mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-07 22:03:14 +00:00
54781938ec
The ADRL pseudo instruction is not an architectural construct, but a convenience macro that was supported by the ARM proprietary assembler and adopted by binutils GAS as well, but only when assembling in 32-bit ARM mode. Therefore, it can only be used in assembler code that is known to assemble in ARM mode only, but as it turns out, the Clang assembler does not implement ADRL at all, and so it is better to get rid of it entirely. So replace the ADRL instruction with a ADR instruction that refers to a nearer symbol, and apply the delta explicitly using an additional instruction. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
725 lines
18 KiB
Prolog
725 lines
18 KiB
Prolog
#!/usr/bin/env perl
|
|
# SPDX-License-Identifier: GPL-2.0
|
|
|
|
# This code is taken from the OpenSSL project but the author (Andy Polyakov)
|
|
# has relicensed it under the GPLv2. Therefore this program is free software;
|
|
# you can redistribute it and/or modify it under the terms of the GNU General
|
|
# Public License version 2 as published by the Free Software Foundation.
|
|
#
|
|
# The original headers, including the original license headers, are
|
|
# included below for completeness.
|
|
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see https://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
|
|
# SHA256 block procedure for ARMv4. May 2007.
|
|
|
|
# Performance is ~2x better than gcc 3.4 generated code and in "abso-
|
|
# lute" terms is ~2250 cycles per 64-byte block or ~35 cycles per
|
|
# byte [on single-issue Xscale PXA250 core].
|
|
|
|
# July 2010.
|
|
#
|
|
# Rescheduling for dual-issue pipeline resulted in 22% improvement on
|
|
# Cortex A8 core and ~20 cycles per processed byte.
|
|
|
|
# February 2011.
|
|
#
|
|
# Profiler-assisted and platform-specific optimization resulted in 16%
|
|
# improvement on Cortex A8 core and ~15.4 cycles per processed byte.
|
|
|
|
# September 2013.
|
|
#
|
|
# Add NEON implementation. On Cortex A8 it was measured to process one
|
|
# byte in 12.5 cycles or 23% faster than integer-only code. Snapdragon
|
|
# S4 does it in 12.5 cycles too, but it's 50% faster than integer-only
|
|
# code (meaning that latter performs sub-optimally, nothing was done
|
|
# about it).
|
|
|
|
# May 2014.
|
|
#
|
|
# Add ARMv8 code path performing at 2.0 cpb on Apple A7.
|
|
|
|
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
|
|
open STDOUT,">$output";
|
|
|
|
$ctx="r0"; $t0="r0";
|
|
$inp="r1"; $t4="r1";
|
|
$len="r2"; $t1="r2";
|
|
$T1="r3"; $t3="r3";
|
|
$A="r4";
|
|
$B="r5";
|
|
$C="r6";
|
|
$D="r7";
|
|
$E="r8";
|
|
$F="r9";
|
|
$G="r10";
|
|
$H="r11";
|
|
@V=($A,$B,$C,$D,$E,$F,$G,$H);
|
|
$t2="r12";
|
|
$Ktbl="r14";
|
|
|
|
@Sigma0=( 2,13,22);
|
|
@Sigma1=( 6,11,25);
|
|
@sigma0=( 7,18, 3);
|
|
@sigma1=(17,19,10);
|
|
|
|
sub BODY_00_15 {
|
|
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
|
|
|
|
$code.=<<___ if ($i<16);
|
|
#if __ARM_ARCH__>=7
|
|
@ ldr $t1,[$inp],#4 @ $i
|
|
# if $i==15
|
|
str $inp,[sp,#17*4] @ make room for $t4
|
|
# endif
|
|
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
|
|
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
|
|
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
|
|
# ifndef __ARMEB__
|
|
rev $t1,$t1
|
|
# endif
|
|
#else
|
|
@ ldrb $t1,[$inp,#3] @ $i
|
|
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
|
|
ldrb $t2,[$inp,#2]
|
|
ldrb $t0,[$inp,#1]
|
|
orr $t1,$t1,$t2,lsl#8
|
|
ldrb $t2,[$inp],#4
|
|
orr $t1,$t1,$t0,lsl#16
|
|
# if $i==15
|
|
str $inp,[sp,#17*4] @ make room for $t4
|
|
# endif
|
|
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
|
|
orr $t1,$t1,$t2,lsl#24
|
|
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
|
|
#endif
|
|
___
|
|
$code.=<<___;
|
|
ldr $t2,[$Ktbl],#4 @ *K256++
|
|
add $h,$h,$t1 @ h+=X[i]
|
|
str $t1,[sp,#`$i%16`*4]
|
|
eor $t1,$f,$g
|
|
add $h,$h,$t0,ror#$Sigma1[0] @ h+=Sigma1(e)
|
|
and $t1,$t1,$e
|
|
add $h,$h,$t2 @ h+=K256[i]
|
|
eor $t1,$t1,$g @ Ch(e,f,g)
|
|
eor $t0,$a,$a,ror#`$Sigma0[1]-$Sigma0[0]`
|
|
add $h,$h,$t1 @ h+=Ch(e,f,g)
|
|
#if $i==31
|
|
and $t2,$t2,#0xff
|
|
cmp $t2,#0xf2 @ done?
|
|
#endif
|
|
#if $i<15
|
|
# if __ARM_ARCH__>=7
|
|
ldr $t1,[$inp],#4 @ prefetch
|
|
# else
|
|
ldrb $t1,[$inp,#3]
|
|
# endif
|
|
eor $t2,$a,$b @ a^b, b^c in next round
|
|
#else
|
|
ldr $t1,[sp,#`($i+2)%16`*4] @ from future BODY_16_xx
|
|
eor $t2,$a,$b @ a^b, b^c in next round
|
|
ldr $t4,[sp,#`($i+15)%16`*4] @ from future BODY_16_xx
|
|
#endif
|
|
eor $t0,$t0,$a,ror#`$Sigma0[2]-$Sigma0[0]` @ Sigma0(a)
|
|
and $t3,$t3,$t2 @ (b^c)&=(a^b)
|
|
add $d,$d,$h @ d+=h
|
|
eor $t3,$t3,$b @ Maj(a,b,c)
|
|
add $h,$h,$t0,ror#$Sigma0[0] @ h+=Sigma0(a)
|
|
@ add $h,$h,$t3 @ h+=Maj(a,b,c)
|
|
___
|
|
($t2,$t3)=($t3,$t2);
|
|
}
|
|
|
|
sub BODY_16_XX {
|
|
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
|
|
|
|
$code.=<<___;
|
|
@ ldr $t1,[sp,#`($i+1)%16`*4] @ $i
|
|
@ ldr $t4,[sp,#`($i+14)%16`*4]
|
|
mov $t0,$t1,ror#$sigma0[0]
|
|
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
|
|
mov $t2,$t4,ror#$sigma1[0]
|
|
eor $t0,$t0,$t1,ror#$sigma0[1]
|
|
eor $t2,$t2,$t4,ror#$sigma1[1]
|
|
eor $t0,$t0,$t1,lsr#$sigma0[2] @ sigma0(X[i+1])
|
|
ldr $t1,[sp,#`($i+0)%16`*4]
|
|
eor $t2,$t2,$t4,lsr#$sigma1[2] @ sigma1(X[i+14])
|
|
ldr $t4,[sp,#`($i+9)%16`*4]
|
|
|
|
add $t2,$t2,$t0
|
|
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` @ from BODY_00_15
|
|
add $t1,$t1,$t2
|
|
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
|
|
add $t1,$t1,$t4 @ X[i]
|
|
___
|
|
&BODY_00_15(@_);
|
|
}
|
|
|
|
$code=<<___;
|
|
#ifndef __KERNEL__
|
|
# include "arm_arch.h"
|
|
#else
|
|
# define __ARM_ARCH__ __LINUX_ARM_ARCH__
|
|
# define __ARM_MAX_ARCH__ 7
|
|
#endif
|
|
|
|
.text
|
|
#if __ARM_ARCH__<7
|
|
.code 32
|
|
#else
|
|
.syntax unified
|
|
# ifdef __thumb2__
|
|
.thumb
|
|
# else
|
|
.code 32
|
|
# endif
|
|
#endif
|
|
|
|
.type K256,%object
|
|
.align 5
|
|
K256:
|
|
.word 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
|
|
.word 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
|
|
.word 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
|
|
.word 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
|
|
.word 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
|
|
.word 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
|
|
.word 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
|
|
.word 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
|
|
.word 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
|
|
.word 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
|
|
.word 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
|
|
.word 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
|
|
.word 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
|
|
.word 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
|
|
.word 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
|
|
.word 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
|
|
.size K256,.-K256
|
|
.word 0 @ terminator
|
|
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
|
|
.LOPENSSL_armcap:
|
|
.word OPENSSL_armcap_P-sha256_block_data_order
|
|
#endif
|
|
.align 5
|
|
|
|
.global sha256_block_data_order
|
|
.type sha256_block_data_order,%function
|
|
sha256_block_data_order:
|
|
.Lsha256_block_data_order:
|
|
#if __ARM_ARCH__<7
|
|
sub r3,pc,#8 @ sha256_block_data_order
|
|
#else
|
|
adr r3,.Lsha256_block_data_order
|
|
#endif
|
|
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
|
|
ldr r12,.LOPENSSL_armcap
|
|
ldr r12,[r3,r12] @ OPENSSL_armcap_P
|
|
tst r12,#ARMV8_SHA256
|
|
bne .LARMv8
|
|
tst r12,#ARMV7_NEON
|
|
bne .LNEON
|
|
#endif
|
|
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
|
|
stmdb sp!,{$ctx,$inp,$len,r4-r11,lr}
|
|
ldmia $ctx,{$A,$B,$C,$D,$E,$F,$G,$H}
|
|
sub $Ktbl,r3,#256+32 @ K256
|
|
sub sp,sp,#16*4 @ alloca(X[16])
|
|
.Loop:
|
|
# if __ARM_ARCH__>=7
|
|
ldr $t1,[$inp],#4
|
|
# else
|
|
ldrb $t1,[$inp,#3]
|
|
# endif
|
|
eor $t3,$B,$C @ magic
|
|
eor $t2,$t2,$t2
|
|
___
|
|
for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=".Lrounds_16_xx:\n";
|
|
for (;$i<32;$i++) { &BODY_16_XX($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=<<___;
|
|
#if __ARM_ARCH__>=7
|
|
ite eq @ Thumb2 thing, sanity check in ARM
|
|
#endif
|
|
ldreq $t3,[sp,#16*4] @ pull ctx
|
|
bne .Lrounds_16_xx
|
|
|
|
add $A,$A,$t2 @ h+=Maj(a,b,c) from the past
|
|
ldr $t0,[$t3,#0]
|
|
ldr $t1,[$t3,#4]
|
|
ldr $t2,[$t3,#8]
|
|
add $A,$A,$t0
|
|
ldr $t0,[$t3,#12]
|
|
add $B,$B,$t1
|
|
ldr $t1,[$t3,#16]
|
|
add $C,$C,$t2
|
|
ldr $t2,[$t3,#20]
|
|
add $D,$D,$t0
|
|
ldr $t0,[$t3,#24]
|
|
add $E,$E,$t1
|
|
ldr $t1,[$t3,#28]
|
|
add $F,$F,$t2
|
|
ldr $inp,[sp,#17*4] @ pull inp
|
|
ldr $t2,[sp,#18*4] @ pull inp+len
|
|
add $G,$G,$t0
|
|
add $H,$H,$t1
|
|
stmia $t3,{$A,$B,$C,$D,$E,$F,$G,$H}
|
|
cmp $inp,$t2
|
|
sub $Ktbl,$Ktbl,#256 @ rewind Ktbl
|
|
bne .Loop
|
|
|
|
add sp,sp,#`16+3`*4 @ destroy frame
|
|
#if __ARM_ARCH__>=5
|
|
ldmia sp!,{r4-r11,pc}
|
|
#else
|
|
ldmia sp!,{r4-r11,lr}
|
|
tst lr,#1
|
|
moveq pc,lr @ be binary compatible with V4, yet
|
|
bx lr @ interoperable with Thumb ISA:-)
|
|
#endif
|
|
.size sha256_block_data_order,.-sha256_block_data_order
|
|
___
|
|
######################################################################
|
|
# NEON stuff
|
|
#
|
|
{{{
|
|
my @X=map("q$_",(0..3));
|
|
my ($T0,$T1,$T2,$T3,$T4,$T5)=("q8","q9","q10","q11","d24","d25");
|
|
my $Xfer=$t4;
|
|
my $j=0;
|
|
|
|
sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; }
|
|
sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; }
|
|
|
|
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
|
|
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
|
|
my $arg = pop;
|
|
$arg = "#$arg" if ($arg*1 eq $arg);
|
|
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
|
|
}
|
|
|
|
sub Xupdate()
|
|
{ use integer;
|
|
my $body = shift;
|
|
my @insns = (&$body,&$body,&$body,&$body);
|
|
my ($a,$b,$c,$d,$e,$f,$g,$h);
|
|
|
|
&vext_8 ($T0,@X[0],@X[1],4); # X[1..4]
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vext_8 ($T1,@X[2],@X[3],4); # X[9..12]
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T2,$T0,$sigma0[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += X[9..12]
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T1,$T0,$sigma0[2]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vsli_32 ($T2,$T0,32-$sigma0[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T3,$T0,$sigma0[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&veor ($T1,$T1,$T2);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vsli_32 ($T3,$T0,32-$sigma0[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&veor ($T1,$T1,$T3); # sigma0(X[1..4])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T5,&Dhi(@X[3]),$sigma1[2]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&veor ($T5,$T5,$T4);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&veor ($T5,$T5,$T4); # sigma1(X[14..15])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vadd_i32 (&Dlo(@X[0]),&Dlo(@X[0]),$T5);# X[0..1] += sigma1(X[14..15])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T5,&Dlo(@X[0]),$sigma1[2]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&veor ($T5,$T5,$T4);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vld1_32 ("{$T0}","[$Ktbl,:128]!");
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&veor ($T5,$T5,$T4); # sigma1(X[16..17])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vadd_i32 (&Dhi(@X[0]),&Dhi(@X[0]),$T5);# X[2..3] += sigma1(X[16..17])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vadd_i32 ($T0,$T0,@X[0]);
|
|
while($#insns>=2) { eval(shift(@insns)); }
|
|
&vst1_32 ("{$T0}","[$Xfer,:128]!");
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
|
|
push(@X,shift(@X)); # "rotate" X[]
|
|
}
|
|
|
|
sub Xpreload()
|
|
{ use integer;
|
|
my $body = shift;
|
|
my @insns = (&$body,&$body,&$body,&$body);
|
|
my ($a,$b,$c,$d,$e,$f,$g,$h);
|
|
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vld1_32 ("{$T0}","[$Ktbl,:128]!");
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vrev32_8 (@X[0],@X[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&vadd_i32 ($T0,$T0,@X[0]);
|
|
foreach (@insns) { eval; } # remaining instructions
|
|
&vst1_32 ("{$T0}","[$Xfer,:128]!");
|
|
|
|
push(@X,shift(@X)); # "rotate" X[]
|
|
}
|
|
|
|
sub body_00_15 () {
|
|
(
|
|
'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
|
|
'&add ($h,$h,$t1)', # h+=X[i]+K[i]
|
|
'&eor ($t1,$f,$g)',
|
|
'&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
|
|
'&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
|
|
'&and ($t1,$t1,$e)',
|
|
'&eor ($t2,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
|
|
'&eor ($t0,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
|
|
'&eor ($t1,$t1,$g)', # Ch(e,f,g)
|
|
'&add ($h,$h,$t2,"ror#$Sigma1[0]")', # h+=Sigma1(e)
|
|
'&eor ($t2,$a,$b)', # a^b, b^c in next round
|
|
'&eor ($t0,$t0,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
|
|
'&add ($h,$h,$t1)', # h+=Ch(e,f,g)
|
|
'&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
|
|
'&ldr ($t1,"[$Ktbl]") if ($j==15);'.
|
|
'&ldr ($t1,"[sp,#64]") if ($j==31)',
|
|
'&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
|
|
'&add ($d,$d,$h)', # d+=h
|
|
'&add ($h,$h,$t0,"ror#$Sigma0[0]");'. # h+=Sigma0(a)
|
|
'&eor ($t3,$t3,$b)', # Maj(a,b,c)
|
|
'$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
|
|
)
|
|
}
|
|
|
|
$code.=<<___;
|
|
#if __ARM_MAX_ARCH__>=7
|
|
.arch armv7-a
|
|
.fpu neon
|
|
|
|
.global sha256_block_data_order_neon
|
|
.type sha256_block_data_order_neon,%function
|
|
.align 4
|
|
sha256_block_data_order_neon:
|
|
.LNEON:
|
|
stmdb sp!,{r4-r12,lr}
|
|
|
|
sub $H,sp,#16*4+16
|
|
adr $Ktbl,.Lsha256_block_data_order
|
|
sub $Ktbl,$Ktbl,#.Lsha256_block_data_order-K256
|
|
bic $H,$H,#15 @ align for 128-bit stores
|
|
mov $t2,sp
|
|
mov sp,$H @ alloca
|
|
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
|
|
|
|
vld1.8 {@X[0]},[$inp]!
|
|
vld1.8 {@X[1]},[$inp]!
|
|
vld1.8 {@X[2]},[$inp]!
|
|
vld1.8 {@X[3]},[$inp]!
|
|
vld1.32 {$T0},[$Ktbl,:128]!
|
|
vld1.32 {$T1},[$Ktbl,:128]!
|
|
vld1.32 {$T2},[$Ktbl,:128]!
|
|
vld1.32 {$T3},[$Ktbl,:128]!
|
|
vrev32.8 @X[0],@X[0] @ yes, even on
|
|
str $ctx,[sp,#64]
|
|
vrev32.8 @X[1],@X[1] @ big-endian
|
|
str $inp,[sp,#68]
|
|
mov $Xfer,sp
|
|
vrev32.8 @X[2],@X[2]
|
|
str $len,[sp,#72]
|
|
vrev32.8 @X[3],@X[3]
|
|
str $t2,[sp,#76] @ save original sp
|
|
vadd.i32 $T0,$T0,@X[0]
|
|
vadd.i32 $T1,$T1,@X[1]
|
|
vst1.32 {$T0},[$Xfer,:128]!
|
|
vadd.i32 $T2,$T2,@X[2]
|
|
vst1.32 {$T1},[$Xfer,:128]!
|
|
vadd.i32 $T3,$T3,@X[3]
|
|
vst1.32 {$T2},[$Xfer,:128]!
|
|
vst1.32 {$T3},[$Xfer,:128]!
|
|
|
|
ldmia $ctx,{$A-$H}
|
|
sub $Xfer,$Xfer,#64
|
|
ldr $t1,[sp,#0]
|
|
eor $t2,$t2,$t2
|
|
eor $t3,$B,$C
|
|
b .L_00_48
|
|
|
|
.align 4
|
|
.L_00_48:
|
|
___
|
|
&Xupdate(\&body_00_15);
|
|
&Xupdate(\&body_00_15);
|
|
&Xupdate(\&body_00_15);
|
|
&Xupdate(\&body_00_15);
|
|
$code.=<<___;
|
|
teq $t1,#0 @ check for K256 terminator
|
|
ldr $t1,[sp,#0]
|
|
sub $Xfer,$Xfer,#64
|
|
bne .L_00_48
|
|
|
|
ldr $inp,[sp,#68]
|
|
ldr $t0,[sp,#72]
|
|
sub $Ktbl,$Ktbl,#256 @ rewind $Ktbl
|
|
teq $inp,$t0
|
|
it eq
|
|
subeq $inp,$inp,#64 @ avoid SEGV
|
|
vld1.8 {@X[0]},[$inp]! @ load next input block
|
|
vld1.8 {@X[1]},[$inp]!
|
|
vld1.8 {@X[2]},[$inp]!
|
|
vld1.8 {@X[3]},[$inp]!
|
|
it ne
|
|
strne $inp,[sp,#68]
|
|
mov $Xfer,sp
|
|
___
|
|
&Xpreload(\&body_00_15);
|
|
&Xpreload(\&body_00_15);
|
|
&Xpreload(\&body_00_15);
|
|
&Xpreload(\&body_00_15);
|
|
$code.=<<___;
|
|
ldr $t0,[$t1,#0]
|
|
add $A,$A,$t2 @ h+=Maj(a,b,c) from the past
|
|
ldr $t2,[$t1,#4]
|
|
ldr $t3,[$t1,#8]
|
|
ldr $t4,[$t1,#12]
|
|
add $A,$A,$t0 @ accumulate
|
|
ldr $t0,[$t1,#16]
|
|
add $B,$B,$t2
|
|
ldr $t2,[$t1,#20]
|
|
add $C,$C,$t3
|
|
ldr $t3,[$t1,#24]
|
|
add $D,$D,$t4
|
|
ldr $t4,[$t1,#28]
|
|
add $E,$E,$t0
|
|
str $A,[$t1],#4
|
|
add $F,$F,$t2
|
|
str $B,[$t1],#4
|
|
add $G,$G,$t3
|
|
str $C,[$t1],#4
|
|
add $H,$H,$t4
|
|
str $D,[$t1],#4
|
|
stmia $t1,{$E-$H}
|
|
|
|
ittte ne
|
|
movne $Xfer,sp
|
|
ldrne $t1,[sp,#0]
|
|
eorne $t2,$t2,$t2
|
|
ldreq sp,[sp,#76] @ restore original sp
|
|
itt ne
|
|
eorne $t3,$B,$C
|
|
bne .L_00_48
|
|
|
|
ldmia sp!,{r4-r12,pc}
|
|
.size sha256_block_data_order_neon,.-sha256_block_data_order_neon
|
|
#endif
|
|
___
|
|
}}}
|
|
######################################################################
|
|
# ARMv8 stuff
|
|
#
|
|
{{{
|
|
my ($ABCD,$EFGH,$abcd)=map("q$_",(0..2));
|
|
my @MSG=map("q$_",(8..11));
|
|
my ($W0,$W1,$ABCD_SAVE,$EFGH_SAVE)=map("q$_",(12..15));
|
|
my $Ktbl="r3";
|
|
|
|
$code.=<<___;
|
|
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
|
|
|
|
# ifdef __thumb2__
|
|
# define INST(a,b,c,d) .byte c,d|0xc,a,b
|
|
# else
|
|
# define INST(a,b,c,d) .byte a,b,c,d
|
|
# endif
|
|
|
|
.type sha256_block_data_order_armv8,%function
|
|
.align 5
|
|
sha256_block_data_order_armv8:
|
|
.LARMv8:
|
|
vld1.32 {$ABCD,$EFGH},[$ctx]
|
|
# ifdef __thumb2__
|
|
adr $Ktbl,.LARMv8
|
|
sub $Ktbl,$Ktbl,#.LARMv8-K256
|
|
# else
|
|
adrl $Ktbl,K256
|
|
# endif
|
|
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
|
|
|
|
.Loop_v8:
|
|
vld1.8 {@MSG[0]-@MSG[1]},[$inp]!
|
|
vld1.8 {@MSG[2]-@MSG[3]},[$inp]!
|
|
vld1.32 {$W0},[$Ktbl]!
|
|
vrev32.8 @MSG[0],@MSG[0]
|
|
vrev32.8 @MSG[1],@MSG[1]
|
|
vrev32.8 @MSG[2],@MSG[2]
|
|
vrev32.8 @MSG[3],@MSG[3]
|
|
vmov $ABCD_SAVE,$ABCD @ offload
|
|
vmov $EFGH_SAVE,$EFGH
|
|
teq $inp,$len
|
|
___
|
|
for($i=0;$i<12;$i++) {
|
|
$code.=<<___;
|
|
vld1.32 {$W1},[$Ktbl]!
|
|
vadd.i32 $W0,$W0,@MSG[0]
|
|
sha256su0 @MSG[0],@MSG[1]
|
|
vmov $abcd,$ABCD
|
|
sha256h $ABCD,$EFGH,$W0
|
|
sha256h2 $EFGH,$abcd,$W0
|
|
sha256su1 @MSG[0],@MSG[2],@MSG[3]
|
|
___
|
|
($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
|
|
}
|
|
$code.=<<___;
|
|
vld1.32 {$W1},[$Ktbl]!
|
|
vadd.i32 $W0,$W0,@MSG[0]
|
|
vmov $abcd,$ABCD
|
|
sha256h $ABCD,$EFGH,$W0
|
|
sha256h2 $EFGH,$abcd,$W0
|
|
|
|
vld1.32 {$W0},[$Ktbl]!
|
|
vadd.i32 $W1,$W1,@MSG[1]
|
|
vmov $abcd,$ABCD
|
|
sha256h $ABCD,$EFGH,$W1
|
|
sha256h2 $EFGH,$abcd,$W1
|
|
|
|
vld1.32 {$W1},[$Ktbl]
|
|
vadd.i32 $W0,$W0,@MSG[2]
|
|
sub $Ktbl,$Ktbl,#256-16 @ rewind
|
|
vmov $abcd,$ABCD
|
|
sha256h $ABCD,$EFGH,$W0
|
|
sha256h2 $EFGH,$abcd,$W0
|
|
|
|
vadd.i32 $W1,$W1,@MSG[3]
|
|
vmov $abcd,$ABCD
|
|
sha256h $ABCD,$EFGH,$W1
|
|
sha256h2 $EFGH,$abcd,$W1
|
|
|
|
vadd.i32 $ABCD,$ABCD,$ABCD_SAVE
|
|
vadd.i32 $EFGH,$EFGH,$EFGH_SAVE
|
|
it ne
|
|
bne .Loop_v8
|
|
|
|
vst1.32 {$ABCD,$EFGH},[$ctx]
|
|
|
|
ret @ bx lr
|
|
.size sha256_block_data_order_armv8,.-sha256_block_data_order_armv8
|
|
#endif
|
|
___
|
|
}}}
|
|
$code.=<<___;
|
|
.asciz "SHA256 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
|
|
.align 2
|
|
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
|
|
.comm OPENSSL_armcap_P,4,4
|
|
#endif
|
|
___
|
|
|
|
open SELF,$0;
|
|
while(<SELF>) {
|
|
next if (/^#!/);
|
|
last if (!s/^#/@/ and !/^$/);
|
|
print;
|
|
}
|
|
close SELF;
|
|
|
|
{ my %opcode = (
|
|
"sha256h" => 0xf3000c40, "sha256h2" => 0xf3100c40,
|
|
"sha256su0" => 0xf3ba03c0, "sha256su1" => 0xf3200c40 );
|
|
|
|
sub unsha256 {
|
|
my ($mnemonic,$arg)=@_;
|
|
|
|
if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) {
|
|
my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19)
|
|
|(($2&7)<<17)|(($2&8)<<4)
|
|
|(($3&7)<<1) |(($3&8)<<2);
|
|
# since ARMv7 instructions are always encoded little-endian.
|
|
# correct solution is to use .inst directive, but older
|
|
# assemblers don't implement it:-(
|
|
sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s",
|
|
$word&0xff,($word>>8)&0xff,
|
|
($word>>16)&0xff,($word>>24)&0xff,
|
|
$mnemonic,$arg;
|
|
}
|
|
}
|
|
}
|
|
|
|
foreach (split($/,$code)) {
|
|
|
|
s/\`([^\`]*)\`/eval $1/geo;
|
|
|
|
s/\b(sha256\w+)\s+(q.*)/unsha256($1,$2)/geo;
|
|
|
|
s/\bret\b/bx lr/go or
|
|
s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
|
|
|
|
print $_,"\n";
|
|
}
|
|
|
|
close STDOUT; # enforce flush
|