mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-15 09:34:17 +00:00
8b62f87bad
Right now we do a lot of weird hoops around outstanding_extents in order to keep the extent count consistent. This is because we logically transfer the outstanding_extent count from the initial reservation through the set_delalloc_bits. This makes it pretty difficult to get a handle on how and when we need to mess with outstanding_extents. Fix this by revamping the rules of how we deal with outstanding_extents. Now instead everybody that is holding on to a delalloc extent is required to increase the outstanding extents count for itself. This means we'll have something like this btrfs_delalloc_reserve_metadata - outstanding_extents = 1 btrfs_set_extent_delalloc - outstanding_extents = 2 btrfs_release_delalloc_extents - outstanding_extents = 1 for an initial file write. Now take the append write where we extend an existing delalloc range but still under the maximum extent size btrfs_delalloc_reserve_metadata - outstanding_extents = 2 btrfs_set_extent_delalloc btrfs_set_bit_hook - outstanding_extents = 3 btrfs_merge_extent_hook - outstanding_extents = 2 btrfs_delalloc_release_extents - outstanding_extnets = 1 In order to make the ordered extent transition we of course must now make ordered extents carry their own outstanding_extent reservation, so for cow_file_range we end up with btrfs_add_ordered_extent - outstanding_extents = 2 clear_extent_bit - outstanding_extents = 1 btrfs_remove_ordered_extent - outstanding_extents = 0 This makes all manipulations of outstanding_extents much more explicit. Every successful call to btrfs_delalloc_reserve_metadata _must_ now be combined with btrfs_release_delalloc_extents, even in the error case, as that is the only function that actually modifies the outstanding_extents counter. The drawback to this is now we are much more likely to have transient cases where outstanding_extents is much larger than it actually should be. This could happen before as we manipulated the delalloc bits, but now it happens basically at every write. This may put more pressure on the ENOSPC flushing code, but I think making this code simpler is worth the cost. I have another change coming to mitigate this side-effect somewhat. I also added trace points for the counter manipulation. These were used by a bpf script I wrote to help track down leak issues. Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
579 lines
15 KiB
C
579 lines
15 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "free-space-cache.h"
|
|
#include "inode-map.h"
|
|
#include "transaction.h"
|
|
|
|
static int caching_kthread(void *data)
|
|
{
|
|
struct btrfs_root *root = data;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
u64 last = (u64)-1;
|
|
int slot;
|
|
int ret;
|
|
|
|
if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/* Since the commit root is read-only, we can safely skip locking. */
|
|
path->skip_locking = 1;
|
|
path->search_commit_root = 1;
|
|
path->reada = READA_FORWARD;
|
|
|
|
key.objectid = BTRFS_FIRST_FREE_OBJECTID;
|
|
key.offset = 0;
|
|
key.type = BTRFS_INODE_ITEM_KEY;
|
|
again:
|
|
/* need to make sure the commit_root doesn't disappear */
|
|
down_read(&fs_info->commit_root_sem);
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
while (1) {
|
|
if (btrfs_fs_closing(fs_info))
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0)
|
|
break;
|
|
|
|
if (need_resched() ||
|
|
btrfs_transaction_in_commit(fs_info)) {
|
|
leaf = path->nodes[0];
|
|
|
|
if (WARN_ON(btrfs_header_nritems(leaf) == 0))
|
|
break;
|
|
|
|
/*
|
|
* Save the key so we can advances forward
|
|
* in the next search.
|
|
*/
|
|
btrfs_item_key_to_cpu(leaf, &key, 0);
|
|
btrfs_release_path(path);
|
|
root->ino_cache_progress = last;
|
|
up_read(&fs_info->commit_root_sem);
|
|
schedule_timeout(1);
|
|
goto again;
|
|
} else
|
|
continue;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
if (key.type != BTRFS_INODE_ITEM_KEY)
|
|
goto next;
|
|
|
|
if (key.objectid >= root->highest_objectid)
|
|
break;
|
|
|
|
if (last != (u64)-1 && last + 1 != key.objectid) {
|
|
__btrfs_add_free_space(fs_info, ctl, last + 1,
|
|
key.objectid - last - 1);
|
|
wake_up(&root->ino_cache_wait);
|
|
}
|
|
|
|
last = key.objectid;
|
|
next:
|
|
path->slots[0]++;
|
|
}
|
|
|
|
if (last < root->highest_objectid - 1) {
|
|
__btrfs_add_free_space(fs_info, ctl, last + 1,
|
|
root->highest_objectid - last - 1);
|
|
}
|
|
|
|
spin_lock(&root->ino_cache_lock);
|
|
root->ino_cache_state = BTRFS_CACHE_FINISHED;
|
|
spin_unlock(&root->ino_cache_lock);
|
|
|
|
root->ino_cache_progress = (u64)-1;
|
|
btrfs_unpin_free_ino(root);
|
|
out:
|
|
wake_up(&root->ino_cache_wait);
|
|
up_read(&fs_info->commit_root_sem);
|
|
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void start_caching(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
struct task_struct *tsk;
|
|
int ret;
|
|
u64 objectid;
|
|
|
|
if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
|
|
return;
|
|
|
|
spin_lock(&root->ino_cache_lock);
|
|
if (root->ino_cache_state != BTRFS_CACHE_NO) {
|
|
spin_unlock(&root->ino_cache_lock);
|
|
return;
|
|
}
|
|
|
|
root->ino_cache_state = BTRFS_CACHE_STARTED;
|
|
spin_unlock(&root->ino_cache_lock);
|
|
|
|
ret = load_free_ino_cache(fs_info, root);
|
|
if (ret == 1) {
|
|
spin_lock(&root->ino_cache_lock);
|
|
root->ino_cache_state = BTRFS_CACHE_FINISHED;
|
|
spin_unlock(&root->ino_cache_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* It can be quite time-consuming to fill the cache by searching
|
|
* through the extent tree, and this can keep ino allocation path
|
|
* waiting. Therefore at start we quickly find out the highest
|
|
* inode number and we know we can use inode numbers which fall in
|
|
* [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
|
|
*/
|
|
ret = btrfs_find_free_objectid(root, &objectid);
|
|
if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
|
|
__btrfs_add_free_space(fs_info, ctl, objectid,
|
|
BTRFS_LAST_FREE_OBJECTID - objectid + 1);
|
|
}
|
|
|
|
tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
|
|
root->root_key.objectid);
|
|
if (IS_ERR(tsk)) {
|
|
btrfs_warn(fs_info, "failed to start inode caching task");
|
|
btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
|
|
"disabling inode map caching");
|
|
}
|
|
}
|
|
|
|
int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
|
|
{
|
|
if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
|
|
return btrfs_find_free_objectid(root, objectid);
|
|
|
|
again:
|
|
*objectid = btrfs_find_ino_for_alloc(root);
|
|
|
|
if (*objectid != 0)
|
|
return 0;
|
|
|
|
start_caching(root);
|
|
|
|
wait_event(root->ino_cache_wait,
|
|
root->ino_cache_state == BTRFS_CACHE_FINISHED ||
|
|
root->free_ino_ctl->free_space > 0);
|
|
|
|
if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
|
|
root->free_ino_ctl->free_space == 0)
|
|
return -ENOSPC;
|
|
else
|
|
goto again;
|
|
}
|
|
|
|
void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
|
|
|
|
if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
|
|
return;
|
|
again:
|
|
if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
|
|
__btrfs_add_free_space(fs_info, pinned, objectid, 1);
|
|
} else {
|
|
down_write(&fs_info->commit_root_sem);
|
|
spin_lock(&root->ino_cache_lock);
|
|
if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
|
|
spin_unlock(&root->ino_cache_lock);
|
|
up_write(&fs_info->commit_root_sem);
|
|
goto again;
|
|
}
|
|
spin_unlock(&root->ino_cache_lock);
|
|
|
|
start_caching(root);
|
|
|
|
__btrfs_add_free_space(fs_info, pinned, objectid, 1);
|
|
|
|
up_write(&fs_info->commit_root_sem);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When a transaction is committed, we'll move those inode numbers which are
|
|
* smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
|
|
* others will just be dropped, because the commit root we were searching has
|
|
* changed.
|
|
*
|
|
* Must be called with root->fs_info->commit_root_sem held
|
|
*/
|
|
void btrfs_unpin_free_ino(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
|
|
spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
u64 count;
|
|
|
|
if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
|
|
return;
|
|
|
|
while (1) {
|
|
bool add_to_ctl = true;
|
|
|
|
spin_lock(rbroot_lock);
|
|
n = rb_first(rbroot);
|
|
if (!n) {
|
|
spin_unlock(rbroot_lock);
|
|
break;
|
|
}
|
|
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
BUG_ON(info->bitmap); /* Logic error */
|
|
|
|
if (info->offset > root->ino_cache_progress)
|
|
add_to_ctl = false;
|
|
else if (info->offset + info->bytes > root->ino_cache_progress)
|
|
count = root->ino_cache_progress - info->offset + 1;
|
|
else
|
|
count = info->bytes;
|
|
|
|
rb_erase(&info->offset_index, rbroot);
|
|
spin_unlock(rbroot_lock);
|
|
if (add_to_ctl)
|
|
__btrfs_add_free_space(root->fs_info, ctl,
|
|
info->offset, count);
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
}
|
|
}
|
|
|
|
#define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
|
|
#define INODES_PER_BITMAP (PAGE_SIZE * 8)
|
|
|
|
/*
|
|
* The goal is to keep the memory used by the free_ino tree won't
|
|
* exceed the memory if we use bitmaps only.
|
|
*/
|
|
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
int max_ino;
|
|
int max_bitmaps;
|
|
|
|
n = rb_last(&ctl->free_space_offset);
|
|
if (!n) {
|
|
ctl->extents_thresh = INIT_THRESHOLD;
|
|
return;
|
|
}
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
|
|
/*
|
|
* Find the maximum inode number in the filesystem. Note we
|
|
* ignore the fact that this can be a bitmap, because we are
|
|
* not doing precise calculation.
|
|
*/
|
|
max_ino = info->bytes - 1;
|
|
|
|
max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
|
|
if (max_bitmaps <= ctl->total_bitmaps) {
|
|
ctl->extents_thresh = 0;
|
|
return;
|
|
}
|
|
|
|
ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
|
|
PAGE_SIZE / sizeof(*info);
|
|
}
|
|
|
|
/*
|
|
* We don't fall back to bitmap, if we are below the extents threshold
|
|
* or this chunk of inode numbers is a big one.
|
|
*/
|
|
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
if (ctl->free_extents < ctl->extents_thresh ||
|
|
info->bytes > INODES_PER_BITMAP / 10)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static const struct btrfs_free_space_op free_ino_op = {
|
|
.recalc_thresholds = recalculate_thresholds,
|
|
.use_bitmap = use_bitmap,
|
|
};
|
|
|
|
static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
}
|
|
|
|
static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
/*
|
|
* We always use extents for two reasons:
|
|
*
|
|
* - The pinned tree is only used during the process of caching
|
|
* work.
|
|
* - Make code simpler. See btrfs_unpin_free_ino().
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
static const struct btrfs_free_space_op pinned_free_ino_op = {
|
|
.recalc_thresholds = pinned_recalc_thresholds,
|
|
.use_bitmap = pinned_use_bitmap,
|
|
};
|
|
|
|
void btrfs_init_free_ino_ctl(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
|
|
|
|
spin_lock_init(&ctl->tree_lock);
|
|
ctl->unit = 1;
|
|
ctl->start = 0;
|
|
ctl->private = NULL;
|
|
ctl->op = &free_ino_op;
|
|
INIT_LIST_HEAD(&ctl->trimming_ranges);
|
|
mutex_init(&ctl->cache_writeout_mutex);
|
|
|
|
/*
|
|
* Initially we allow to use 16K of ram to cache chunks of
|
|
* inode numbers before we resort to bitmaps. This is somewhat
|
|
* arbitrary, but it will be adjusted in runtime.
|
|
*/
|
|
ctl->extents_thresh = INIT_THRESHOLD;
|
|
|
|
spin_lock_init(&pinned->tree_lock);
|
|
pinned->unit = 1;
|
|
pinned->start = 0;
|
|
pinned->private = NULL;
|
|
pinned->extents_thresh = 0;
|
|
pinned->op = &pinned_free_ino_op;
|
|
}
|
|
|
|
int btrfs_save_ino_cache(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
struct btrfs_path *path;
|
|
struct inode *inode;
|
|
struct btrfs_block_rsv *rsv;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
u64 num_bytes;
|
|
u64 alloc_hint = 0;
|
|
int ret;
|
|
int prealloc;
|
|
bool retry = false;
|
|
|
|
/* only fs tree and subvol/snap needs ino cache */
|
|
if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
|
|
(root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
|
|
root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
|
|
return 0;
|
|
|
|
/* Don't save inode cache if we are deleting this root */
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
return 0;
|
|
|
|
if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
rsv = trans->block_rsv;
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
|
|
num_bytes = trans->bytes_reserved;
|
|
/*
|
|
* 1 item for inode item insertion if need
|
|
* 4 items for inode item update (in the worst case)
|
|
* 1 items for slack space if we need do truncation
|
|
* 1 item for free space object
|
|
* 3 items for pre-allocation
|
|
*/
|
|
trans->bytes_reserved = btrfs_calc_trans_metadata_size(fs_info, 10);
|
|
ret = btrfs_block_rsv_add(root, trans->block_rsv,
|
|
trans->bytes_reserved,
|
|
BTRFS_RESERVE_NO_FLUSH);
|
|
if (ret)
|
|
goto out;
|
|
trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
|
|
trans->bytes_reserved, 1);
|
|
again:
|
|
inode = lookup_free_ino_inode(root, path);
|
|
if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
|
|
ret = PTR_ERR(inode);
|
|
goto out_release;
|
|
}
|
|
|
|
if (IS_ERR(inode)) {
|
|
BUG_ON(retry); /* Logic error */
|
|
retry = true;
|
|
|
|
ret = create_free_ino_inode(root, trans, path);
|
|
if (ret)
|
|
goto out_release;
|
|
goto again;
|
|
}
|
|
|
|
BTRFS_I(inode)->generation = 0;
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_put;
|
|
}
|
|
|
|
if (i_size_read(inode) > 0) {
|
|
ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_put;
|
|
}
|
|
}
|
|
|
|
spin_lock(&root->ino_cache_lock);
|
|
if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
|
|
ret = -1;
|
|
spin_unlock(&root->ino_cache_lock);
|
|
goto out_put;
|
|
}
|
|
spin_unlock(&root->ino_cache_lock);
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
|
|
prealloc = ALIGN(prealloc, PAGE_SIZE);
|
|
prealloc += ctl->total_bitmaps * PAGE_SIZE;
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
/* Just to make sure we have enough space */
|
|
prealloc += 8 * PAGE_SIZE;
|
|
|
|
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc);
|
|
if (ret)
|
|
goto out_put;
|
|
|
|
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
|
|
prealloc, prealloc, &alloc_hint);
|
|
if (ret) {
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
|
|
goto out_put;
|
|
}
|
|
|
|
ret = btrfs_write_out_ino_cache(root, trans, path, inode);
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
|
|
out_put:
|
|
iput(inode);
|
|
out_release:
|
|
trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
|
|
trans->bytes_reserved, 0);
|
|
btrfs_block_rsv_release(fs_info, trans->block_rsv,
|
|
trans->bytes_reserved);
|
|
out:
|
|
trans->block_rsv = rsv;
|
|
trans->bytes_reserved = num_bytes;
|
|
|
|
btrfs_free_path(path);
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct extent_buffer *l;
|
|
struct btrfs_key search_key;
|
|
struct btrfs_key found_key;
|
|
int slot;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
|
|
search_key.type = -1;
|
|
search_key.offset = (u64)-1;
|
|
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
BUG_ON(ret == 0); /* Corruption */
|
|
if (path->slots[0] > 0) {
|
|
slot = path->slots[0] - 1;
|
|
l = path->nodes[0];
|
|
btrfs_item_key_to_cpu(l, &found_key, slot);
|
|
*objectid = max_t(u64, found_key.objectid,
|
|
BTRFS_FIRST_FREE_OBJECTID - 1);
|
|
} else {
|
|
*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
|
|
{
|
|
int ret;
|
|
mutex_lock(&root->objectid_mutex);
|
|
|
|
if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
|
|
btrfs_warn(root->fs_info,
|
|
"the objectid of root %llu reaches its highest value",
|
|
root->root_key.objectid);
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
*objectid = ++root->highest_objectid;
|
|
ret = 0;
|
|
out:
|
|
mutex_unlock(&root->objectid_mutex);
|
|
return ret;
|
|
}
|