Oleg Nesterov dbb5afad10 ptrace: make ptrace() fail if the tracee changed its pid unexpectedly
Suppose we have 2 threads, the group-leader L and a sub-theread T,
both parked in ptrace_stop(). Debugger tries to resume both threads
and does

	ptrace(PTRACE_CONT, T);
	ptrace(PTRACE_CONT, L);

If the sub-thread T execs in between, the 2nd PTRACE_CONT doesn not
resume the old leader L, it resumes the post-exec thread T which was
actually now stopped in PTHREAD_EVENT_EXEC. In this case the
PTHREAD_EVENT_EXEC event is lost, and the tracer can't know that the
tracee changed its pid.

This patch makes ptrace() fail in this case until debugger does wait()
and consumes PTHREAD_EVENT_EXEC which reports old_pid. This affects all
ptrace requests except the "asynchronous" PTRACE_INTERRUPT/KILL.

The patch doesn't add the new PTRACE_ option to not complicate the API,
and I _hope_ this won't cause any noticeable regression:

	- If debugger uses PTRACE_O_TRACEEXEC and the thread did an exec
	  and the tracer does a ptrace request without having consumed
	  the exec event, it's 100% sure that the thread the ptracer
	  thinks it is targeting does not exist anymore, or isn't the
	  same as the one it thinks it is targeting.

	- To some degree this patch adds nothing new. In the scenario
	  above ptrace(L) can fail with -ESRCH if it is called after the
	  execing sub-thread wakes the leader up and before it "steals"
	  the leader's pid.

Test-case:

	#include <stdio.h>
	#include <unistd.h>
	#include <signal.h>
	#include <sys/ptrace.h>
	#include <sys/wait.h>
	#include <errno.h>
	#include <pthread.h>
	#include <assert.h>

	void *tf(void *arg)
	{
		execve("/usr/bin/true", NULL, NULL);
		assert(0);

		return NULL;
	}

	int main(void)
	{
		int leader = fork();
		if (!leader) {
			kill(getpid(), SIGSTOP);

			pthread_t th;
			pthread_create(&th, NULL, tf, NULL);
			for (;;)
				pause();

			return 0;
		}

		waitpid(leader, NULL, WSTOPPED);

		ptrace(PTRACE_SEIZE, leader, 0,
				PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXEC);
		waitpid(leader, NULL, 0);

		ptrace(PTRACE_CONT, leader, 0,0);
		waitpid(leader, NULL, 0);

		int status, thread = waitpid(-1, &status, 0);
		assert(thread > 0 && thread != leader);
		assert(status == 0x80137f);

		ptrace(PTRACE_CONT, thread, 0,0);
		/*
		 * waitid() because waitpid(leader, &status, WNOWAIT) does not
		 * report status. Why ????
		 *
		 * Why WEXITED? because we have another kernel problem connected
		 * to mt-exec.
		 */
		siginfo_t info;
		assert(waitid(P_PID, leader, &info, WSTOPPED|WEXITED|WNOWAIT) == 0);
		assert(info.si_pid == leader && info.si_status == 0x0405);

		/* OK, it sleeps in ptrace(PTRACE_EVENT_EXEC == 0x04) */
		assert(ptrace(PTRACE_CONT, leader, 0,0) == -1);
		assert(errno == ESRCH);

		assert(leader == waitpid(leader, &status, WNOHANG));
		assert(status == 0x04057f);

		assert(ptrace(PTRACE_CONT, leader, 0,0) == 0);

		return 0;
	}

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Simon Marchi <simon.marchi@efficios.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Pedro Alves <palves@redhat.com>
Acked-by: Simon Marchi <simon.marchi@efficios.com>
Acked-by: Jan Kratochvil <jan.kratochvil@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-12 10:45:22 -07:00
2021-05-10 12:30:45 -07:00
2021-05-09 13:25:14 -07:00
2021-05-08 10:00:11 -07:00
2021-04-28 14:39:37 -07:00
2021-05-10 12:30:45 -07:00
2021-05-11 09:43:16 -07:00
2021-05-09 13:25:14 -07:00
2021-05-07 00:26:34 -07:00
2021-05-08 10:00:11 -07:00
2021-05-07 00:26:35 -07:00
2021-05-08 10:00:11 -07:00
2021-05-08 10:00:11 -07:00
2021-05-05 12:08:06 -07:00
2021-05-07 11:40:18 -07:00
2021-02-24 09:38:36 -08:00
2021-05-09 14:17:44 -07:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
Linux kernel source tree
Readme 3.5 GiB
Languages
C 97.5%
Assembly 1%
Shell 0.6%
Python 0.3%
Makefile 0.3%