mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-19 11:43:40 +00:00
3ddc76dfc7
Pull timer type cleanups from Thomas Gleixner: "This series does a tree wide cleanup of types related to timers/timekeeping. - Get rid of cycles_t and use a plain u64. The type is not really helpful and caused more confusion than clarity - Get rid of the ktime union. The union has become useless as we use the scalar nanoseconds storage unconditionally now. The 32bit timespec alike storage got removed due to the Y2038 limitations some time ago. That leaves the odd union access around for no reason. Clean it up. Both changes have been done with coccinelle and a small amount of manual mopping up" * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: ktime: Get rid of ktime_equal() ktime: Cleanup ktime_set() usage ktime: Get rid of the union clocksource: Use a plain u64 instead of cycle_t
337 lines
7.7 KiB
C
337 lines
7.7 KiB
C
/*
|
|
* Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
|
|
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
|
|
* programmed to go from @count to @limit and optionally interrupt.
|
|
* We've designated TIMER0 for clockevents and TIMER1 for clocksource
|
|
*
|
|
* ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
|
|
* which are suitable for UP and SMP based clocksources respectively
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
|
|
#include <soc/arc/timers.h>
|
|
#include <soc/arc/mcip.h>
|
|
|
|
|
|
static unsigned long arc_timer_freq;
|
|
|
|
static int noinline arc_get_timer_clk(struct device_node *node)
|
|
{
|
|
struct clk *clk;
|
|
int ret;
|
|
|
|
clk = of_clk_get(node, 0);
|
|
if (IS_ERR(clk)) {
|
|
pr_err("timer missing clk");
|
|
return PTR_ERR(clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(clk);
|
|
if (ret) {
|
|
pr_err("Couldn't enable parent clk\n");
|
|
return ret;
|
|
}
|
|
|
|
arc_timer_freq = clk_get_rate(clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/********** Clock Source Device *********/
|
|
|
|
#ifdef CONFIG_ARC_TIMERS_64BIT
|
|
|
|
static u64 arc_read_gfrc(struct clocksource *cs)
|
|
{
|
|
unsigned long flags;
|
|
u32 l, h;
|
|
|
|
local_irq_save(flags);
|
|
|
|
__mcip_cmd(CMD_GFRC_READ_LO, 0);
|
|
l = read_aux_reg(ARC_REG_MCIP_READBACK);
|
|
|
|
__mcip_cmd(CMD_GFRC_READ_HI, 0);
|
|
h = read_aux_reg(ARC_REG_MCIP_READBACK);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return (((u64)h) << 32) | l;
|
|
}
|
|
|
|
static struct clocksource arc_counter_gfrc = {
|
|
.name = "ARConnect GFRC",
|
|
.rating = 400,
|
|
.read = arc_read_gfrc,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static int __init arc_cs_setup_gfrc(struct device_node *node)
|
|
{
|
|
struct mcip_bcr mp;
|
|
int ret;
|
|
|
|
READ_BCR(ARC_REG_MCIP_BCR, mp);
|
|
if (!mp.gfrc) {
|
|
pr_warn("Global-64-bit-Ctr clocksource not detected");
|
|
return -ENXIO;
|
|
}
|
|
|
|
ret = arc_get_timer_clk(node);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
|
|
}
|
|
CLOCKSOURCE_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
|
|
|
|
#define AUX_RTC_CTRL 0x103
|
|
#define AUX_RTC_LOW 0x104
|
|
#define AUX_RTC_HIGH 0x105
|
|
|
|
static u64 arc_read_rtc(struct clocksource *cs)
|
|
{
|
|
unsigned long status;
|
|
u32 l, h;
|
|
|
|
/*
|
|
* hardware has an internal state machine which tracks readout of
|
|
* low/high and updates the CTRL.status if
|
|
* - interrupt/exception taken between the two reads
|
|
* - high increments after low has been read
|
|
*/
|
|
do {
|
|
l = read_aux_reg(AUX_RTC_LOW);
|
|
h = read_aux_reg(AUX_RTC_HIGH);
|
|
status = read_aux_reg(AUX_RTC_CTRL);
|
|
} while (!(status & _BITUL(31)));
|
|
|
|
return (((u64)h) << 32) | l;
|
|
}
|
|
|
|
static struct clocksource arc_counter_rtc = {
|
|
.name = "ARCv2 RTC",
|
|
.rating = 350,
|
|
.read = arc_read_rtc,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static int __init arc_cs_setup_rtc(struct device_node *node)
|
|
{
|
|
struct bcr_timer timer;
|
|
int ret;
|
|
|
|
READ_BCR(ARC_REG_TIMERS_BCR, timer);
|
|
if (!timer.rtc) {
|
|
pr_warn("Local-64-bit-Ctr clocksource not detected");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Local to CPU hence not usable in SMP */
|
|
if (IS_ENABLED(CONFIG_SMP)) {
|
|
pr_warn("Local-64-bit-Ctr not usable in SMP");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = arc_get_timer_clk(node);
|
|
if (ret)
|
|
return ret;
|
|
|
|
write_aux_reg(AUX_RTC_CTRL, 1);
|
|
|
|
return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
|
|
}
|
|
CLOCKSOURCE_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* 32bit TIMER1 to keep counting monotonically and wraparound
|
|
*/
|
|
|
|
static u64 arc_read_timer1(struct clocksource *cs)
|
|
{
|
|
return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
|
|
}
|
|
|
|
static struct clocksource arc_counter_timer1 = {
|
|
.name = "ARC Timer1",
|
|
.rating = 300,
|
|
.read = arc_read_timer1,
|
|
.mask = CLOCKSOURCE_MASK(32),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static int __init arc_cs_setup_timer1(struct device_node *node)
|
|
{
|
|
int ret;
|
|
|
|
/* Local to CPU hence not usable in SMP */
|
|
if (IS_ENABLED(CONFIG_SMP))
|
|
return -EINVAL;
|
|
|
|
ret = arc_get_timer_clk(node);
|
|
if (ret)
|
|
return ret;
|
|
|
|
write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
|
|
write_aux_reg(ARC_REG_TIMER1_CNT, 0);
|
|
write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
|
|
|
|
return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
|
|
}
|
|
|
|
/********** Clock Event Device *********/
|
|
|
|
static int arc_timer_irq;
|
|
|
|
/*
|
|
* Arm the timer to interrupt after @cycles
|
|
* The distinction for oneshot/periodic is done in arc_event_timer_ack() below
|
|
*/
|
|
static void arc_timer_event_setup(unsigned int cycles)
|
|
{
|
|
write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
|
|
write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
|
|
|
|
write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
|
|
}
|
|
|
|
|
|
static int arc_clkevent_set_next_event(unsigned long delta,
|
|
struct clock_event_device *dev)
|
|
{
|
|
arc_timer_event_setup(delta);
|
|
return 0;
|
|
}
|
|
|
|
static int arc_clkevent_set_periodic(struct clock_event_device *dev)
|
|
{
|
|
/*
|
|
* At X Hz, 1 sec = 1000ms -> X cycles;
|
|
* 10ms -> X / 100 cycles
|
|
*/
|
|
arc_timer_event_setup(arc_timer_freq / HZ);
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
|
|
.name = "ARC Timer0",
|
|
.features = CLOCK_EVT_FEAT_ONESHOT |
|
|
CLOCK_EVT_FEAT_PERIODIC,
|
|
.rating = 300,
|
|
.set_next_event = arc_clkevent_set_next_event,
|
|
.set_state_periodic = arc_clkevent_set_periodic,
|
|
};
|
|
|
|
static irqreturn_t timer_irq_handler(int irq, void *dev_id)
|
|
{
|
|
/*
|
|
* Note that generic IRQ core could have passed @evt for @dev_id if
|
|
* irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
|
|
*/
|
|
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
|
|
int irq_reenable = clockevent_state_periodic(evt);
|
|
|
|
/*
|
|
* Any write to CTRL reg ACks the interrupt, we rewrite the
|
|
* Count when [N]ot [H]alted bit.
|
|
* And re-arm it if perioid by [I]nterrupt [E]nable bit
|
|
*/
|
|
write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
|
|
|
|
evt->event_handler(evt);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
static int arc_timer_starting_cpu(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
|
|
|
|
evt->cpumask = cpumask_of(smp_processor_id());
|
|
|
|
clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
|
|
enable_percpu_irq(arc_timer_irq, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int arc_timer_dying_cpu(unsigned int cpu)
|
|
{
|
|
disable_percpu_irq(arc_timer_irq);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* clockevent setup for boot CPU
|
|
*/
|
|
static int __init arc_clockevent_setup(struct device_node *node)
|
|
{
|
|
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
|
|
int ret;
|
|
|
|
arc_timer_irq = irq_of_parse_and_map(node, 0);
|
|
if (arc_timer_irq <= 0) {
|
|
pr_err("clockevent: missing irq");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = arc_get_timer_clk(node);
|
|
if (ret) {
|
|
pr_err("clockevent: missing clk");
|
|
return ret;
|
|
}
|
|
|
|
/* Needs apriori irq_set_percpu_devid() done in intc map function */
|
|
ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
|
|
"Timer0 (per-cpu-tick)", evt);
|
|
if (ret) {
|
|
pr_err("clockevent: unable to request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
|
|
"clockevents/arc/timer:starting",
|
|
arc_timer_starting_cpu,
|
|
arc_timer_dying_cpu);
|
|
if (ret) {
|
|
pr_err("Failed to setup hotplug state");
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init arc_of_timer_init(struct device_node *np)
|
|
{
|
|
static int init_count = 0;
|
|
int ret;
|
|
|
|
if (!init_count) {
|
|
init_count = 1;
|
|
ret = arc_clockevent_setup(np);
|
|
} else {
|
|
ret = arc_cs_setup_timer1(np);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
CLOCKSOURCE_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
|