load the next source block
vld1.8 {\dst_reg}, [SRC]!
// Save the current tweak in the tweak buffer
vst1.8 {TWEAKV}, [\tweak_buf:128]!
// XOR the next source block with the current tweak
veor \dst_reg, TWEAKV
/*
* Calculate the next tweak by multiplying the current one by x,
* modulo p(x) = x^128 + x^7 + x^2 + x + 1.
*/
vshr.u64 \tmp, TWEAKV, #63
vshl.u64 TWEAKV, #1
veor TWEAKV_H, \tmp\()_L
vtbl.8 \tmp\()_H, {GF128MUL_TABLE}, \tmp\()_H
veor TWEAKV_L, \tmp\()_H
.endm
.macro _xts64_precrypt_two dst_reg, tweak_buf, tmp
// Load the next two source blocks
vld1.8 {\dst_reg}, [SRC]!
// Save the current two tweaks in the tweak buffer
vst1.8 {TWEAKV}, [\tweak_buf:128]!
// XOR the next two source blocks with the current two tweaks
veor \dst_reg, TWEAKV
/*
* Calculate the next two tweaks by multiplying the current ones by x^2,
* modulo p(x) = x^64 + x^4 + x^3 + x + 1.
*/
vshr.u64 \tmp, TWEAKV, #62
vshl.u64 TWEAKV, #2
vtbl.8 \tmp\()_L, {GF64MUL_TABLE}, \tmp\()_L
vtbl.8 \tmp\()_H, {GF64MUL_TABLE}, \tmp\()_H
veor TWEAKV, \tmp
.endm
/*
* _speck_xts_crypt() - Speck-XTS encryption/decryption
*
* Encrypt or decrypt NBYTES bytes of data from the SRC buffer to the DST buffer
* using Speck-XTS, specifically the variant with a block size of '2n' and round
* count given by NROUNDS. The expanded round keys are given in ROUND_KEYS, and
* the current XTS tweak value is given in TWEAK. It's assumed that NBYTES is a
* nonzero multiple of 128.
*/
.macro _speck_xts_crypt n, decrypting
push {r4-r7}
mov r7, sp
/*
* The first four parameters were passed in registers r0-r3. Load the
* additional parameters, which were passed on the stack.
*/
ldr NBYTES, [sp, #16]
ldr TWEAK, [sp, #20]
/*
* If decrypting, modify the ROUND_KEYS parameter to point to the last
* round key rather than the first, since for decryption the round keys
* are used in reverse order.
*/
.if \decrypting
.if \n == 64
add ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #3
sub ROUND_KEYS, #8
.else
add ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #2
sub ROUND_KEYS, #4
.endif
.endif
// Load the index vector for vtbl-based 8-bit rotates
.if \decrypting
ldr r12, =.Lrol\n\()_8_table
.else
ldr r12, =.Lror\n\()_8_table
.endif
vld1.8 {ROTATE_TABLE}, [r12:64]
// One-time XTS preparation
/*
* Allocate stack space to store 128 bytes worth of tweaks. For
* performance, this space is aligned to a 16-byte boundary so that we
* can use the load/store instructions that declare 16-byte alignment.
* For Thumb2 compatibility, don't do the 'bic' directly on 'sp'.
*/
sub r12, sp, #128
bic r12, #0xf
mov sp, r12
.if \n == 64
// Load first tweak
vld1.8 {TWEAKV}, [TWEAK]
// Load GF(2^128) multiplication table
ldr r12, =.Lgf128mul_table
vld1.8 {GF128MUL_TABLE}, [r12:64]
.else
// Load first tweak
vld1.8 {TWEAKV_L}, [TWEAK]
// Load GF(2^64) multiplication table
ldr r12, =.Lgf64mul_table
vld1.8 {GF64MUL_TABLE}, [r12:64]
// Calculate second tweak, packing it together with the first
vshr.u64 TMP0_L, TWEAKV_L, #63
vtbl.u8 TMP0_L, {GF64MUL_TABLE}, TMP0_L
vshl.u64 TWEAKV_H, TWEAKV_L, #1
veor TWEAKV_H, TMP0_L
.endif
.Lnext_128bytes_\@:
/*
* Load the source blocks into {X,Y}[0-3], XOR them with their XTS tweak
* values, and save the tweaks on the stack for later. Then
* de-interleave the 'x' and 'y' elements of each block, i.e. make it so
* that the X[0-3] registers contain only the second halves of blocks,
* and the Y[0-3] registers contain only the first halves of blocks.
* (Speck uses the order (y, x) rather than the more intuitive (x, y).)
*/
mov r12, sp
.if \n == 64
_xts128_precrypt_one X0, r12, TMP0
_xts128_precrypt_one Y0, r12, TMP0
_xts128_precrypt_one X1, r12, TMP0
_xts128_precrypt_one Y1, r12, TMP0
_xts128_precrypt_one X2, r12, TMP0
_xts128_precrypt_one Y2, r12, TMP0
_xts128_precrypt_one X3, r12, TMP0
_xts128_precrypt_one Y3, r12, TMP0
vswp X0_L, Y0_H
vswp X1_L, Y1_H
vswp X2_L, Y2_H
vswp X3_L, Y3_H
.else
_xts64_precrypt_two X0, r12, TMP0
_xts64_precrypt_two Y0, r12, TMP0
_xts64_precrypt_two X1, r12, TMP0
_xts64_precrypt_two Y1, r12, TMP0
_xts64_precrypt_two X2, r12, TMP0
_xts64_precrypt_two Y2, r12, TMP0
_xts64_precrypt_two X3, r12, TMP0
_xts64_precrypt_two Y3, r12, TMP0
vuzp.32 Y0, X0
vuzp.32 Y1, X1
vuzp.32 Y2, X2
vuzp.32 Y3, X3
.endif
// Do the cipher rounds
mov r12, ROUND_KEYS
mov r6, NROUNDS
.Lnext_round_\@:
.if \decrypting
.if \n == 64
vld1.64 ROUND_KEY_L, [r12]
sub r12, #8
vmov ROUND_KEY_H, ROUND_KEY_L
.else
vld1.32 {ROUND_KEY_L[],ROUND_KEY_H[]}, [r12]
sub r12, #4
.endif
_speck_unround_128bytes \n
.else
.if \n == 64
vld1.64 ROUND_KEY_L, [r12]!
vmov ROUND_KEY_H, ROUND_KEY_L
.else
vld1.32 {ROUND_KEY_L[],ROUND_KEY_H[]}, [r12]!
.endif
_speck_round_128bytes \n
.endif
subs r6, r6, #1
bne .Lnext_round_\@
// Re-interleave the 'x' and 'y' elements of each block
.if \n == 64
vswp X0_L, Y0_H
vswp X1_L, Y1_H
vswp X2_L, Y2_H
vswp X3_L, Y3_H
.else
vzip.32 Y0, X0
vzip.32 Y1, X1
vzip.32 Y2, X2
vzip.32 Y3, X3
.endif
// XOR the encrypted/decrypted blocks with the tweaks we saved earlier
mov r12, sp
vld1.8 {TMP0, TMP1}, [r12:128]!
vld1.8 {TMP2, TMP3}, [r12:128]!
veor X0, TMP0
veor Y0, TMP1
veor X1, TMP2
veor Y1, TMP3
vld1.8 {TMP0, TMP1}, [r12:128]!
vld1.8 {TMP2, TMP3}, [r12:128]!
veor X2, TMP0
veor Y2, TMP1
veor X3, TMP2
veor Y3, TMP3
// Store the ciphertext in the destination buffer
vst1.8 {X0, Y0}, [DST]!
vst1.8 {X1, Y1}, [DST]!
vst1.8 {X2, Y2}, [DST]!
vst1.8 {X3, Y3}, [DST]!
// Continue if there are more 128-byte chunks remaining, else return
subs NBYTES, #128
bne .Lnext_128bytes_\@
// Store the next tweak
.if \n == 64
vst1.8 {TWEAKV}, [TWEAK]
.else
vst1.8 {TWEAKV_L}, [TWEAK]
.endif
mov sp, r7
pop {r4-r7}
bx lr
.endm
ENTRY(speck128_xts_encrypt_neon)
_speck_xts_crypt n=64, decrypting=0
ENDPROC(speck128_xts_encrypt_neon)
ENTRY(speck128_xts_decrypt_neon)
_speck_xts_crypt n=64, decrypting=1
ENDPROC(speck128_xts_decrypt_neon)
ENTRY(speck64_xts_encrypt_neon)
_speck_xts_crypt n=32, decrypting=0
ENDPROC(speck64_xts_encrypt_neon)
ENTRY(speck64_xts_decrypt_neon)
_speck_xts_crypt n=32, decrypting=1
ENDPROC(speck64_xts_decrypt_neon)