mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-12 16:19:53 +00:00
1eb82ef873
The only user in the zoned remap code is gone now, so remove the argument. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
4446 lines
132 KiB
C
4446 lines
132 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/sizes.h>
|
|
#include <linux/list_sort.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "block-group.h"
|
|
#include "space-info.h"
|
|
#include "disk-io.h"
|
|
#include "free-space-cache.h"
|
|
#include "free-space-tree.h"
|
|
#include "volumes.h"
|
|
#include "transaction.h"
|
|
#include "ref-verify.h"
|
|
#include "sysfs.h"
|
|
#include "tree-log.h"
|
|
#include "delalloc-space.h"
|
|
#include "discard.h"
|
|
#include "raid56.h"
|
|
#include "zoned.h"
|
|
#include "fs.h"
|
|
#include "accessors.h"
|
|
#include "extent-tree.h"
|
|
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
|
|
{
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
|
|
return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
|
|
block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
|
|
(btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
|
|
block_group->flags & BTRFS_BLOCK_GROUP_DATA);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Return target flags in extended format or 0 if restripe for this chunk_type
|
|
* is not in progress
|
|
*
|
|
* Should be called with balance_lock held
|
|
*/
|
|
static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
|
|
{
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
u64 target = 0;
|
|
|
|
if (!bctl)
|
|
return 0;
|
|
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA &&
|
|
bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
|
|
target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
|
|
} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
|
|
bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
|
|
target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
|
|
} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
|
|
bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
|
|
target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
|
|
}
|
|
|
|
return target;
|
|
}
|
|
|
|
/*
|
|
* @flags: available profiles in extended format (see ctree.h)
|
|
*
|
|
* Return reduced profile in chunk format. If profile changing is in progress
|
|
* (either running or paused) picks the target profile (if it's already
|
|
* available), otherwise falls back to plain reducing.
|
|
*/
|
|
static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
|
|
{
|
|
u64 num_devices = fs_info->fs_devices->rw_devices;
|
|
u64 target;
|
|
u64 raid_type;
|
|
u64 allowed = 0;
|
|
|
|
/*
|
|
* See if restripe for this chunk_type is in progress, if so try to
|
|
* reduce to the target profile
|
|
*/
|
|
spin_lock(&fs_info->balance_lock);
|
|
target = get_restripe_target(fs_info, flags);
|
|
if (target) {
|
|
spin_unlock(&fs_info->balance_lock);
|
|
return extended_to_chunk(target);
|
|
}
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
/* First, mask out the RAID levels which aren't possible */
|
|
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
|
|
if (num_devices >= btrfs_raid_array[raid_type].devs_min)
|
|
allowed |= btrfs_raid_array[raid_type].bg_flag;
|
|
}
|
|
allowed &= flags;
|
|
|
|
if (allowed & BTRFS_BLOCK_GROUP_RAID6)
|
|
allowed = BTRFS_BLOCK_GROUP_RAID6;
|
|
else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
|
|
allowed = BTRFS_BLOCK_GROUP_RAID5;
|
|
else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
|
|
allowed = BTRFS_BLOCK_GROUP_RAID10;
|
|
else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
|
|
allowed = BTRFS_BLOCK_GROUP_RAID1;
|
|
else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
|
|
allowed = BTRFS_BLOCK_GROUP_RAID0;
|
|
|
|
flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
|
|
|
return extended_to_chunk(flags | allowed);
|
|
}
|
|
|
|
u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
|
|
{
|
|
unsigned seq;
|
|
u64 flags;
|
|
|
|
do {
|
|
flags = orig_flags;
|
|
seq = read_seqbegin(&fs_info->profiles_lock);
|
|
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA)
|
|
flags |= fs_info->avail_data_alloc_bits;
|
|
else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
flags |= fs_info->avail_system_alloc_bits;
|
|
else if (flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
flags |= fs_info->avail_metadata_alloc_bits;
|
|
} while (read_seqretry(&fs_info->profiles_lock, seq));
|
|
|
|
return btrfs_reduce_alloc_profile(fs_info, flags);
|
|
}
|
|
|
|
void btrfs_get_block_group(struct btrfs_block_group *cache)
|
|
{
|
|
refcount_inc(&cache->refs);
|
|
}
|
|
|
|
void btrfs_put_block_group(struct btrfs_block_group *cache)
|
|
{
|
|
if (refcount_dec_and_test(&cache->refs)) {
|
|
WARN_ON(cache->pinned > 0);
|
|
/*
|
|
* If there was a failure to cleanup a log tree, very likely due
|
|
* to an IO failure on a writeback attempt of one or more of its
|
|
* extent buffers, we could not do proper (and cheap) unaccounting
|
|
* of their reserved space, so don't warn on reserved > 0 in that
|
|
* case.
|
|
*/
|
|
if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
|
|
!BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
|
|
WARN_ON(cache->reserved > 0);
|
|
|
|
/*
|
|
* A block_group shouldn't be on the discard_list anymore.
|
|
* Remove the block_group from the discard_list to prevent us
|
|
* from causing a panic due to NULL pointer dereference.
|
|
*/
|
|
if (WARN_ON(!list_empty(&cache->discard_list)))
|
|
btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
|
|
cache);
|
|
|
|
/*
|
|
* If not empty, someone is still holding mutex of
|
|
* full_stripe_lock, which can only be released by caller.
|
|
* And it will definitely cause use-after-free when caller
|
|
* tries to release full stripe lock.
|
|
*
|
|
* No better way to resolve, but only to warn.
|
|
*/
|
|
WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
|
|
kfree(cache->free_space_ctl);
|
|
kfree(cache->physical_map);
|
|
kfree(cache);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This adds the block group to the fs_info rb tree for the block group cache
|
|
*/
|
|
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_block_group *cache;
|
|
bool leftmost = true;
|
|
|
|
ASSERT(block_group->length != 0);
|
|
|
|
write_lock(&info->block_group_cache_lock);
|
|
p = &info->block_group_cache_tree.rb_root.rb_node;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
cache = rb_entry(parent, struct btrfs_block_group, cache_node);
|
|
if (block_group->start < cache->start) {
|
|
p = &(*p)->rb_left;
|
|
} else if (block_group->start > cache->start) {
|
|
p = &(*p)->rb_right;
|
|
leftmost = false;
|
|
} else {
|
|
write_unlock(&info->block_group_cache_lock);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
|
|
rb_link_node(&block_group->cache_node, parent, p);
|
|
rb_insert_color_cached(&block_group->cache_node,
|
|
&info->block_group_cache_tree, leftmost);
|
|
|
|
write_unlock(&info->block_group_cache_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This will return the block group at or after bytenr if contains is 0, else
|
|
* it will return the block group that contains the bytenr
|
|
*/
|
|
static struct btrfs_block_group *block_group_cache_tree_search(
|
|
struct btrfs_fs_info *info, u64 bytenr, int contains)
|
|
{
|
|
struct btrfs_block_group *cache, *ret = NULL;
|
|
struct rb_node *n;
|
|
u64 end, start;
|
|
|
|
read_lock(&info->block_group_cache_lock);
|
|
n = info->block_group_cache_tree.rb_root.rb_node;
|
|
|
|
while (n) {
|
|
cache = rb_entry(n, struct btrfs_block_group, cache_node);
|
|
end = cache->start + cache->length - 1;
|
|
start = cache->start;
|
|
|
|
if (bytenr < start) {
|
|
if (!contains && (!ret || start < ret->start))
|
|
ret = cache;
|
|
n = n->rb_left;
|
|
} else if (bytenr > start) {
|
|
if (contains && bytenr <= end) {
|
|
ret = cache;
|
|
break;
|
|
}
|
|
n = n->rb_right;
|
|
} else {
|
|
ret = cache;
|
|
break;
|
|
}
|
|
}
|
|
if (ret)
|
|
btrfs_get_block_group(ret);
|
|
read_unlock(&info->block_group_cache_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return the block group that starts at or after bytenr
|
|
*/
|
|
struct btrfs_block_group *btrfs_lookup_first_block_group(
|
|
struct btrfs_fs_info *info, u64 bytenr)
|
|
{
|
|
return block_group_cache_tree_search(info, bytenr, 0);
|
|
}
|
|
|
|
/*
|
|
* Return the block group that contains the given bytenr
|
|
*/
|
|
struct btrfs_block_group *btrfs_lookup_block_group(
|
|
struct btrfs_fs_info *info, u64 bytenr)
|
|
{
|
|
return block_group_cache_tree_search(info, bytenr, 1);
|
|
}
|
|
|
|
struct btrfs_block_group *btrfs_next_block_group(
|
|
struct btrfs_block_group *cache)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
struct rb_node *node;
|
|
|
|
read_lock(&fs_info->block_group_cache_lock);
|
|
|
|
/* If our block group was removed, we need a full search. */
|
|
if (RB_EMPTY_NODE(&cache->cache_node)) {
|
|
const u64 next_bytenr = cache->start + cache->length;
|
|
|
|
read_unlock(&fs_info->block_group_cache_lock);
|
|
btrfs_put_block_group(cache);
|
|
return btrfs_lookup_first_block_group(fs_info, next_bytenr);
|
|
}
|
|
node = rb_next(&cache->cache_node);
|
|
btrfs_put_block_group(cache);
|
|
if (node) {
|
|
cache = rb_entry(node, struct btrfs_block_group, cache_node);
|
|
btrfs_get_block_group(cache);
|
|
} else
|
|
cache = NULL;
|
|
read_unlock(&fs_info->block_group_cache_lock);
|
|
return cache;
|
|
}
|
|
|
|
/*
|
|
* Check if we can do a NOCOW write for a given extent.
|
|
*
|
|
* @fs_info: The filesystem information object.
|
|
* @bytenr: Logical start address of the extent.
|
|
*
|
|
* Check if we can do a NOCOW write for the given extent, and increments the
|
|
* number of NOCOW writers in the block group that contains the extent, as long
|
|
* as the block group exists and it's currently not in read-only mode.
|
|
*
|
|
* Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
|
|
* is responsible for calling btrfs_dec_nocow_writers() later.
|
|
*
|
|
* Or NULL if we can not do a NOCOW write
|
|
*/
|
|
struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
|
|
u64 bytenr)
|
|
{
|
|
struct btrfs_block_group *bg;
|
|
bool can_nocow = true;
|
|
|
|
bg = btrfs_lookup_block_group(fs_info, bytenr);
|
|
if (!bg)
|
|
return NULL;
|
|
|
|
spin_lock(&bg->lock);
|
|
if (bg->ro)
|
|
can_nocow = false;
|
|
else
|
|
atomic_inc(&bg->nocow_writers);
|
|
spin_unlock(&bg->lock);
|
|
|
|
if (!can_nocow) {
|
|
btrfs_put_block_group(bg);
|
|
return NULL;
|
|
}
|
|
|
|
/* No put on block group, done by btrfs_dec_nocow_writers(). */
|
|
return bg;
|
|
}
|
|
|
|
/*
|
|
* Decrement the number of NOCOW writers in a block group.
|
|
*
|
|
* This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
|
|
* and on the block group returned by that call. Typically this is called after
|
|
* creating an ordered extent for a NOCOW write, to prevent races with scrub and
|
|
* relocation.
|
|
*
|
|
* After this call, the caller should not use the block group anymore. It it wants
|
|
* to use it, then it should get a reference on it before calling this function.
|
|
*/
|
|
void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
|
|
{
|
|
if (atomic_dec_and_test(&bg->nocow_writers))
|
|
wake_up_var(&bg->nocow_writers);
|
|
|
|
/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
|
|
btrfs_put_block_group(bg);
|
|
}
|
|
|
|
void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
|
|
{
|
|
wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
|
|
}
|
|
|
|
void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
|
|
const u64 start)
|
|
{
|
|
struct btrfs_block_group *bg;
|
|
|
|
bg = btrfs_lookup_block_group(fs_info, start);
|
|
ASSERT(bg);
|
|
if (atomic_dec_and_test(&bg->reservations))
|
|
wake_up_var(&bg->reservations);
|
|
btrfs_put_block_group(bg);
|
|
}
|
|
|
|
void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
|
|
{
|
|
struct btrfs_space_info *space_info = bg->space_info;
|
|
|
|
ASSERT(bg->ro);
|
|
|
|
if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
|
|
return;
|
|
|
|
/*
|
|
* Our block group is read only but before we set it to read only,
|
|
* some task might have had allocated an extent from it already, but it
|
|
* has not yet created a respective ordered extent (and added it to a
|
|
* root's list of ordered extents).
|
|
* Therefore wait for any task currently allocating extents, since the
|
|
* block group's reservations counter is incremented while a read lock
|
|
* on the groups' semaphore is held and decremented after releasing
|
|
* the read access on that semaphore and creating the ordered extent.
|
|
*/
|
|
down_write(&space_info->groups_sem);
|
|
up_write(&space_info->groups_sem);
|
|
|
|
wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
|
|
}
|
|
|
|
struct btrfs_caching_control *btrfs_get_caching_control(
|
|
struct btrfs_block_group *cache)
|
|
{
|
|
struct btrfs_caching_control *ctl;
|
|
|
|
spin_lock(&cache->lock);
|
|
if (!cache->caching_ctl) {
|
|
spin_unlock(&cache->lock);
|
|
return NULL;
|
|
}
|
|
|
|
ctl = cache->caching_ctl;
|
|
refcount_inc(&ctl->count);
|
|
spin_unlock(&cache->lock);
|
|
return ctl;
|
|
}
|
|
|
|
void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
|
|
{
|
|
if (refcount_dec_and_test(&ctl->count))
|
|
kfree(ctl);
|
|
}
|
|
|
|
/*
|
|
* When we wait for progress in the block group caching, its because our
|
|
* allocation attempt failed at least once. So, we must sleep and let some
|
|
* progress happen before we try again.
|
|
*
|
|
* This function will sleep at least once waiting for new free space to show
|
|
* up, and then it will check the block group free space numbers for our min
|
|
* num_bytes. Another option is to have it go ahead and look in the rbtree for
|
|
* a free extent of a given size, but this is a good start.
|
|
*
|
|
* Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
|
|
* any of the information in this block group.
|
|
*/
|
|
void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
|
|
u64 num_bytes)
|
|
{
|
|
struct btrfs_caching_control *caching_ctl;
|
|
|
|
caching_ctl = btrfs_get_caching_control(cache);
|
|
if (!caching_ctl)
|
|
return;
|
|
|
|
wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
|
|
(cache->free_space_ctl->free_space >= num_bytes));
|
|
|
|
btrfs_put_caching_control(caching_ctl);
|
|
}
|
|
|
|
static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
|
|
struct btrfs_caching_control *caching_ctl)
|
|
{
|
|
wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
|
|
return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
|
|
}
|
|
|
|
static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
|
|
{
|
|
struct btrfs_caching_control *caching_ctl;
|
|
int ret;
|
|
|
|
caching_ctl = btrfs_get_caching_control(cache);
|
|
if (!caching_ctl)
|
|
return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
|
|
ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
|
|
btrfs_put_caching_control(caching_ctl);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
static void fragment_free_space(struct btrfs_block_group *block_group)
|
|
{
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
u64 start = block_group->start;
|
|
u64 len = block_group->length;
|
|
u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
|
|
fs_info->nodesize : fs_info->sectorsize;
|
|
u64 step = chunk << 1;
|
|
|
|
while (len > chunk) {
|
|
btrfs_remove_free_space(block_group, start, chunk);
|
|
start += step;
|
|
if (len < step)
|
|
len = 0;
|
|
else
|
|
len -= step;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is only called by btrfs_cache_block_group, since we could have freed
|
|
* extents we need to check the pinned_extents for any extents that can't be
|
|
* used yet since their free space will be released as soon as the transaction
|
|
* commits.
|
|
*/
|
|
u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
|
|
{
|
|
struct btrfs_fs_info *info = block_group->fs_info;
|
|
u64 extent_start, extent_end, size, total_added = 0;
|
|
int ret;
|
|
|
|
while (start < end) {
|
|
ret = find_first_extent_bit(&info->excluded_extents, start,
|
|
&extent_start, &extent_end,
|
|
EXTENT_DIRTY | EXTENT_UPTODATE,
|
|
NULL);
|
|
if (ret)
|
|
break;
|
|
|
|
if (extent_start <= start) {
|
|
start = extent_end + 1;
|
|
} else if (extent_start > start && extent_start < end) {
|
|
size = extent_start - start;
|
|
total_added += size;
|
|
ret = btrfs_add_free_space_async_trimmed(block_group,
|
|
start, size);
|
|
BUG_ON(ret); /* -ENOMEM or logic error */
|
|
start = extent_end + 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (start < end) {
|
|
size = end - start;
|
|
total_added += size;
|
|
ret = btrfs_add_free_space_async_trimmed(block_group, start,
|
|
size);
|
|
BUG_ON(ret); /* -ENOMEM or logic error */
|
|
}
|
|
|
|
return total_added;
|
|
}
|
|
|
|
/*
|
|
* Get an arbitrary extent item index / max_index through the block group
|
|
*
|
|
* @block_group the block group to sample from
|
|
* @index: the integral step through the block group to grab from
|
|
* @max_index: the granularity of the sampling
|
|
* @key: return value parameter for the item we find
|
|
*
|
|
* Pre-conditions on indices:
|
|
* 0 <= index <= max_index
|
|
* 0 < max_index
|
|
*
|
|
* Returns: 0 on success, 1 if the search didn't yield a useful item, negative
|
|
* error code on error.
|
|
*/
|
|
static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
|
|
struct btrfs_block_group *block_group,
|
|
int index, int max_index,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
struct btrfs_root *extent_root;
|
|
int ret = 0;
|
|
u64 search_offset;
|
|
u64 search_end = block_group->start + block_group->length;
|
|
struct btrfs_path *path;
|
|
|
|
ASSERT(index >= 0);
|
|
ASSERT(index <= max_index);
|
|
ASSERT(max_index > 0);
|
|
lockdep_assert_held(&caching_ctl->mutex);
|
|
lockdep_assert_held_read(&fs_info->commit_root_sem);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
|
|
BTRFS_SUPER_INFO_OFFSET));
|
|
|
|
path->skip_locking = 1;
|
|
path->search_commit_root = 1;
|
|
path->reada = READA_FORWARD;
|
|
|
|
search_offset = index * div_u64(block_group->length, max_index);
|
|
key->objectid = block_group->start + search_offset;
|
|
key->type = BTRFS_EXTENT_ITEM_KEY;
|
|
key->offset = 0;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_forward(extent_root, key, path, 0);
|
|
if (ret != 0)
|
|
goto out;
|
|
/* Success; sampled an extent item in the block group */
|
|
if (key->type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key->objectid >= block_group->start &&
|
|
key->objectid + key->offset <= search_end)
|
|
goto out;
|
|
|
|
/* We can't possibly find a valid extent item anymore */
|
|
if (key->objectid >= search_end) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
if (key->type < BTRFS_EXTENT_ITEM_KEY)
|
|
key->type = BTRFS_EXTENT_ITEM_KEY;
|
|
else
|
|
key->objectid++;
|
|
btrfs_release_path(path);
|
|
up_read(&fs_info->commit_root_sem);
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
cond_resched();
|
|
mutex_lock(&caching_ctl->mutex);
|
|
down_read(&fs_info->commit_root_sem);
|
|
}
|
|
out:
|
|
lockdep_assert_held(&caching_ctl->mutex);
|
|
lockdep_assert_held_read(&fs_info->commit_root_sem);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Best effort attempt to compute a block group's size class while caching it.
|
|
*
|
|
* @block_group: the block group we are caching
|
|
*
|
|
* We cannot infer the size class while adding free space extents, because that
|
|
* logic doesn't care about contiguous file extents (it doesn't differentiate
|
|
* between a 100M extent and 100 contiguous 1M extents). So we need to read the
|
|
* file extent items. Reading all of them is quite wasteful, because usually
|
|
* only a handful are enough to give a good answer. Therefore, we just grab 5 of
|
|
* them at even steps through the block group and pick the smallest size class
|
|
* we see. Since size class is best effort, and not guaranteed in general,
|
|
* inaccuracy is acceptable.
|
|
*
|
|
* To be more explicit about why this algorithm makes sense:
|
|
*
|
|
* If we are caching in a block group from disk, then there are three major cases
|
|
* to consider:
|
|
* 1. the block group is well behaved and all extents in it are the same size
|
|
* class.
|
|
* 2. the block group is mostly one size class with rare exceptions for last
|
|
* ditch allocations
|
|
* 3. the block group was populated before size classes and can have a totally
|
|
* arbitrary mix of size classes.
|
|
*
|
|
* In case 1, looking at any extent in the block group will yield the correct
|
|
* result. For the mixed cases, taking the minimum size class seems like a good
|
|
* approximation, since gaps from frees will be usable to the size class. For
|
|
* 2., a small handful of file extents is likely to yield the right answer. For
|
|
* 3, we can either read every file extent, or admit that this is best effort
|
|
* anyway and try to stay fast.
|
|
*
|
|
* Returns: 0 on success, negative error code on error.
|
|
*/
|
|
static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
struct btrfs_key key;
|
|
int i;
|
|
u64 min_size = block_group->length;
|
|
enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
|
|
int ret;
|
|
|
|
if (!btrfs_block_group_should_use_size_class(block_group))
|
|
return 0;
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
continue;
|
|
min_size = min_t(u64, min_size, key.offset);
|
|
size_class = btrfs_calc_block_group_size_class(min_size);
|
|
}
|
|
if (size_class != BTRFS_BG_SZ_NONE) {
|
|
spin_lock(&block_group->lock);
|
|
block_group->size_class = size_class;
|
|
spin_unlock(&block_group->lock);
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
|
|
{
|
|
struct btrfs_block_group *block_group = caching_ctl->block_group;
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
u64 total_found = 0;
|
|
u64 last = 0;
|
|
u32 nritems;
|
|
int ret;
|
|
bool wakeup = true;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
|
|
extent_root = btrfs_extent_root(fs_info, last);
|
|
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
/*
|
|
* If we're fragmenting we don't want to make anybody think we can
|
|
* allocate from this block group until we've had a chance to fragment
|
|
* the free space.
|
|
*/
|
|
if (btrfs_should_fragment_free_space(block_group))
|
|
wakeup = false;
|
|
#endif
|
|
/*
|
|
* We don't want to deadlock with somebody trying to allocate a new
|
|
* extent for the extent root while also trying to search the extent
|
|
* root to add free space. So we skip locking and search the commit
|
|
* root, since its read-only
|
|
*/
|
|
path->skip_locking = 1;
|
|
path->search_commit_root = 1;
|
|
path->reada = READA_FORWARD;
|
|
|
|
key.objectid = last;
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
next:
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
|
|
while (1) {
|
|
if (btrfs_fs_closing(fs_info) > 1) {
|
|
last = (u64)-1;
|
|
break;
|
|
}
|
|
|
|
if (path->slots[0] < nritems) {
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
} else {
|
|
ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
|
|
if (ret)
|
|
break;
|
|
|
|
if (need_resched() ||
|
|
rwsem_is_contended(&fs_info->commit_root_sem)) {
|
|
btrfs_release_path(path);
|
|
up_read(&fs_info->commit_root_sem);
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
cond_resched();
|
|
mutex_lock(&caching_ctl->mutex);
|
|
down_read(&fs_info->commit_root_sem);
|
|
goto next;
|
|
}
|
|
|
|
ret = btrfs_next_leaf(extent_root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
continue;
|
|
}
|
|
|
|
if (key.objectid < last) {
|
|
key.objectid = last;
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
btrfs_release_path(path);
|
|
goto next;
|
|
}
|
|
|
|
if (key.objectid < block_group->start) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
if (key.objectid >= block_group->start + block_group->length)
|
|
break;
|
|
|
|
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
|
|
key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
total_found += add_new_free_space(block_group, last,
|
|
key.objectid);
|
|
if (key.type == BTRFS_METADATA_ITEM_KEY)
|
|
last = key.objectid +
|
|
fs_info->nodesize;
|
|
else
|
|
last = key.objectid + key.offset;
|
|
|
|
if (total_found > CACHING_CTL_WAKE_UP) {
|
|
total_found = 0;
|
|
if (wakeup)
|
|
wake_up(&caching_ctl->wait);
|
|
}
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
|
|
total_found += add_new_free_space(block_group, last,
|
|
block_group->start + block_group->length);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline void caching_thread(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
int ret;
|
|
|
|
caching_ctl = container_of(work, struct btrfs_caching_control, work);
|
|
block_group = caching_ctl->block_group;
|
|
fs_info = block_group->fs_info;
|
|
|
|
mutex_lock(&caching_ctl->mutex);
|
|
down_read(&fs_info->commit_root_sem);
|
|
|
|
load_block_group_size_class(caching_ctl, block_group);
|
|
if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
|
|
ret = load_free_space_cache(block_group);
|
|
if (ret == 1) {
|
|
ret = 0;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* We failed to load the space cache, set ourselves to
|
|
* CACHE_STARTED and carry on.
|
|
*/
|
|
spin_lock(&block_group->lock);
|
|
block_group->cached = BTRFS_CACHE_STARTED;
|
|
spin_unlock(&block_group->lock);
|
|
wake_up(&caching_ctl->wait);
|
|
}
|
|
|
|
/*
|
|
* If we are in the transaction that populated the free space tree we
|
|
* can't actually cache from the free space tree as our commit root and
|
|
* real root are the same, so we could change the contents of the blocks
|
|
* while caching. Instead do the slow caching in this case, and after
|
|
* the transaction has committed we will be safe.
|
|
*/
|
|
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
|
|
!(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
|
|
ret = load_free_space_tree(caching_ctl);
|
|
else
|
|
ret = load_extent_tree_free(caching_ctl);
|
|
done:
|
|
spin_lock(&block_group->lock);
|
|
block_group->caching_ctl = NULL;
|
|
block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
|
|
spin_unlock(&block_group->lock);
|
|
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
if (btrfs_should_fragment_free_space(block_group)) {
|
|
u64 bytes_used;
|
|
|
|
spin_lock(&block_group->space_info->lock);
|
|
spin_lock(&block_group->lock);
|
|
bytes_used = block_group->length - block_group->used;
|
|
block_group->space_info->bytes_used += bytes_used >> 1;
|
|
spin_unlock(&block_group->lock);
|
|
spin_unlock(&block_group->space_info->lock);
|
|
fragment_free_space(block_group);
|
|
}
|
|
#endif
|
|
|
|
up_read(&fs_info->commit_root_sem);
|
|
btrfs_free_excluded_extents(block_group);
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
|
|
wake_up(&caching_ctl->wait);
|
|
|
|
btrfs_put_caching_control(caching_ctl);
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
|
|
int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
struct btrfs_caching_control *caching_ctl = NULL;
|
|
int ret = 0;
|
|
|
|
/* Allocator for zoned filesystems does not use the cache at all */
|
|
if (btrfs_is_zoned(fs_info))
|
|
return 0;
|
|
|
|
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
|
|
if (!caching_ctl)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&caching_ctl->list);
|
|
mutex_init(&caching_ctl->mutex);
|
|
init_waitqueue_head(&caching_ctl->wait);
|
|
caching_ctl->block_group = cache;
|
|
refcount_set(&caching_ctl->count, 2);
|
|
btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
|
|
|
|
spin_lock(&cache->lock);
|
|
if (cache->cached != BTRFS_CACHE_NO) {
|
|
kfree(caching_ctl);
|
|
|
|
caching_ctl = cache->caching_ctl;
|
|
if (caching_ctl)
|
|
refcount_inc(&caching_ctl->count);
|
|
spin_unlock(&cache->lock);
|
|
goto out;
|
|
}
|
|
WARN_ON(cache->caching_ctl);
|
|
cache->caching_ctl = caching_ctl;
|
|
cache->cached = BTRFS_CACHE_STARTED;
|
|
spin_unlock(&cache->lock);
|
|
|
|
write_lock(&fs_info->block_group_cache_lock);
|
|
refcount_inc(&caching_ctl->count);
|
|
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
|
|
write_unlock(&fs_info->block_group_cache_lock);
|
|
|
|
btrfs_get_block_group(cache);
|
|
|
|
btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
|
|
out:
|
|
if (wait && caching_ctl)
|
|
ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
|
|
if (caching_ctl)
|
|
btrfs_put_caching_control(caching_ctl);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
|
|
{
|
|
u64 extra_flags = chunk_to_extended(flags) &
|
|
BTRFS_EXTENDED_PROFILE_MASK;
|
|
|
|
write_seqlock(&fs_info->profiles_lock);
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA)
|
|
fs_info->avail_data_alloc_bits &= ~extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
fs_info->avail_metadata_alloc_bits &= ~extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
fs_info->avail_system_alloc_bits &= ~extra_flags;
|
|
write_sequnlock(&fs_info->profiles_lock);
|
|
}
|
|
|
|
/*
|
|
* Clear incompat bits for the following feature(s):
|
|
*
|
|
* - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
|
|
* in the whole filesystem
|
|
*
|
|
* - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
|
|
*/
|
|
static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
|
|
{
|
|
bool found_raid56 = false;
|
|
bool found_raid1c34 = false;
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
|
|
(flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
|
|
(flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
|
|
struct list_head *head = &fs_info->space_info;
|
|
struct btrfs_space_info *sinfo;
|
|
|
|
list_for_each_entry_rcu(sinfo, head, list) {
|
|
down_read(&sinfo->groups_sem);
|
|
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
|
|
found_raid56 = true;
|
|
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
|
|
found_raid56 = true;
|
|
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
|
|
found_raid1c34 = true;
|
|
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
|
|
found_raid1c34 = true;
|
|
up_read(&sinfo->groups_sem);
|
|
}
|
|
if (!found_raid56)
|
|
btrfs_clear_fs_incompat(fs_info, RAID56);
|
|
if (!found_raid1c34)
|
|
btrfs_clear_fs_incompat(fs_info, RAID1C34);
|
|
}
|
|
}
|
|
|
|
static int remove_block_group_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
root = btrfs_block_group_root(fs_info);
|
|
key.objectid = block_group->start;
|
|
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
|
|
key.offset = block_group->length;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
|
|
u64 group_start, struct extent_map *em)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_path *path;
|
|
struct btrfs_block_group *block_group;
|
|
struct btrfs_free_cluster *cluster;
|
|
struct inode *inode;
|
|
struct kobject *kobj = NULL;
|
|
int ret;
|
|
int index;
|
|
int factor;
|
|
struct btrfs_caching_control *caching_ctl = NULL;
|
|
bool remove_em;
|
|
bool remove_rsv = false;
|
|
|
|
block_group = btrfs_lookup_block_group(fs_info, group_start);
|
|
BUG_ON(!block_group);
|
|
BUG_ON(!block_group->ro);
|
|
|
|
trace_btrfs_remove_block_group(block_group);
|
|
/*
|
|
* Free the reserved super bytes from this block group before
|
|
* remove it.
|
|
*/
|
|
btrfs_free_excluded_extents(block_group);
|
|
btrfs_free_ref_tree_range(fs_info, block_group->start,
|
|
block_group->length);
|
|
|
|
index = btrfs_bg_flags_to_raid_index(block_group->flags);
|
|
factor = btrfs_bg_type_to_factor(block_group->flags);
|
|
|
|
/* make sure this block group isn't part of an allocation cluster */
|
|
cluster = &fs_info->data_alloc_cluster;
|
|
spin_lock(&cluster->refill_lock);
|
|
btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&cluster->refill_lock);
|
|
|
|
/*
|
|
* make sure this block group isn't part of a metadata
|
|
* allocation cluster
|
|
*/
|
|
cluster = &fs_info->meta_alloc_cluster;
|
|
spin_lock(&cluster->refill_lock);
|
|
btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&cluster->refill_lock);
|
|
|
|
btrfs_clear_treelog_bg(block_group);
|
|
btrfs_clear_data_reloc_bg(block_group);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* get the inode first so any iput calls done for the io_list
|
|
* aren't the final iput (no unlinks allowed now)
|
|
*/
|
|
inode = lookup_free_space_inode(block_group, path);
|
|
|
|
mutex_lock(&trans->transaction->cache_write_mutex);
|
|
/*
|
|
* Make sure our free space cache IO is done before removing the
|
|
* free space inode
|
|
*/
|
|
spin_lock(&trans->transaction->dirty_bgs_lock);
|
|
if (!list_empty(&block_group->io_list)) {
|
|
list_del_init(&block_group->io_list);
|
|
|
|
WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
|
|
|
|
spin_unlock(&trans->transaction->dirty_bgs_lock);
|
|
btrfs_wait_cache_io(trans, block_group, path);
|
|
btrfs_put_block_group(block_group);
|
|
spin_lock(&trans->transaction->dirty_bgs_lock);
|
|
}
|
|
|
|
if (!list_empty(&block_group->dirty_list)) {
|
|
list_del_init(&block_group->dirty_list);
|
|
remove_rsv = true;
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
spin_unlock(&trans->transaction->dirty_bgs_lock);
|
|
mutex_unlock(&trans->transaction->cache_write_mutex);
|
|
|
|
ret = btrfs_remove_free_space_inode(trans, inode, block_group);
|
|
if (ret)
|
|
goto out;
|
|
|
|
write_lock(&fs_info->block_group_cache_lock);
|
|
rb_erase_cached(&block_group->cache_node,
|
|
&fs_info->block_group_cache_tree);
|
|
RB_CLEAR_NODE(&block_group->cache_node);
|
|
|
|
/* Once for the block groups rbtree */
|
|
btrfs_put_block_group(block_group);
|
|
|
|
write_unlock(&fs_info->block_group_cache_lock);
|
|
|
|
down_write(&block_group->space_info->groups_sem);
|
|
/*
|
|
* we must use list_del_init so people can check to see if they
|
|
* are still on the list after taking the semaphore
|
|
*/
|
|
list_del_init(&block_group->list);
|
|
if (list_empty(&block_group->space_info->block_groups[index])) {
|
|
kobj = block_group->space_info->block_group_kobjs[index];
|
|
block_group->space_info->block_group_kobjs[index] = NULL;
|
|
clear_avail_alloc_bits(fs_info, block_group->flags);
|
|
}
|
|
up_write(&block_group->space_info->groups_sem);
|
|
clear_incompat_bg_bits(fs_info, block_group->flags);
|
|
if (kobj) {
|
|
kobject_del(kobj);
|
|
kobject_put(kobj);
|
|
}
|
|
|
|
if (block_group->cached == BTRFS_CACHE_STARTED)
|
|
btrfs_wait_block_group_cache_done(block_group);
|
|
|
|
write_lock(&fs_info->block_group_cache_lock);
|
|
caching_ctl = btrfs_get_caching_control(block_group);
|
|
if (!caching_ctl) {
|
|
struct btrfs_caching_control *ctl;
|
|
|
|
list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
|
|
if (ctl->block_group == block_group) {
|
|
caching_ctl = ctl;
|
|
refcount_inc(&caching_ctl->count);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (caching_ctl)
|
|
list_del_init(&caching_ctl->list);
|
|
write_unlock(&fs_info->block_group_cache_lock);
|
|
|
|
if (caching_ctl) {
|
|
/* Once for the caching bgs list and once for us. */
|
|
btrfs_put_caching_control(caching_ctl);
|
|
btrfs_put_caching_control(caching_ctl);
|
|
}
|
|
|
|
spin_lock(&trans->transaction->dirty_bgs_lock);
|
|
WARN_ON(!list_empty(&block_group->dirty_list));
|
|
WARN_ON(!list_empty(&block_group->io_list));
|
|
spin_unlock(&trans->transaction->dirty_bgs_lock);
|
|
|
|
btrfs_remove_free_space_cache(block_group);
|
|
|
|
spin_lock(&block_group->space_info->lock);
|
|
list_del_init(&block_group->ro_list);
|
|
|
|
if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
|
|
WARN_ON(block_group->space_info->total_bytes
|
|
< block_group->length);
|
|
WARN_ON(block_group->space_info->bytes_readonly
|
|
< block_group->length - block_group->zone_unusable);
|
|
WARN_ON(block_group->space_info->bytes_zone_unusable
|
|
< block_group->zone_unusable);
|
|
WARN_ON(block_group->space_info->disk_total
|
|
< block_group->length * factor);
|
|
WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
|
|
&block_group->runtime_flags) &&
|
|
block_group->space_info->active_total_bytes
|
|
< block_group->length);
|
|
}
|
|
block_group->space_info->total_bytes -= block_group->length;
|
|
if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
|
|
block_group->space_info->active_total_bytes -= block_group->length;
|
|
block_group->space_info->bytes_readonly -=
|
|
(block_group->length - block_group->zone_unusable);
|
|
block_group->space_info->bytes_zone_unusable -=
|
|
block_group->zone_unusable;
|
|
block_group->space_info->disk_total -= block_group->length * factor;
|
|
|
|
spin_unlock(&block_group->space_info->lock);
|
|
|
|
/*
|
|
* Remove the free space for the block group from the free space tree
|
|
* and the block group's item from the extent tree before marking the
|
|
* block group as removed. This is to prevent races with tasks that
|
|
* freeze and unfreeze a block group, this task and another task
|
|
* allocating a new block group - the unfreeze task ends up removing
|
|
* the block group's extent map before the task calling this function
|
|
* deletes the block group item from the extent tree, allowing for
|
|
* another task to attempt to create another block group with the same
|
|
* item key (and failing with -EEXIST and a transaction abort).
|
|
*/
|
|
ret = remove_block_group_free_space(trans, block_group);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = remove_block_group_item(trans, path, block_group);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
spin_lock(&block_group->lock);
|
|
set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
|
|
|
|
/*
|
|
* At this point trimming or scrub can't start on this block group,
|
|
* because we removed the block group from the rbtree
|
|
* fs_info->block_group_cache_tree so no one can't find it anymore and
|
|
* even if someone already got this block group before we removed it
|
|
* from the rbtree, they have already incremented block_group->frozen -
|
|
* if they didn't, for the trimming case they won't find any free space
|
|
* entries because we already removed them all when we called
|
|
* btrfs_remove_free_space_cache().
|
|
*
|
|
* And we must not remove the extent map from the fs_info->mapping_tree
|
|
* to prevent the same logical address range and physical device space
|
|
* ranges from being reused for a new block group. This is needed to
|
|
* avoid races with trimming and scrub.
|
|
*
|
|
* An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
|
|
* completely transactionless, so while it is trimming a range the
|
|
* currently running transaction might finish and a new one start,
|
|
* allowing for new block groups to be created that can reuse the same
|
|
* physical device locations unless we take this special care.
|
|
*
|
|
* There may also be an implicit trim operation if the file system
|
|
* is mounted with -odiscard. The same protections must remain
|
|
* in place until the extents have been discarded completely when
|
|
* the transaction commit has completed.
|
|
*/
|
|
remove_em = (atomic_read(&block_group->frozen) == 0);
|
|
spin_unlock(&block_group->lock);
|
|
|
|
if (remove_em) {
|
|
struct extent_map_tree *em_tree;
|
|
|
|
em_tree = &fs_info->mapping_tree;
|
|
write_lock(&em_tree->lock);
|
|
remove_extent_mapping(em_tree, em);
|
|
write_unlock(&em_tree->lock);
|
|
/* once for the tree */
|
|
free_extent_map(em);
|
|
}
|
|
|
|
out:
|
|
/* Once for the lookup reference */
|
|
btrfs_put_block_group(block_group);
|
|
if (remove_rsv)
|
|
btrfs_delayed_refs_rsv_release(fs_info, 1);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
|
|
struct btrfs_fs_info *fs_info, const u64 chunk_offset)
|
|
{
|
|
struct btrfs_root *root = btrfs_block_group_root(fs_info);
|
|
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
unsigned int num_items;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, chunk_offset, 1);
|
|
read_unlock(&em_tree->lock);
|
|
ASSERT(em && em->start == chunk_offset);
|
|
|
|
/*
|
|
* We need to reserve 3 + N units from the metadata space info in order
|
|
* to remove a block group (done at btrfs_remove_chunk() and at
|
|
* btrfs_remove_block_group()), which are used for:
|
|
*
|
|
* 1 unit for adding the free space inode's orphan (located in the tree
|
|
* of tree roots).
|
|
* 1 unit for deleting the block group item (located in the extent
|
|
* tree).
|
|
* 1 unit for deleting the free space item (located in tree of tree
|
|
* roots).
|
|
* N units for deleting N device extent items corresponding to each
|
|
* stripe (located in the device tree).
|
|
*
|
|
* In order to remove a block group we also need to reserve units in the
|
|
* system space info in order to update the chunk tree (update one or
|
|
* more device items and remove one chunk item), but this is done at
|
|
* btrfs_remove_chunk() through a call to check_system_chunk().
|
|
*/
|
|
map = em->map_lookup;
|
|
num_items = 3 + map->num_stripes;
|
|
free_extent_map(em);
|
|
|
|
return btrfs_start_transaction_fallback_global_rsv(root, num_items);
|
|
}
|
|
|
|
/*
|
|
* Mark block group @cache read-only, so later write won't happen to block
|
|
* group @cache.
|
|
*
|
|
* If @force is not set, this function will only mark the block group readonly
|
|
* if we have enough free space (1M) in other metadata/system block groups.
|
|
* If @force is not set, this function will mark the block group readonly
|
|
* without checking free space.
|
|
*
|
|
* NOTE: This function doesn't care if other block groups can contain all the
|
|
* data in this block group. That check should be done by relocation routine,
|
|
* not this function.
|
|
*/
|
|
static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
|
|
{
|
|
struct btrfs_space_info *sinfo = cache->space_info;
|
|
u64 num_bytes;
|
|
int ret = -ENOSPC;
|
|
|
|
spin_lock(&sinfo->lock);
|
|
spin_lock(&cache->lock);
|
|
|
|
if (cache->swap_extents) {
|
|
ret = -ETXTBSY;
|
|
goto out;
|
|
}
|
|
|
|
if (cache->ro) {
|
|
cache->ro++;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
num_bytes = cache->length - cache->reserved - cache->pinned -
|
|
cache->bytes_super - cache->zone_unusable - cache->used;
|
|
|
|
/*
|
|
* Data never overcommits, even in mixed mode, so do just the straight
|
|
* check of left over space in how much we have allocated.
|
|
*/
|
|
if (force) {
|
|
ret = 0;
|
|
} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
|
|
u64 sinfo_used = btrfs_space_info_used(sinfo, true);
|
|
|
|
/*
|
|
* Here we make sure if we mark this bg RO, we still have enough
|
|
* free space as buffer.
|
|
*/
|
|
if (sinfo_used + num_bytes <= sinfo->total_bytes)
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* We overcommit metadata, so we need to do the
|
|
* btrfs_can_overcommit check here, and we need to pass in
|
|
* BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
|
|
* leeway to allow us to mark this block group as read only.
|
|
*/
|
|
if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
|
|
BTRFS_RESERVE_NO_FLUSH))
|
|
ret = 0;
|
|
}
|
|
|
|
if (!ret) {
|
|
sinfo->bytes_readonly += num_bytes;
|
|
if (btrfs_is_zoned(cache->fs_info)) {
|
|
/* Migrate zone_unusable bytes to readonly */
|
|
sinfo->bytes_readonly += cache->zone_unusable;
|
|
sinfo->bytes_zone_unusable -= cache->zone_unusable;
|
|
cache->zone_unusable = 0;
|
|
}
|
|
cache->ro++;
|
|
list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
|
|
}
|
|
out:
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&sinfo->lock);
|
|
if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
|
|
btrfs_info(cache->fs_info,
|
|
"unable to make block group %llu ro", cache->start);
|
|
btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group *bg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bg->fs_info;
|
|
struct btrfs_transaction *prev_trans = NULL;
|
|
const u64 start = bg->start;
|
|
const u64 end = start + bg->length - 1;
|
|
int ret;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (trans->transaction->list.prev != &fs_info->trans_list) {
|
|
prev_trans = list_last_entry(&trans->transaction->list,
|
|
struct btrfs_transaction, list);
|
|
refcount_inc(&prev_trans->use_count);
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* Hold the unused_bg_unpin_mutex lock to avoid racing with
|
|
* btrfs_finish_extent_commit(). If we are at transaction N, another
|
|
* task might be running finish_extent_commit() for the previous
|
|
* transaction N - 1, and have seen a range belonging to the block
|
|
* group in pinned_extents before we were able to clear the whole block
|
|
* group range from pinned_extents. This means that task can lookup for
|
|
* the block group after we unpinned it from pinned_extents and removed
|
|
* it, leading to a BUG_ON() at unpin_extent_range().
|
|
*/
|
|
mutex_lock(&fs_info->unused_bg_unpin_mutex);
|
|
if (prev_trans) {
|
|
ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
|
|
EXTENT_DIRTY);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
|
|
EXTENT_DIRTY);
|
|
out:
|
|
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
|
|
if (prev_trans)
|
|
btrfs_put_transaction(prev_trans);
|
|
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* Process the unused_bgs list and remove any that don't have any allocated
|
|
* space inside of them.
|
|
*/
|
|
void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_trans_handle *trans;
|
|
const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
|
|
int ret = 0;
|
|
|
|
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
|
|
return;
|
|
|
|
if (btrfs_fs_closing(fs_info))
|
|
return;
|
|
|
|
/*
|
|
* Long running balances can keep us blocked here for eternity, so
|
|
* simply skip deletion if we're unable to get the mutex.
|
|
*/
|
|
if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
|
|
return;
|
|
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
while (!list_empty(&fs_info->unused_bgs)) {
|
|
int trimming;
|
|
|
|
block_group = list_first_entry(&fs_info->unused_bgs,
|
|
struct btrfs_block_group,
|
|
bg_list);
|
|
list_del_init(&block_group->bg_list);
|
|
|
|
space_info = block_group->space_info;
|
|
|
|
if (ret || btrfs_mixed_space_info(space_info)) {
|
|
btrfs_put_block_group(block_group);
|
|
continue;
|
|
}
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
|
|
btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
|
|
|
|
/* Don't want to race with allocators so take the groups_sem */
|
|
down_write(&space_info->groups_sem);
|
|
|
|
/*
|
|
* Async discard moves the final block group discard to be prior
|
|
* to the unused_bgs code path. Therefore, if it's not fully
|
|
* trimmed, punt it back to the async discard lists.
|
|
*/
|
|
if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
|
|
!btrfs_is_free_space_trimmed(block_group)) {
|
|
trace_btrfs_skip_unused_block_group(block_group);
|
|
up_write(&space_info->groups_sem);
|
|
/* Requeue if we failed because of async discard */
|
|
btrfs_discard_queue_work(&fs_info->discard_ctl,
|
|
block_group);
|
|
goto next;
|
|
}
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->reserved || block_group->pinned ||
|
|
block_group->used || block_group->ro ||
|
|
list_is_singular(&block_group->list)) {
|
|
/*
|
|
* We want to bail if we made new allocations or have
|
|
* outstanding allocations in this block group. We do
|
|
* the ro check in case balance is currently acting on
|
|
* this block group.
|
|
*/
|
|
trace_btrfs_skip_unused_block_group(block_group);
|
|
spin_unlock(&block_group->lock);
|
|
up_write(&space_info->groups_sem);
|
|
goto next;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
/* We don't want to force the issue, only flip if it's ok. */
|
|
ret = inc_block_group_ro(block_group, 0);
|
|
up_write(&space_info->groups_sem);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
goto next;
|
|
}
|
|
|
|
ret = btrfs_zone_finish(block_group);
|
|
if (ret < 0) {
|
|
btrfs_dec_block_group_ro(block_group);
|
|
if (ret == -EAGAIN)
|
|
ret = 0;
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* Want to do this before we do anything else so we can recover
|
|
* properly if we fail to join the transaction.
|
|
*/
|
|
trans = btrfs_start_trans_remove_block_group(fs_info,
|
|
block_group->start);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_dec_block_group_ro(block_group);
|
|
ret = PTR_ERR(trans);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* We could have pending pinned extents for this block group,
|
|
* just delete them, we don't care about them anymore.
|
|
*/
|
|
if (!clean_pinned_extents(trans, block_group)) {
|
|
btrfs_dec_block_group_ro(block_group);
|
|
goto end_trans;
|
|
}
|
|
|
|
/*
|
|
* At this point, the block_group is read only and should fail
|
|
* new allocations. However, btrfs_finish_extent_commit() can
|
|
* cause this block_group to be placed back on the discard
|
|
* lists because now the block_group isn't fully discarded.
|
|
* Bail here and try again later after discarding everything.
|
|
*/
|
|
spin_lock(&fs_info->discard_ctl.lock);
|
|
if (!list_empty(&block_group->discard_list)) {
|
|
spin_unlock(&fs_info->discard_ctl.lock);
|
|
btrfs_dec_block_group_ro(block_group);
|
|
btrfs_discard_queue_work(&fs_info->discard_ctl,
|
|
block_group);
|
|
goto end_trans;
|
|
}
|
|
spin_unlock(&fs_info->discard_ctl.lock);
|
|
|
|
/* Reset pinned so btrfs_put_block_group doesn't complain */
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&block_group->lock);
|
|
|
|
btrfs_space_info_update_bytes_pinned(fs_info, space_info,
|
|
-block_group->pinned);
|
|
space_info->bytes_readonly += block_group->pinned;
|
|
block_group->pinned = 0;
|
|
|
|
spin_unlock(&block_group->lock);
|
|
spin_unlock(&space_info->lock);
|
|
|
|
/*
|
|
* The normal path here is an unused block group is passed here,
|
|
* then trimming is handled in the transaction commit path.
|
|
* Async discard interposes before this to do the trimming
|
|
* before coming down the unused block group path as trimming
|
|
* will no longer be done later in the transaction commit path.
|
|
*/
|
|
if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
|
|
goto flip_async;
|
|
|
|
/*
|
|
* DISCARD can flip during remount. On zoned filesystems, we
|
|
* need to reset sequential-required zones.
|
|
*/
|
|
trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
|
|
btrfs_is_zoned(fs_info);
|
|
|
|
/* Implicit trim during transaction commit. */
|
|
if (trimming)
|
|
btrfs_freeze_block_group(block_group);
|
|
|
|
/*
|
|
* Btrfs_remove_chunk will abort the transaction if things go
|
|
* horribly wrong.
|
|
*/
|
|
ret = btrfs_remove_chunk(trans, block_group->start);
|
|
|
|
if (ret) {
|
|
if (trimming)
|
|
btrfs_unfreeze_block_group(block_group);
|
|
goto end_trans;
|
|
}
|
|
|
|
/*
|
|
* If we're not mounted with -odiscard, we can just forget
|
|
* about this block group. Otherwise we'll need to wait
|
|
* until transaction commit to do the actual discard.
|
|
*/
|
|
if (trimming) {
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
/*
|
|
* A concurrent scrub might have added us to the list
|
|
* fs_info->unused_bgs, so use a list_move operation
|
|
* to add the block group to the deleted_bgs list.
|
|
*/
|
|
list_move(&block_group->bg_list,
|
|
&trans->transaction->deleted_bgs);
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
btrfs_get_block_group(block_group);
|
|
}
|
|
end_trans:
|
|
btrfs_end_transaction(trans);
|
|
next:
|
|
btrfs_put_block_group(block_group);
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
}
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
return;
|
|
|
|
flip_async:
|
|
btrfs_end_transaction(trans);
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
btrfs_put_block_group(block_group);
|
|
btrfs_discard_punt_unused_bgs_list(fs_info);
|
|
}
|
|
|
|
void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bg->fs_info;
|
|
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
if (list_empty(&bg->bg_list)) {
|
|
btrfs_get_block_group(bg);
|
|
trace_btrfs_add_unused_block_group(bg);
|
|
list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
|
|
}
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
}
|
|
|
|
/*
|
|
* We want block groups with a low number of used bytes to be in the beginning
|
|
* of the list, so they will get reclaimed first.
|
|
*/
|
|
static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
const struct btrfs_block_group *bg1, *bg2;
|
|
|
|
bg1 = list_entry(a, struct btrfs_block_group, bg_list);
|
|
bg2 = list_entry(b, struct btrfs_block_group, bg_list);
|
|
|
|
return bg1->used > bg2->used;
|
|
}
|
|
|
|
static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (btrfs_is_zoned(fs_info))
|
|
return btrfs_zoned_should_reclaim(fs_info);
|
|
return true;
|
|
}
|
|
|
|
static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
|
|
{
|
|
const struct btrfs_space_info *space_info = bg->space_info;
|
|
const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
|
|
const u64 new_val = bg->used;
|
|
const u64 old_val = new_val + bytes_freed;
|
|
u64 thresh;
|
|
|
|
if (reclaim_thresh == 0)
|
|
return false;
|
|
|
|
thresh = mult_perc(bg->length, reclaim_thresh);
|
|
|
|
/*
|
|
* If we were below the threshold before don't reclaim, we are likely a
|
|
* brand new block group and we don't want to relocate new block groups.
|
|
*/
|
|
if (old_val < thresh)
|
|
return false;
|
|
if (new_val >= thresh)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void btrfs_reclaim_bgs_work(struct work_struct *work)
|
|
{
|
|
struct btrfs_fs_info *fs_info =
|
|
container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
|
|
struct btrfs_block_group *bg;
|
|
struct btrfs_space_info *space_info;
|
|
|
|
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
|
|
return;
|
|
|
|
if (btrfs_fs_closing(fs_info))
|
|
return;
|
|
|
|
if (!btrfs_should_reclaim(fs_info))
|
|
return;
|
|
|
|
sb_start_write(fs_info->sb);
|
|
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
|
|
sb_end_write(fs_info->sb);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Long running balances can keep us blocked here for eternity, so
|
|
* simply skip reclaim if we're unable to get the mutex.
|
|
*/
|
|
if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
|
|
btrfs_exclop_finish(fs_info);
|
|
sb_end_write(fs_info->sb);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
/*
|
|
* Sort happens under lock because we can't simply splice it and sort.
|
|
* The block groups might still be in use and reachable via bg_list,
|
|
* and their presence in the reclaim_bgs list must be preserved.
|
|
*/
|
|
list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
|
|
while (!list_empty(&fs_info->reclaim_bgs)) {
|
|
u64 zone_unusable;
|
|
int ret = 0;
|
|
|
|
bg = list_first_entry(&fs_info->reclaim_bgs,
|
|
struct btrfs_block_group,
|
|
bg_list);
|
|
list_del_init(&bg->bg_list);
|
|
|
|
space_info = bg->space_info;
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
|
|
/* Don't race with allocators so take the groups_sem */
|
|
down_write(&space_info->groups_sem);
|
|
|
|
spin_lock(&bg->lock);
|
|
if (bg->reserved || bg->pinned || bg->ro) {
|
|
/*
|
|
* We want to bail if we made new allocations or have
|
|
* outstanding allocations in this block group. We do
|
|
* the ro check in case balance is currently acting on
|
|
* this block group.
|
|
*/
|
|
spin_unlock(&bg->lock);
|
|
up_write(&space_info->groups_sem);
|
|
goto next;
|
|
}
|
|
if (bg->used == 0) {
|
|
/*
|
|
* It is possible that we trigger relocation on a block
|
|
* group as its extents are deleted and it first goes
|
|
* below the threshold, then shortly after goes empty.
|
|
*
|
|
* In this case, relocating it does delete it, but has
|
|
* some overhead in relocation specific metadata, looking
|
|
* for the non-existent extents and running some extra
|
|
* transactions, which we can avoid by using one of the
|
|
* other mechanisms for dealing with empty block groups.
|
|
*/
|
|
if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
|
|
btrfs_mark_bg_unused(bg);
|
|
spin_unlock(&bg->lock);
|
|
up_write(&space_info->groups_sem);
|
|
goto next;
|
|
|
|
}
|
|
/*
|
|
* The block group might no longer meet the reclaim condition by
|
|
* the time we get around to reclaiming it, so to avoid
|
|
* reclaiming overly full block_groups, skip reclaiming them.
|
|
*
|
|
* Since the decision making process also depends on the amount
|
|
* being freed, pass in a fake giant value to skip that extra
|
|
* check, which is more meaningful when adding to the list in
|
|
* the first place.
|
|
*/
|
|
if (!should_reclaim_block_group(bg, bg->length)) {
|
|
spin_unlock(&bg->lock);
|
|
up_write(&space_info->groups_sem);
|
|
goto next;
|
|
}
|
|
spin_unlock(&bg->lock);
|
|
|
|
/* Get out fast, in case we're unmounting the filesystem */
|
|
if (btrfs_fs_closing(fs_info)) {
|
|
up_write(&space_info->groups_sem);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* Cache the zone_unusable value before turning the block group
|
|
* to read only. As soon as the blog group is read only it's
|
|
* zone_unusable value gets moved to the block group's read-only
|
|
* bytes and isn't available for calculations anymore.
|
|
*/
|
|
zone_unusable = bg->zone_unusable;
|
|
ret = inc_block_group_ro(bg, 0);
|
|
up_write(&space_info->groups_sem);
|
|
if (ret < 0)
|
|
goto next;
|
|
|
|
btrfs_info(fs_info,
|
|
"reclaiming chunk %llu with %llu%% used %llu%% unusable",
|
|
bg->start, div_u64(bg->used * 100, bg->length),
|
|
div64_u64(zone_unusable * 100, bg->length));
|
|
trace_btrfs_reclaim_block_group(bg);
|
|
ret = btrfs_relocate_chunk(fs_info, bg->start);
|
|
if (ret) {
|
|
btrfs_dec_block_group_ro(bg);
|
|
btrfs_err(fs_info, "error relocating chunk %llu",
|
|
bg->start);
|
|
}
|
|
|
|
next:
|
|
btrfs_put_block_group(bg);
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
}
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
btrfs_exclop_finish(fs_info);
|
|
sb_end_write(fs_info->sb);
|
|
}
|
|
|
|
void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
|
|
{
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
if (!list_empty(&fs_info->reclaim_bgs))
|
|
queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
}
|
|
|
|
void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bg->fs_info;
|
|
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
if (list_empty(&bg->bg_list)) {
|
|
btrfs_get_block_group(bg);
|
|
trace_btrfs_add_reclaim_block_group(bg);
|
|
list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
|
|
}
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
}
|
|
|
|
static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
struct btrfs_block_group_item bg;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
u64 flags;
|
|
int ret = 0;
|
|
|
|
slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
|
|
em_tree = &fs_info->mapping_tree;
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
|
|
read_unlock(&em_tree->lock);
|
|
if (!em) {
|
|
btrfs_err(fs_info,
|
|
"logical %llu len %llu found bg but no related chunk",
|
|
key->objectid, key->offset);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (em->start != key->objectid || em->len != key->offset) {
|
|
btrfs_err(fs_info,
|
|
"block group %llu len %llu mismatch with chunk %llu len %llu",
|
|
key->objectid, key->offset, em->start, em->len);
|
|
ret = -EUCLEAN;
|
|
goto out_free_em;
|
|
}
|
|
|
|
read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
|
|
sizeof(bg));
|
|
flags = btrfs_stack_block_group_flags(&bg) &
|
|
BTRFS_BLOCK_GROUP_TYPE_MASK;
|
|
|
|
if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
|
|
btrfs_err(fs_info,
|
|
"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
|
|
key->objectid, key->offset, flags,
|
|
(BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
|
|
ret = -EUCLEAN;
|
|
}
|
|
|
|
out_free_em:
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static int find_first_block_group(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_root *root = btrfs_block_group_root(fs_info);
|
|
int ret;
|
|
struct btrfs_key found_key;
|
|
|
|
btrfs_for_each_slot(root, key, &found_key, path, ret) {
|
|
if (found_key.objectid >= key->objectid &&
|
|
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
|
|
return read_bg_from_eb(fs_info, &found_key, path);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
|
|
{
|
|
u64 extra_flags = chunk_to_extended(flags) &
|
|
BTRFS_EXTENDED_PROFILE_MASK;
|
|
|
|
write_seqlock(&fs_info->profiles_lock);
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA)
|
|
fs_info->avail_data_alloc_bits |= extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
fs_info->avail_metadata_alloc_bits |= extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
fs_info->avail_system_alloc_bits |= extra_flags;
|
|
write_sequnlock(&fs_info->profiles_lock);
|
|
}
|
|
|
|
/*
|
|
* Map a physical disk address to a list of logical addresses.
|
|
*
|
|
* @fs_info: the filesystem
|
|
* @chunk_start: logical address of block group
|
|
* @physical: physical address to map to logical addresses
|
|
* @logical: return array of logical addresses which map to @physical
|
|
* @naddrs: length of @logical
|
|
* @stripe_len: size of IO stripe for the given block group
|
|
*
|
|
* Maps a particular @physical disk address to a list of @logical addresses.
|
|
* Used primarily to exclude those portions of a block group that contain super
|
|
* block copies.
|
|
*/
|
|
int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
|
|
u64 physical, u64 **logical, int *naddrs, int *stripe_len)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
u64 *buf;
|
|
u64 bytenr;
|
|
u64 data_stripe_length;
|
|
u64 io_stripe_size;
|
|
int i, nr = 0;
|
|
int ret = 0;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
|
|
if (IS_ERR(em))
|
|
return -EIO;
|
|
|
|
map = em->map_lookup;
|
|
data_stripe_length = em->orig_block_len;
|
|
io_stripe_size = map->stripe_len;
|
|
chunk_start = em->start;
|
|
|
|
/* For RAID5/6 adjust to a full IO stripe length */
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
|
|
io_stripe_size = map->stripe_len * nr_data_stripes(map);
|
|
|
|
buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
|
|
if (!buf) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
bool already_inserted = false;
|
|
u64 stripe_nr;
|
|
u64 offset;
|
|
int j;
|
|
|
|
if (!in_range(physical, map->stripes[i].physical,
|
|
data_stripe_length))
|
|
continue;
|
|
|
|
stripe_nr = physical - map->stripes[i].physical;
|
|
stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID10)) {
|
|
stripe_nr = stripe_nr * map->num_stripes + i;
|
|
stripe_nr = div_u64(stripe_nr, map->sub_stripes);
|
|
}
|
|
/*
|
|
* The remaining case would be for RAID56, multiply by
|
|
* nr_data_stripes(). Alternatively, just use rmap_len below
|
|
* instead of map->stripe_len
|
|
*/
|
|
|
|
bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
|
|
|
|
/* Ensure we don't add duplicate addresses */
|
|
for (j = 0; j < nr; j++) {
|
|
if (buf[j] == bytenr) {
|
|
already_inserted = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!already_inserted)
|
|
buf[nr++] = bytenr;
|
|
}
|
|
|
|
*logical = buf;
|
|
*naddrs = nr;
|
|
*stripe_len = io_stripe_size;
|
|
out:
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static int exclude_super_stripes(struct btrfs_block_group *cache)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
const bool zoned = btrfs_is_zoned(fs_info);
|
|
u64 bytenr;
|
|
u64 *logical;
|
|
int stripe_len;
|
|
int i, nr, ret;
|
|
|
|
if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
|
|
stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
|
|
cache->bytes_super += stripe_len;
|
|
ret = btrfs_add_excluded_extent(fs_info, cache->start,
|
|
stripe_len);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
ret = btrfs_rmap_block(fs_info, cache->start,
|
|
bytenr, &logical, &nr, &stripe_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Shouldn't have super stripes in sequential zones */
|
|
if (zoned && nr) {
|
|
btrfs_err(fs_info,
|
|
"zoned: block group %llu must not contain super block",
|
|
cache->start);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
while (nr--) {
|
|
u64 len = min_t(u64, stripe_len,
|
|
cache->start + cache->length - logical[nr]);
|
|
|
|
cache->bytes_super += len;
|
|
ret = btrfs_add_excluded_extent(fs_info, logical[nr],
|
|
len);
|
|
if (ret) {
|
|
kfree(logical);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
kfree(logical);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_block_group *btrfs_create_block_group_cache(
|
|
struct btrfs_fs_info *fs_info, u64 start)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
|
|
cache = kzalloc(sizeof(*cache), GFP_NOFS);
|
|
if (!cache)
|
|
return NULL;
|
|
|
|
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
|
|
GFP_NOFS);
|
|
if (!cache->free_space_ctl) {
|
|
kfree(cache);
|
|
return NULL;
|
|
}
|
|
|
|
cache->start = start;
|
|
|
|
cache->fs_info = fs_info;
|
|
cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
|
|
|
|
cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
|
|
|
|
refcount_set(&cache->refs, 1);
|
|
spin_lock_init(&cache->lock);
|
|
init_rwsem(&cache->data_rwsem);
|
|
INIT_LIST_HEAD(&cache->list);
|
|
INIT_LIST_HEAD(&cache->cluster_list);
|
|
INIT_LIST_HEAD(&cache->bg_list);
|
|
INIT_LIST_HEAD(&cache->ro_list);
|
|
INIT_LIST_HEAD(&cache->discard_list);
|
|
INIT_LIST_HEAD(&cache->dirty_list);
|
|
INIT_LIST_HEAD(&cache->io_list);
|
|
INIT_LIST_HEAD(&cache->active_bg_list);
|
|
btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
|
|
atomic_set(&cache->frozen, 0);
|
|
mutex_init(&cache->free_space_lock);
|
|
cache->full_stripe_locks_root.root = RB_ROOT;
|
|
mutex_init(&cache->full_stripe_locks_root.lock);
|
|
|
|
return cache;
|
|
}
|
|
|
|
/*
|
|
* Iterate all chunks and verify that each of them has the corresponding block
|
|
* group
|
|
*/
|
|
static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct extent_map_tree *map_tree = &fs_info->mapping_tree;
|
|
struct extent_map *em;
|
|
struct btrfs_block_group *bg;
|
|
u64 start = 0;
|
|
int ret = 0;
|
|
|
|
while (1) {
|
|
read_lock(&map_tree->lock);
|
|
/*
|
|
* lookup_extent_mapping will return the first extent map
|
|
* intersecting the range, so setting @len to 1 is enough to
|
|
* get the first chunk.
|
|
*/
|
|
em = lookup_extent_mapping(map_tree, start, 1);
|
|
read_unlock(&map_tree->lock);
|
|
if (!em)
|
|
break;
|
|
|
|
bg = btrfs_lookup_block_group(fs_info, em->start);
|
|
if (!bg) {
|
|
btrfs_err(fs_info,
|
|
"chunk start=%llu len=%llu doesn't have corresponding block group",
|
|
em->start, em->len);
|
|
ret = -EUCLEAN;
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
if (bg->start != em->start || bg->length != em->len ||
|
|
(bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
|
|
(em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
|
|
btrfs_err(fs_info,
|
|
"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
|
|
em->start, em->len,
|
|
em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
|
|
bg->start, bg->length,
|
|
bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
|
|
ret = -EUCLEAN;
|
|
free_extent_map(em);
|
|
btrfs_put_block_group(bg);
|
|
break;
|
|
}
|
|
start = em->start + em->len;
|
|
free_extent_map(em);
|
|
btrfs_put_block_group(bg);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int read_one_block_group(struct btrfs_fs_info *info,
|
|
struct btrfs_block_group_item *bgi,
|
|
const struct btrfs_key *key,
|
|
int need_clear)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
|
|
int ret;
|
|
|
|
ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
|
|
|
|
cache = btrfs_create_block_group_cache(info, key->objectid);
|
|
if (!cache)
|
|
return -ENOMEM;
|
|
|
|
cache->length = key->offset;
|
|
cache->used = btrfs_stack_block_group_used(bgi);
|
|
cache->commit_used = cache->used;
|
|
cache->flags = btrfs_stack_block_group_flags(bgi);
|
|
cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
|
|
|
|
set_free_space_tree_thresholds(cache);
|
|
|
|
if (need_clear) {
|
|
/*
|
|
* When we mount with old space cache, we need to
|
|
* set BTRFS_DC_CLEAR and set dirty flag.
|
|
*
|
|
* a) Setting 'BTRFS_DC_CLEAR' makes sure that we
|
|
* truncate the old free space cache inode and
|
|
* setup a new one.
|
|
* b) Setting 'dirty flag' makes sure that we flush
|
|
* the new space cache info onto disk.
|
|
*/
|
|
if (btrfs_test_opt(info, SPACE_CACHE))
|
|
cache->disk_cache_state = BTRFS_DC_CLEAR;
|
|
}
|
|
if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
|
|
(cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
|
|
btrfs_err(info,
|
|
"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
|
|
cache->start);
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
ret = btrfs_load_block_group_zone_info(cache, false);
|
|
if (ret) {
|
|
btrfs_err(info, "zoned: failed to load zone info of bg %llu",
|
|
cache->start);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* We need to exclude the super stripes now so that the space info has
|
|
* super bytes accounted for, otherwise we'll think we have more space
|
|
* than we actually do.
|
|
*/
|
|
ret = exclude_super_stripes(cache);
|
|
if (ret) {
|
|
/* We may have excluded something, so call this just in case. */
|
|
btrfs_free_excluded_extents(cache);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* For zoned filesystem, space after the allocation offset is the only
|
|
* free space for a block group. So, we don't need any caching work.
|
|
* btrfs_calc_zone_unusable() will set the amount of free space and
|
|
* zone_unusable space.
|
|
*
|
|
* For regular filesystem, check for two cases, either we are full, and
|
|
* therefore don't need to bother with the caching work since we won't
|
|
* find any space, or we are empty, and we can just add all the space
|
|
* in and be done with it. This saves us _a_lot_ of time, particularly
|
|
* in the full case.
|
|
*/
|
|
if (btrfs_is_zoned(info)) {
|
|
btrfs_calc_zone_unusable(cache);
|
|
/* Should not have any excluded extents. Just in case, though. */
|
|
btrfs_free_excluded_extents(cache);
|
|
} else if (cache->length == cache->used) {
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
btrfs_free_excluded_extents(cache);
|
|
} else if (cache->used == 0) {
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
add_new_free_space(cache, cache->start,
|
|
cache->start + cache->length);
|
|
btrfs_free_excluded_extents(cache);
|
|
}
|
|
|
|
ret = btrfs_add_block_group_cache(info, cache);
|
|
if (ret) {
|
|
btrfs_remove_free_space_cache(cache);
|
|
goto error;
|
|
}
|
|
trace_btrfs_add_block_group(info, cache, 0);
|
|
btrfs_add_bg_to_space_info(info, cache);
|
|
|
|
set_avail_alloc_bits(info, cache->flags);
|
|
if (btrfs_chunk_writeable(info, cache->start)) {
|
|
if (cache->used == 0) {
|
|
ASSERT(list_empty(&cache->bg_list));
|
|
if (btrfs_test_opt(info, DISCARD_ASYNC))
|
|
btrfs_discard_queue_work(&info->discard_ctl, cache);
|
|
else
|
|
btrfs_mark_bg_unused(cache);
|
|
}
|
|
} else {
|
|
inc_block_group_ro(cache, 1);
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
btrfs_put_block_group(cache);
|
|
return ret;
|
|
}
|
|
|
|
static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
|
|
struct rb_node *node;
|
|
int ret = 0;
|
|
|
|
for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct btrfs_block_group *bg;
|
|
|
|
em = rb_entry(node, struct extent_map, rb_node);
|
|
map = em->map_lookup;
|
|
bg = btrfs_create_block_group_cache(fs_info, em->start);
|
|
if (!bg) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
/* Fill dummy cache as FULL */
|
|
bg->length = em->len;
|
|
bg->flags = map->type;
|
|
bg->cached = BTRFS_CACHE_FINISHED;
|
|
bg->used = em->len;
|
|
bg->flags = map->type;
|
|
ret = btrfs_add_block_group_cache(fs_info, bg);
|
|
/*
|
|
* We may have some valid block group cache added already, in
|
|
* that case we skip to the next one.
|
|
*/
|
|
if (ret == -EEXIST) {
|
|
ret = 0;
|
|
btrfs_put_block_group(bg);
|
|
continue;
|
|
}
|
|
|
|
if (ret) {
|
|
btrfs_remove_free_space_cache(bg);
|
|
btrfs_put_block_group(bg);
|
|
break;
|
|
}
|
|
|
|
btrfs_add_bg_to_space_info(fs_info, bg);
|
|
|
|
set_avail_alloc_bits(fs_info, bg->flags);
|
|
}
|
|
if (!ret)
|
|
btrfs_init_global_block_rsv(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_read_block_groups(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_root *root = btrfs_block_group_root(info);
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct btrfs_block_group *cache;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_key key;
|
|
int need_clear = 0;
|
|
u64 cache_gen;
|
|
|
|
/*
|
|
* Either no extent root (with ibadroots rescue option) or we have
|
|
* unsupported RO options. The fs can never be mounted read-write, so no
|
|
* need to waste time searching block group items.
|
|
*
|
|
* This also allows new extent tree related changes to be RO compat,
|
|
* no need for a full incompat flag.
|
|
*/
|
|
if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
|
|
~BTRFS_FEATURE_COMPAT_RO_SUPP))
|
|
return fill_dummy_bgs(info);
|
|
|
|
key.objectid = 0;
|
|
key.offset = 0;
|
|
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
cache_gen = btrfs_super_cache_generation(info->super_copy);
|
|
if (btrfs_test_opt(info, SPACE_CACHE) &&
|
|
btrfs_super_generation(info->super_copy) != cache_gen)
|
|
need_clear = 1;
|
|
if (btrfs_test_opt(info, CLEAR_CACHE))
|
|
need_clear = 1;
|
|
|
|
while (1) {
|
|
struct btrfs_block_group_item bgi;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
|
|
ret = find_first_block_group(info, path, &key);
|
|
if (ret > 0)
|
|
break;
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
|
|
sizeof(bgi));
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
btrfs_release_path(path);
|
|
ret = read_one_block_group(info, &bgi, &key, need_clear);
|
|
if (ret < 0)
|
|
goto error;
|
|
key.objectid += key.offset;
|
|
key.offset = 0;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
list_for_each_entry(space_info, &info->space_info, list) {
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
|
|
if (list_empty(&space_info->block_groups[i]))
|
|
continue;
|
|
cache = list_first_entry(&space_info->block_groups[i],
|
|
struct btrfs_block_group,
|
|
list);
|
|
btrfs_sysfs_add_block_group_type(cache);
|
|
}
|
|
|
|
if (!(btrfs_get_alloc_profile(info, space_info->flags) &
|
|
(BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_RAID1_MASK |
|
|
BTRFS_BLOCK_GROUP_RAID56_MASK |
|
|
BTRFS_BLOCK_GROUP_DUP)))
|
|
continue;
|
|
/*
|
|
* Avoid allocating from un-mirrored block group if there are
|
|
* mirrored block groups.
|
|
*/
|
|
list_for_each_entry(cache,
|
|
&space_info->block_groups[BTRFS_RAID_RAID0],
|
|
list)
|
|
inc_block_group_ro(cache, 1);
|
|
list_for_each_entry(cache,
|
|
&space_info->block_groups[BTRFS_RAID_SINGLE],
|
|
list)
|
|
inc_block_group_ro(cache, 1);
|
|
}
|
|
|
|
btrfs_init_global_block_rsv(info);
|
|
ret = check_chunk_block_group_mappings(info);
|
|
error:
|
|
btrfs_free_path(path);
|
|
/*
|
|
* We've hit some error while reading the extent tree, and have
|
|
* rescue=ibadroots mount option.
|
|
* Try to fill the tree using dummy block groups so that the user can
|
|
* continue to mount and grab their data.
|
|
*/
|
|
if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
|
|
ret = fill_dummy_bgs(info);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function, insert_block_group_item(), belongs to the phase 2 of chunk
|
|
* allocation.
|
|
*
|
|
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
|
|
* phases.
|
|
*/
|
|
static int insert_block_group_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group_item bgi;
|
|
struct btrfs_root *root = btrfs_block_group_root(fs_info);
|
|
struct btrfs_key key;
|
|
|
|
spin_lock(&block_group->lock);
|
|
btrfs_set_stack_block_group_used(&bgi, block_group->used);
|
|
btrfs_set_stack_block_group_chunk_objectid(&bgi,
|
|
block_group->global_root_id);
|
|
btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
|
|
key.objectid = block_group->start;
|
|
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
|
|
key.offset = block_group->length;
|
|
spin_unlock(&block_group->lock);
|
|
|
|
return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
|
|
}
|
|
|
|
static int insert_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device, u64 chunk_offset,
|
|
u64 start, u64 num_bytes)
|
|
{
|
|
struct btrfs_fs_info *fs_info = device->fs_info;
|
|
struct btrfs_root *root = fs_info->dev_root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dev_extent *extent;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
|
|
WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = device->devid;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
key.offset = start;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
|
|
btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
|
|
btrfs_set_dev_extent_chunk_objectid(leaf, extent,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
|
|
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
|
|
|
|
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function belongs to phase 2.
|
|
*
|
|
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
|
|
* phases.
|
|
*/
|
|
static int insert_dev_extents(struct btrfs_trans_handle *trans,
|
|
u64 chunk_offset, u64 chunk_size)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_device *device;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
u64 dev_offset;
|
|
u64 stripe_size;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
|
|
if (IS_ERR(em))
|
|
return PTR_ERR(em);
|
|
|
|
map = em->map_lookup;
|
|
stripe_size = em->orig_block_len;
|
|
|
|
/*
|
|
* Take the device list mutex to prevent races with the final phase of
|
|
* a device replace operation that replaces the device object associated
|
|
* with the map's stripes, because the device object's id can change
|
|
* at any time during that final phase of the device replace operation
|
|
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
|
|
* replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
|
|
* resulting in persisting a device extent item with such ID.
|
|
*/
|
|
mutex_lock(&fs_info->fs_devices->device_list_mutex);
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
device = map->stripes[i].dev;
|
|
dev_offset = map->stripes[i].physical;
|
|
|
|
ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
|
|
stripe_size);
|
|
if (ret)
|
|
break;
|
|
}
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
|
|
* chunk allocation.
|
|
*
|
|
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
|
|
* phases.
|
|
*/
|
|
void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *block_group;
|
|
int ret = 0;
|
|
|
|
while (!list_empty(&trans->new_bgs)) {
|
|
int index;
|
|
|
|
block_group = list_first_entry(&trans->new_bgs,
|
|
struct btrfs_block_group,
|
|
bg_list);
|
|
if (ret)
|
|
goto next;
|
|
|
|
index = btrfs_bg_flags_to_raid_index(block_group->flags);
|
|
|
|
ret = insert_block_group_item(trans, block_group);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
|
|
&block_group->runtime_flags)) {
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
}
|
|
ret = insert_dev_extents(trans, block_group->start,
|
|
block_group->length);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
add_block_group_free_space(trans, block_group);
|
|
|
|
/*
|
|
* If we restriped during balance, we may have added a new raid
|
|
* type, so now add the sysfs entries when it is safe to do so.
|
|
* We don't have to worry about locking here as it's handled in
|
|
* btrfs_sysfs_add_block_group_type.
|
|
*/
|
|
if (block_group->space_info->block_group_kobjs[index] == NULL)
|
|
btrfs_sysfs_add_block_group_type(block_group);
|
|
|
|
/* Already aborted the transaction if it failed. */
|
|
next:
|
|
btrfs_delayed_refs_rsv_release(fs_info, 1);
|
|
list_del_init(&block_group->bg_list);
|
|
}
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
}
|
|
|
|
/*
|
|
* For extent tree v2 we use the block_group_item->chunk_offset to point at our
|
|
* global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
|
|
*/
|
|
static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
|
|
{
|
|
u64 div = SZ_1G;
|
|
u64 index;
|
|
|
|
if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
|
|
return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
|
|
/* If we have a smaller fs index based on 128MiB. */
|
|
if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
|
|
div = SZ_128M;
|
|
|
|
offset = div64_u64(offset, div);
|
|
div64_u64_rem(offset, fs_info->nr_global_roots, &index);
|
|
return index;
|
|
}
|
|
|
|
struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
|
|
u64 bytes_used, u64 type,
|
|
u64 chunk_offset, u64 size)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *cache;
|
|
int ret;
|
|
|
|
btrfs_set_log_full_commit(trans);
|
|
|
|
cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
|
|
if (!cache)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
cache->length = size;
|
|
set_free_space_tree_thresholds(cache);
|
|
cache->used = bytes_used;
|
|
cache->flags = type;
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
|
|
|
|
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
|
|
set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
|
|
|
|
ret = btrfs_load_block_group_zone_info(cache, true);
|
|
if (ret) {
|
|
btrfs_put_block_group(cache);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = exclude_super_stripes(cache);
|
|
if (ret) {
|
|
/* We may have excluded something, so call this just in case */
|
|
btrfs_free_excluded_extents(cache);
|
|
btrfs_put_block_group(cache);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
add_new_free_space(cache, chunk_offset, chunk_offset + size);
|
|
|
|
btrfs_free_excluded_extents(cache);
|
|
|
|
/*
|
|
* Ensure the corresponding space_info object is created and
|
|
* assigned to our block group. We want our bg to be added to the rbtree
|
|
* with its ->space_info set.
|
|
*/
|
|
cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
|
|
ASSERT(cache->space_info);
|
|
|
|
ret = btrfs_add_block_group_cache(fs_info, cache);
|
|
if (ret) {
|
|
btrfs_remove_free_space_cache(cache);
|
|
btrfs_put_block_group(cache);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/*
|
|
* Now that our block group has its ->space_info set and is inserted in
|
|
* the rbtree, update the space info's counters.
|
|
*/
|
|
trace_btrfs_add_block_group(fs_info, cache, 1);
|
|
btrfs_add_bg_to_space_info(fs_info, cache);
|
|
btrfs_update_global_block_rsv(fs_info);
|
|
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
if (btrfs_should_fragment_free_space(cache)) {
|
|
u64 new_bytes_used = size - bytes_used;
|
|
|
|
cache->space_info->bytes_used += new_bytes_used >> 1;
|
|
fragment_free_space(cache);
|
|
}
|
|
#endif
|
|
|
|
list_add_tail(&cache->bg_list, &trans->new_bgs);
|
|
trans->delayed_ref_updates++;
|
|
btrfs_update_delayed_refs_rsv(trans);
|
|
|
|
set_avail_alloc_bits(fs_info, type);
|
|
return cache;
|
|
}
|
|
|
|
/*
|
|
* Mark one block group RO, can be called several times for the same block
|
|
* group.
|
|
*
|
|
* @cache: the destination block group
|
|
* @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
|
|
* ensure we still have some free space after marking this
|
|
* block group RO.
|
|
*/
|
|
int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
|
|
bool do_chunk_alloc)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = btrfs_block_group_root(fs_info);
|
|
u64 alloc_flags;
|
|
int ret;
|
|
bool dirty_bg_running;
|
|
|
|
/*
|
|
* This can only happen when we are doing read-only scrub on read-only
|
|
* mount.
|
|
* In that case we should not start a new transaction on read-only fs.
|
|
* Thus here we skip all chunk allocations.
|
|
*/
|
|
if (sb_rdonly(fs_info->sb)) {
|
|
mutex_lock(&fs_info->ro_block_group_mutex);
|
|
ret = inc_block_group_ro(cache, 0);
|
|
mutex_unlock(&fs_info->ro_block_group_mutex);
|
|
return ret;
|
|
}
|
|
|
|
do {
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
dirty_bg_running = false;
|
|
|
|
/*
|
|
* We're not allowed to set block groups readonly after the dirty
|
|
* block group cache has started writing. If it already started,
|
|
* back off and let this transaction commit.
|
|
*/
|
|
mutex_lock(&fs_info->ro_block_group_mutex);
|
|
if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
|
|
u64 transid = trans->transid;
|
|
|
|
mutex_unlock(&fs_info->ro_block_group_mutex);
|
|
btrfs_end_transaction(trans);
|
|
|
|
ret = btrfs_wait_for_commit(fs_info, transid);
|
|
if (ret)
|
|
return ret;
|
|
dirty_bg_running = true;
|
|
}
|
|
} while (dirty_bg_running);
|
|
|
|
if (do_chunk_alloc) {
|
|
/*
|
|
* If we are changing raid levels, try to allocate a
|
|
* corresponding block group with the new raid level.
|
|
*/
|
|
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
|
|
if (alloc_flags != cache->flags) {
|
|
ret = btrfs_chunk_alloc(trans, alloc_flags,
|
|
CHUNK_ALLOC_FORCE);
|
|
/*
|
|
* ENOSPC is allowed here, we may have enough space
|
|
* already allocated at the new raid level to carry on
|
|
*/
|
|
if (ret == -ENOSPC)
|
|
ret = 0;
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = inc_block_group_ro(cache, 0);
|
|
if (!do_chunk_alloc || ret == -ETXTBSY)
|
|
goto unlock_out;
|
|
if (!ret)
|
|
goto out;
|
|
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
|
|
ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
|
|
if (ret < 0)
|
|
goto out;
|
|
/*
|
|
* We have allocated a new chunk. We also need to activate that chunk to
|
|
* grant metadata tickets for zoned filesystem.
|
|
*/
|
|
ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = inc_block_group_ro(cache, 0);
|
|
if (ret == -ETXTBSY)
|
|
goto unlock_out;
|
|
out:
|
|
if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
check_system_chunk(trans, alloc_flags);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
}
|
|
unlock_out:
|
|
mutex_unlock(&fs_info->ro_block_group_mutex);
|
|
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
|
|
{
|
|
struct btrfs_space_info *sinfo = cache->space_info;
|
|
u64 num_bytes;
|
|
|
|
BUG_ON(!cache->ro);
|
|
|
|
spin_lock(&sinfo->lock);
|
|
spin_lock(&cache->lock);
|
|
if (!--cache->ro) {
|
|
if (btrfs_is_zoned(cache->fs_info)) {
|
|
/* Migrate zone_unusable bytes back */
|
|
cache->zone_unusable =
|
|
(cache->alloc_offset - cache->used) +
|
|
(cache->length - cache->zone_capacity);
|
|
sinfo->bytes_zone_unusable += cache->zone_unusable;
|
|
sinfo->bytes_readonly -= cache->zone_unusable;
|
|
}
|
|
num_bytes = cache->length - cache->reserved -
|
|
cache->pinned - cache->bytes_super -
|
|
cache->zone_unusable - cache->used;
|
|
sinfo->bytes_readonly -= num_bytes;
|
|
list_del_init(&cache->ro_list);
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&sinfo->lock);
|
|
}
|
|
|
|
static int update_block_group_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct btrfs_block_group *cache)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
int ret;
|
|
struct btrfs_root *root = btrfs_block_group_root(fs_info);
|
|
unsigned long bi;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_block_group_item bgi;
|
|
struct btrfs_key key;
|
|
u64 old_commit_used;
|
|
u64 used;
|
|
|
|
/*
|
|
* Block group items update can be triggered out of commit transaction
|
|
* critical section, thus we need a consistent view of used bytes.
|
|
* We cannot use cache->used directly outside of the spin lock, as it
|
|
* may be changed.
|
|
*/
|
|
spin_lock(&cache->lock);
|
|
old_commit_used = cache->commit_used;
|
|
used = cache->used;
|
|
/* No change in used bytes, can safely skip it. */
|
|
if (cache->commit_used == used) {
|
|
spin_unlock(&cache->lock);
|
|
return 0;
|
|
}
|
|
cache->commit_used = used;
|
|
spin_unlock(&cache->lock);
|
|
|
|
key.objectid = cache->start;
|
|
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
|
|
key.offset = cache->length;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto fail;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
btrfs_set_stack_block_group_used(&bgi, used);
|
|
btrfs_set_stack_block_group_chunk_objectid(&bgi,
|
|
cache->global_root_id);
|
|
btrfs_set_stack_block_group_flags(&bgi, cache->flags);
|
|
write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
fail:
|
|
btrfs_release_path(path);
|
|
/* We didn't update the block group item, need to revert @commit_used. */
|
|
if (ret < 0) {
|
|
spin_lock(&cache->lock);
|
|
cache->commit_used = old_commit_used;
|
|
spin_unlock(&cache->lock);
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
static int cache_save_setup(struct btrfs_block_group *block_group,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct inode *inode = NULL;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
u64 alloc_hint = 0;
|
|
int dcs = BTRFS_DC_ERROR;
|
|
u64 cache_size = 0;
|
|
int retries = 0;
|
|
int ret = 0;
|
|
|
|
if (!btrfs_test_opt(fs_info, SPACE_CACHE))
|
|
return 0;
|
|
|
|
/*
|
|
* If this block group is smaller than 100 megs don't bother caching the
|
|
* block group.
|
|
*/
|
|
if (block_group->length < (100 * SZ_1M)) {
|
|
spin_lock(&block_group->lock);
|
|
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
|
|
spin_unlock(&block_group->lock);
|
|
return 0;
|
|
}
|
|
|
|
if (TRANS_ABORTED(trans))
|
|
return 0;
|
|
again:
|
|
inode = lookup_free_space_inode(block_group, path);
|
|
if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
|
|
ret = PTR_ERR(inode);
|
|
btrfs_release_path(path);
|
|
goto out;
|
|
}
|
|
|
|
if (IS_ERR(inode)) {
|
|
BUG_ON(retries);
|
|
retries++;
|
|
|
|
if (block_group->ro)
|
|
goto out_free;
|
|
|
|
ret = create_free_space_inode(trans, block_group, path);
|
|
if (ret)
|
|
goto out_free;
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* We want to set the generation to 0, that way if anything goes wrong
|
|
* from here on out we know not to trust this cache when we load up next
|
|
* time.
|
|
*/
|
|
BTRFS_I(inode)->generation = 0;
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (ret) {
|
|
/*
|
|
* So theoretically we could recover from this, simply set the
|
|
* super cache generation to 0 so we know to invalidate the
|
|
* cache, but then we'd have to keep track of the block groups
|
|
* that fail this way so we know we _have_ to reset this cache
|
|
* before the next commit or risk reading stale cache. So to
|
|
* limit our exposure to horrible edge cases lets just abort the
|
|
* transaction, this only happens in really bad situations
|
|
* anyway.
|
|
*/
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_put;
|
|
}
|
|
WARN_ON(ret);
|
|
|
|
/* We've already setup this transaction, go ahead and exit */
|
|
if (block_group->cache_generation == trans->transid &&
|
|
i_size_read(inode)) {
|
|
dcs = BTRFS_DC_SETUP;
|
|
goto out_put;
|
|
}
|
|
|
|
if (i_size_read(inode) > 0) {
|
|
ret = btrfs_check_trunc_cache_free_space(fs_info,
|
|
&fs_info->global_block_rsv);
|
|
if (ret)
|
|
goto out_put;
|
|
|
|
ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
|
|
if (ret)
|
|
goto out_put;
|
|
}
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->cached != BTRFS_CACHE_FINISHED ||
|
|
!btrfs_test_opt(fs_info, SPACE_CACHE)) {
|
|
/*
|
|
* don't bother trying to write stuff out _if_
|
|
* a) we're not cached,
|
|
* b) we're with nospace_cache mount option,
|
|
* c) we're with v2 space_cache (FREE_SPACE_TREE).
|
|
*/
|
|
dcs = BTRFS_DC_WRITTEN;
|
|
spin_unlock(&block_group->lock);
|
|
goto out_put;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
/*
|
|
* We hit an ENOSPC when setting up the cache in this transaction, just
|
|
* skip doing the setup, we've already cleared the cache so we're safe.
|
|
*/
|
|
if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
|
|
ret = -ENOSPC;
|
|
goto out_put;
|
|
}
|
|
|
|
/*
|
|
* Try to preallocate enough space based on how big the block group is.
|
|
* Keep in mind this has to include any pinned space which could end up
|
|
* taking up quite a bit since it's not folded into the other space
|
|
* cache.
|
|
*/
|
|
cache_size = div_u64(block_group->length, SZ_256M);
|
|
if (!cache_size)
|
|
cache_size = 1;
|
|
|
|
cache_size *= 16;
|
|
cache_size *= fs_info->sectorsize;
|
|
|
|
ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
|
|
cache_size, false);
|
|
if (ret)
|
|
goto out_put;
|
|
|
|
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
|
|
cache_size, cache_size,
|
|
&alloc_hint);
|
|
/*
|
|
* Our cache requires contiguous chunks so that we don't modify a bunch
|
|
* of metadata or split extents when writing the cache out, which means
|
|
* we can enospc if we are heavily fragmented in addition to just normal
|
|
* out of space conditions. So if we hit this just skip setting up any
|
|
* other block groups for this transaction, maybe we'll unpin enough
|
|
* space the next time around.
|
|
*/
|
|
if (!ret)
|
|
dcs = BTRFS_DC_SETUP;
|
|
else if (ret == -ENOSPC)
|
|
set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
|
|
|
|
out_put:
|
|
iput(inode);
|
|
out_free:
|
|
btrfs_release_path(path);
|
|
out:
|
|
spin_lock(&block_group->lock);
|
|
if (!ret && dcs == BTRFS_DC_SETUP)
|
|
block_group->cache_generation = trans->transid;
|
|
block_group->disk_cache_state = dcs;
|
|
spin_unlock(&block_group->lock);
|
|
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *cache, *tmp;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_path *path;
|
|
|
|
if (list_empty(&cur_trans->dirty_bgs) ||
|
|
!btrfs_test_opt(fs_info, SPACE_CACHE))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/* Could add new block groups, use _safe just in case */
|
|
list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
|
|
dirty_list) {
|
|
if (cache->disk_cache_state == BTRFS_DC_CLEAR)
|
|
cache_save_setup(cache, trans, path);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Transaction commit does final block group cache writeback during a critical
|
|
* section where nothing is allowed to change the FS. This is required in
|
|
* order for the cache to actually match the block group, but can introduce a
|
|
* lot of latency into the commit.
|
|
*
|
|
* So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
|
|
* There's a chance we'll have to redo some of it if the block group changes
|
|
* again during the commit, but it greatly reduces the commit latency by
|
|
* getting rid of the easy block groups while we're still allowing others to
|
|
* join the commit.
|
|
*/
|
|
int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *cache;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
int ret = 0;
|
|
int should_put;
|
|
struct btrfs_path *path = NULL;
|
|
LIST_HEAD(dirty);
|
|
struct list_head *io = &cur_trans->io_bgs;
|
|
int loops = 0;
|
|
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
if (list_empty(&cur_trans->dirty_bgs)) {
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
return 0;
|
|
}
|
|
list_splice_init(&cur_trans->dirty_bgs, &dirty);
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
|
|
again:
|
|
/* Make sure all the block groups on our dirty list actually exist */
|
|
btrfs_create_pending_block_groups(trans);
|
|
|
|
if (!path) {
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* cache_write_mutex is here only to save us from balance or automatic
|
|
* removal of empty block groups deleting this block group while we are
|
|
* writing out the cache
|
|
*/
|
|
mutex_lock(&trans->transaction->cache_write_mutex);
|
|
while (!list_empty(&dirty)) {
|
|
bool drop_reserve = true;
|
|
|
|
cache = list_first_entry(&dirty, struct btrfs_block_group,
|
|
dirty_list);
|
|
/*
|
|
* This can happen if something re-dirties a block group that
|
|
* is already under IO. Just wait for it to finish and then do
|
|
* it all again
|
|
*/
|
|
if (!list_empty(&cache->io_list)) {
|
|
list_del_init(&cache->io_list);
|
|
btrfs_wait_cache_io(trans, cache, path);
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
|
|
/*
|
|
* btrfs_wait_cache_io uses the cache->dirty_list to decide if
|
|
* it should update the cache_state. Don't delete until after
|
|
* we wait.
|
|
*
|
|
* Since we're not running in the commit critical section
|
|
* we need the dirty_bgs_lock to protect from update_block_group
|
|
*/
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
list_del_init(&cache->dirty_list);
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
|
|
should_put = 1;
|
|
|
|
cache_save_setup(cache, trans, path);
|
|
|
|
if (cache->disk_cache_state == BTRFS_DC_SETUP) {
|
|
cache->io_ctl.inode = NULL;
|
|
ret = btrfs_write_out_cache(trans, cache, path);
|
|
if (ret == 0 && cache->io_ctl.inode) {
|
|
should_put = 0;
|
|
|
|
/*
|
|
* The cache_write_mutex is protecting the
|
|
* io_list, also refer to the definition of
|
|
* btrfs_transaction::io_bgs for more details
|
|
*/
|
|
list_add_tail(&cache->io_list, io);
|
|
} else {
|
|
/*
|
|
* If we failed to write the cache, the
|
|
* generation will be bad and life goes on
|
|
*/
|
|
ret = 0;
|
|
}
|
|
}
|
|
if (!ret) {
|
|
ret = update_block_group_item(trans, path, cache);
|
|
/*
|
|
* Our block group might still be attached to the list
|
|
* of new block groups in the transaction handle of some
|
|
* other task (struct btrfs_trans_handle->new_bgs). This
|
|
* means its block group item isn't yet in the extent
|
|
* tree. If this happens ignore the error, as we will
|
|
* try again later in the critical section of the
|
|
* transaction commit.
|
|
*/
|
|
if (ret == -ENOENT) {
|
|
ret = 0;
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
if (list_empty(&cache->dirty_list)) {
|
|
list_add_tail(&cache->dirty_list,
|
|
&cur_trans->dirty_bgs);
|
|
btrfs_get_block_group(cache);
|
|
drop_reserve = false;
|
|
}
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
} else if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
}
|
|
}
|
|
|
|
/* If it's not on the io list, we need to put the block group */
|
|
if (should_put)
|
|
btrfs_put_block_group(cache);
|
|
if (drop_reserve)
|
|
btrfs_delayed_refs_rsv_release(fs_info, 1);
|
|
/*
|
|
* Avoid blocking other tasks for too long. It might even save
|
|
* us from writing caches for block groups that are going to be
|
|
* removed.
|
|
*/
|
|
mutex_unlock(&trans->transaction->cache_write_mutex);
|
|
if (ret)
|
|
goto out;
|
|
mutex_lock(&trans->transaction->cache_write_mutex);
|
|
}
|
|
mutex_unlock(&trans->transaction->cache_write_mutex);
|
|
|
|
/*
|
|
* Go through delayed refs for all the stuff we've just kicked off
|
|
* and then loop back (just once)
|
|
*/
|
|
if (!ret)
|
|
ret = btrfs_run_delayed_refs(trans, 0);
|
|
if (!ret && loops == 0) {
|
|
loops++;
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
list_splice_init(&cur_trans->dirty_bgs, &dirty);
|
|
/*
|
|
* dirty_bgs_lock protects us from concurrent block group
|
|
* deletes too (not just cache_write_mutex).
|
|
*/
|
|
if (!list_empty(&dirty)) {
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
goto again;
|
|
}
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
}
|
|
out:
|
|
if (ret < 0) {
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
list_splice_init(&dirty, &cur_trans->dirty_bgs);
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *cache;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
int ret = 0;
|
|
int should_put;
|
|
struct btrfs_path *path;
|
|
struct list_head *io = &cur_trans->io_bgs;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Even though we are in the critical section of the transaction commit,
|
|
* we can still have concurrent tasks adding elements to this
|
|
* transaction's list of dirty block groups. These tasks correspond to
|
|
* endio free space workers started when writeback finishes for a
|
|
* space cache, which run inode.c:btrfs_finish_ordered_io(), and can
|
|
* allocate new block groups as a result of COWing nodes of the root
|
|
* tree when updating the free space inode. The writeback for the space
|
|
* caches is triggered by an earlier call to
|
|
* btrfs_start_dirty_block_groups() and iterations of the following
|
|
* loop.
|
|
* Also we want to do the cache_save_setup first and then run the
|
|
* delayed refs to make sure we have the best chance at doing this all
|
|
* in one shot.
|
|
*/
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
while (!list_empty(&cur_trans->dirty_bgs)) {
|
|
cache = list_first_entry(&cur_trans->dirty_bgs,
|
|
struct btrfs_block_group,
|
|
dirty_list);
|
|
|
|
/*
|
|
* This can happen if cache_save_setup re-dirties a block group
|
|
* that is already under IO. Just wait for it to finish and
|
|
* then do it all again
|
|
*/
|
|
if (!list_empty(&cache->io_list)) {
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
list_del_init(&cache->io_list);
|
|
btrfs_wait_cache_io(trans, cache, path);
|
|
btrfs_put_block_group(cache);
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
}
|
|
|
|
/*
|
|
* Don't remove from the dirty list until after we've waited on
|
|
* any pending IO
|
|
*/
|
|
list_del_init(&cache->dirty_list);
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
should_put = 1;
|
|
|
|
cache_save_setup(cache, trans, path);
|
|
|
|
if (!ret)
|
|
ret = btrfs_run_delayed_refs(trans,
|
|
(unsigned long) -1);
|
|
|
|
if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
|
|
cache->io_ctl.inode = NULL;
|
|
ret = btrfs_write_out_cache(trans, cache, path);
|
|
if (ret == 0 && cache->io_ctl.inode) {
|
|
should_put = 0;
|
|
list_add_tail(&cache->io_list, io);
|
|
} else {
|
|
/*
|
|
* If we failed to write the cache, the
|
|
* generation will be bad and life goes on
|
|
*/
|
|
ret = 0;
|
|
}
|
|
}
|
|
if (!ret) {
|
|
ret = update_block_group_item(trans, path, cache);
|
|
/*
|
|
* One of the free space endio workers might have
|
|
* created a new block group while updating a free space
|
|
* cache's inode (at inode.c:btrfs_finish_ordered_io())
|
|
* and hasn't released its transaction handle yet, in
|
|
* which case the new block group is still attached to
|
|
* its transaction handle and its creation has not
|
|
* finished yet (no block group item in the extent tree
|
|
* yet, etc). If this is the case, wait for all free
|
|
* space endio workers to finish and retry. This is a
|
|
* very rare case so no need for a more efficient and
|
|
* complex approach.
|
|
*/
|
|
if (ret == -ENOENT) {
|
|
wait_event(cur_trans->writer_wait,
|
|
atomic_read(&cur_trans->num_writers) == 1);
|
|
ret = update_block_group_item(trans, path, cache);
|
|
}
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
}
|
|
|
|
/* If its not on the io list, we need to put the block group */
|
|
if (should_put)
|
|
btrfs_put_block_group(cache);
|
|
btrfs_delayed_refs_rsv_release(fs_info, 1);
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
}
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
|
|
/*
|
|
* Refer to the definition of io_bgs member for details why it's safe
|
|
* to use it without any locking
|
|
*/
|
|
while (!list_empty(io)) {
|
|
cache = list_first_entry(io, struct btrfs_block_group,
|
|
io_list);
|
|
list_del_init(&cache->io_list);
|
|
btrfs_wait_cache_io(trans, cache, path);
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_update_block_group(struct btrfs_trans_handle *trans,
|
|
u64 bytenr, u64 num_bytes, bool alloc)
|
|
{
|
|
struct btrfs_fs_info *info = trans->fs_info;
|
|
struct btrfs_block_group *cache = NULL;
|
|
u64 total = num_bytes;
|
|
u64 old_val;
|
|
u64 byte_in_group;
|
|
int factor;
|
|
int ret = 0;
|
|
|
|
/* Block accounting for super block */
|
|
spin_lock(&info->delalloc_root_lock);
|
|
old_val = btrfs_super_bytes_used(info->super_copy);
|
|
if (alloc)
|
|
old_val += num_bytes;
|
|
else
|
|
old_val -= num_bytes;
|
|
btrfs_set_super_bytes_used(info->super_copy, old_val);
|
|
spin_unlock(&info->delalloc_root_lock);
|
|
|
|
while (total) {
|
|
bool reclaim = false;
|
|
|
|
cache = btrfs_lookup_block_group(info, bytenr);
|
|
if (!cache) {
|
|
ret = -ENOENT;
|
|
break;
|
|
}
|
|
factor = btrfs_bg_type_to_factor(cache->flags);
|
|
|
|
/*
|
|
* If this block group has free space cache written out, we
|
|
* need to make sure to load it if we are removing space. This
|
|
* is because we need the unpinning stage to actually add the
|
|
* space back to the block group, otherwise we will leak space.
|
|
*/
|
|
if (!alloc && !btrfs_block_group_done(cache))
|
|
btrfs_cache_block_group(cache, true);
|
|
|
|
byte_in_group = bytenr - cache->start;
|
|
WARN_ON(byte_in_group > cache->length);
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
|
|
if (btrfs_test_opt(info, SPACE_CACHE) &&
|
|
cache->disk_cache_state < BTRFS_DC_CLEAR)
|
|
cache->disk_cache_state = BTRFS_DC_CLEAR;
|
|
|
|
old_val = cache->used;
|
|
num_bytes = min(total, cache->length - byte_in_group);
|
|
if (alloc) {
|
|
old_val += num_bytes;
|
|
cache->used = old_val;
|
|
cache->reserved -= num_bytes;
|
|
cache->space_info->bytes_reserved -= num_bytes;
|
|
cache->space_info->bytes_used += num_bytes;
|
|
cache->space_info->disk_used += num_bytes * factor;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
} else {
|
|
old_val -= num_bytes;
|
|
cache->used = old_val;
|
|
cache->pinned += num_bytes;
|
|
btrfs_space_info_update_bytes_pinned(info,
|
|
cache->space_info, num_bytes);
|
|
cache->space_info->bytes_used -= num_bytes;
|
|
cache->space_info->disk_used -= num_bytes * factor;
|
|
|
|
reclaim = should_reclaim_block_group(cache, num_bytes);
|
|
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
set_extent_dirty(&trans->transaction->pinned_extents,
|
|
bytenr, bytenr + num_bytes - 1,
|
|
GFP_NOFS | __GFP_NOFAIL);
|
|
}
|
|
|
|
spin_lock(&trans->transaction->dirty_bgs_lock);
|
|
if (list_empty(&cache->dirty_list)) {
|
|
list_add_tail(&cache->dirty_list,
|
|
&trans->transaction->dirty_bgs);
|
|
trans->delayed_ref_updates++;
|
|
btrfs_get_block_group(cache);
|
|
}
|
|
spin_unlock(&trans->transaction->dirty_bgs_lock);
|
|
|
|
/*
|
|
* No longer have used bytes in this block group, queue it for
|
|
* deletion. We do this after adding the block group to the
|
|
* dirty list to avoid races between cleaner kthread and space
|
|
* cache writeout.
|
|
*/
|
|
if (!alloc && old_val == 0) {
|
|
if (!btrfs_test_opt(info, DISCARD_ASYNC))
|
|
btrfs_mark_bg_unused(cache);
|
|
} else if (!alloc && reclaim) {
|
|
btrfs_mark_bg_to_reclaim(cache);
|
|
}
|
|
|
|
btrfs_put_block_group(cache);
|
|
total -= num_bytes;
|
|
bytenr += num_bytes;
|
|
}
|
|
|
|
/* Modified block groups are accounted for in the delayed_refs_rsv. */
|
|
btrfs_update_delayed_refs_rsv(trans);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Update the block_group and space info counters.
|
|
*
|
|
* @cache: The cache we are manipulating
|
|
* @ram_bytes: The number of bytes of file content, and will be same to
|
|
* @num_bytes except for the compress path.
|
|
* @num_bytes: The number of bytes in question
|
|
* @delalloc: The blocks are allocated for the delalloc write
|
|
*
|
|
* This is called by the allocator when it reserves space. If this is a
|
|
* reservation and the block group has become read only we cannot make the
|
|
* reservation and return -EAGAIN, otherwise this function always succeeds.
|
|
*/
|
|
int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
|
|
u64 ram_bytes, u64 num_bytes, int delalloc,
|
|
bool force_wrong_size_class)
|
|
{
|
|
struct btrfs_space_info *space_info = cache->space_info;
|
|
enum btrfs_block_group_size_class size_class;
|
|
int ret = 0;
|
|
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
if (cache->ro) {
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_block_group_should_use_size_class(cache)) {
|
|
size_class = btrfs_calc_block_group_size_class(num_bytes);
|
|
ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
cache->reserved += num_bytes;
|
|
space_info->bytes_reserved += num_bytes;
|
|
trace_btrfs_space_reservation(cache->fs_info, "space_info",
|
|
space_info->flags, num_bytes, 1);
|
|
btrfs_space_info_update_bytes_may_use(cache->fs_info,
|
|
space_info, -ram_bytes);
|
|
if (delalloc)
|
|
cache->delalloc_bytes += num_bytes;
|
|
|
|
/*
|
|
* Compression can use less space than we reserved, so wake tickets if
|
|
* that happens.
|
|
*/
|
|
if (num_bytes < ram_bytes)
|
|
btrfs_try_granting_tickets(cache->fs_info, space_info);
|
|
out:
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&space_info->lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Update the block_group and space info counters.
|
|
*
|
|
* @cache: The cache we are manipulating
|
|
* @num_bytes: The number of bytes in question
|
|
* @delalloc: The blocks are allocated for the delalloc write
|
|
*
|
|
* This is called by somebody who is freeing space that was never actually used
|
|
* on disk. For example if you reserve some space for a new leaf in transaction
|
|
* A and before transaction A commits you free that leaf, you call this with
|
|
* reserve set to 0 in order to clear the reservation.
|
|
*/
|
|
void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
|
|
u64 num_bytes, int delalloc)
|
|
{
|
|
struct btrfs_space_info *space_info = cache->space_info;
|
|
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
if (cache->ro)
|
|
space_info->bytes_readonly += num_bytes;
|
|
cache->reserved -= num_bytes;
|
|
space_info->bytes_reserved -= num_bytes;
|
|
space_info->max_extent_size = 0;
|
|
|
|
if (delalloc)
|
|
cache->delalloc_bytes -= num_bytes;
|
|
spin_unlock(&cache->lock);
|
|
|
|
btrfs_try_granting_tickets(cache->fs_info, space_info);
|
|
spin_unlock(&space_info->lock);
|
|
}
|
|
|
|
static void force_metadata_allocation(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
list_for_each_entry(found, head, list) {
|
|
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
found->force_alloc = CHUNK_ALLOC_FORCE;
|
|
}
|
|
}
|
|
|
|
static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_space_info *sinfo, int force)
|
|
{
|
|
u64 bytes_used = btrfs_space_info_used(sinfo, false);
|
|
u64 thresh;
|
|
|
|
if (force == CHUNK_ALLOC_FORCE)
|
|
return 1;
|
|
|
|
/*
|
|
* in limited mode, we want to have some free space up to
|
|
* about 1% of the FS size.
|
|
*/
|
|
if (force == CHUNK_ALLOC_LIMITED) {
|
|
thresh = btrfs_super_total_bytes(fs_info->super_copy);
|
|
thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
|
|
|
|
if (sinfo->total_bytes - bytes_used < thresh)
|
|
return 1;
|
|
}
|
|
|
|
if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
|
|
{
|
|
u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
|
|
|
|
return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
|
|
}
|
|
|
|
static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
|
|
{
|
|
struct btrfs_block_group *bg;
|
|
int ret;
|
|
|
|
/*
|
|
* Check if we have enough space in the system space info because we
|
|
* will need to update device items in the chunk btree and insert a new
|
|
* chunk item in the chunk btree as well. This will allocate a new
|
|
* system block group if needed.
|
|
*/
|
|
check_system_chunk(trans, flags);
|
|
|
|
bg = btrfs_create_chunk(trans, flags);
|
|
if (IS_ERR(bg)) {
|
|
ret = PTR_ERR(bg);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
|
|
/*
|
|
* Normally we are not expected to fail with -ENOSPC here, since we have
|
|
* previously reserved space in the system space_info and allocated one
|
|
* new system chunk if necessary. However there are three exceptions:
|
|
*
|
|
* 1) We may have enough free space in the system space_info but all the
|
|
* existing system block groups have a profile which can not be used
|
|
* for extent allocation.
|
|
*
|
|
* This happens when mounting in degraded mode. For example we have a
|
|
* RAID1 filesystem with 2 devices, lose one device and mount the fs
|
|
* using the other device in degraded mode. If we then allocate a chunk,
|
|
* we may have enough free space in the existing system space_info, but
|
|
* none of the block groups can be used for extent allocation since they
|
|
* have a RAID1 profile, and because we are in degraded mode with a
|
|
* single device, we are forced to allocate a new system chunk with a
|
|
* SINGLE profile. Making check_system_chunk() iterate over all system
|
|
* block groups and check if they have a usable profile and enough space
|
|
* can be slow on very large filesystems, so we tolerate the -ENOSPC and
|
|
* try again after forcing allocation of a new system chunk. Like this
|
|
* we avoid paying the cost of that search in normal circumstances, when
|
|
* we were not mounted in degraded mode;
|
|
*
|
|
* 2) We had enough free space info the system space_info, and one suitable
|
|
* block group to allocate from when we called check_system_chunk()
|
|
* above. However right after we called it, the only system block group
|
|
* with enough free space got turned into RO mode by a running scrub,
|
|
* and in this case we have to allocate a new one and retry. We only
|
|
* need do this allocate and retry once, since we have a transaction
|
|
* handle and scrub uses the commit root to search for block groups;
|
|
*
|
|
* 3) We had one system block group with enough free space when we called
|
|
* check_system_chunk(), but after that, right before we tried to
|
|
* allocate the last extent buffer we needed, a discard operation came
|
|
* in and it temporarily removed the last free space entry from the
|
|
* block group (discard removes a free space entry, discards it, and
|
|
* then adds back the entry to the block group cache).
|
|
*/
|
|
if (ret == -ENOSPC) {
|
|
const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
|
|
struct btrfs_block_group *sys_bg;
|
|
|
|
sys_bg = btrfs_create_chunk(trans, sys_flags);
|
|
if (IS_ERR(sys_bg)) {
|
|
ret = PTR_ERR(sys_bg);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
} else if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
out:
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
btrfs_get_block_group(bg);
|
|
return bg;
|
|
}
|
|
|
|
/*
|
|
* Chunk allocation is done in 2 phases:
|
|
*
|
|
* 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
|
|
* the chunk, the chunk mapping, create its block group and add the items
|
|
* that belong in the chunk btree to it - more specifically, we need to
|
|
* update device items in the chunk btree and add a new chunk item to it.
|
|
*
|
|
* 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
|
|
* group item to the extent btree and the device extent items to the devices
|
|
* btree.
|
|
*
|
|
* This is done to prevent deadlocks. For example when COWing a node from the
|
|
* extent btree we are holding a write lock on the node's parent and if we
|
|
* trigger chunk allocation and attempted to insert the new block group item
|
|
* in the extent btree right way, we could deadlock because the path for the
|
|
* insertion can include that parent node. At first glance it seems impossible
|
|
* to trigger chunk allocation after starting a transaction since tasks should
|
|
* reserve enough transaction units (metadata space), however while that is true
|
|
* most of the time, chunk allocation may still be triggered for several reasons:
|
|
*
|
|
* 1) When reserving metadata, we check if there is enough free space in the
|
|
* metadata space_info and therefore don't trigger allocation of a new chunk.
|
|
* However later when the task actually tries to COW an extent buffer from
|
|
* the extent btree or from the device btree for example, it is forced to
|
|
* allocate a new block group (chunk) because the only one that had enough
|
|
* free space was just turned to RO mode by a running scrub for example (or
|
|
* device replace, block group reclaim thread, etc), so we can not use it
|
|
* for allocating an extent and end up being forced to allocate a new one;
|
|
*
|
|
* 2) Because we only check that the metadata space_info has enough free bytes,
|
|
* we end up not allocating a new metadata chunk in that case. However if
|
|
* the filesystem was mounted in degraded mode, none of the existing block
|
|
* groups might be suitable for extent allocation due to their incompatible
|
|
* profile (for e.g. mounting a 2 devices filesystem, where all block groups
|
|
* use a RAID1 profile, in degraded mode using a single device). In this case
|
|
* when the task attempts to COW some extent buffer of the extent btree for
|
|
* example, it will trigger allocation of a new metadata block group with a
|
|
* suitable profile (SINGLE profile in the example of the degraded mount of
|
|
* the RAID1 filesystem);
|
|
*
|
|
* 3) The task has reserved enough transaction units / metadata space, but when
|
|
* it attempts to COW an extent buffer from the extent or device btree for
|
|
* example, it does not find any free extent in any metadata block group,
|
|
* therefore forced to try to allocate a new metadata block group.
|
|
* This is because some other task allocated all available extents in the
|
|
* meanwhile - this typically happens with tasks that don't reserve space
|
|
* properly, either intentionally or as a bug. One example where this is
|
|
* done intentionally is fsync, as it does not reserve any transaction units
|
|
* and ends up allocating a variable number of metadata extents for log
|
|
* tree extent buffers;
|
|
*
|
|
* 4) The task has reserved enough transaction units / metadata space, but right
|
|
* before it tries to allocate the last extent buffer it needs, a discard
|
|
* operation comes in and, temporarily, removes the last free space entry from
|
|
* the only metadata block group that had free space (discard starts by
|
|
* removing a free space entry from a block group, then does the discard
|
|
* operation and, once it's done, it adds back the free space entry to the
|
|
* block group).
|
|
*
|
|
* We also need this 2 phases setup when adding a device to a filesystem with
|
|
* a seed device - we must create new metadata and system chunks without adding
|
|
* any of the block group items to the chunk, extent and device btrees. If we
|
|
* did not do it this way, we would get ENOSPC when attempting to update those
|
|
* btrees, since all the chunks from the seed device are read-only.
|
|
*
|
|
* Phase 1 does the updates and insertions to the chunk btree because if we had
|
|
* it done in phase 2 and have a thundering herd of tasks allocating chunks in
|
|
* parallel, we risk having too many system chunks allocated by many tasks if
|
|
* many tasks reach phase 1 without the previous ones completing phase 2. In the
|
|
* extreme case this leads to exhaustion of the system chunk array in the
|
|
* superblock. This is easier to trigger if using a btree node/leaf size of 64K
|
|
* and with RAID filesystems (so we have more device items in the chunk btree).
|
|
* This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
|
|
* the system chunk array due to concurrent allocations") provides more details.
|
|
*
|
|
* Allocation of system chunks does not happen through this function. A task that
|
|
* needs to update the chunk btree (the only btree that uses system chunks), must
|
|
* preallocate chunk space by calling either check_system_chunk() or
|
|
* btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
|
|
* metadata chunk or when removing a chunk, while the later is used before doing
|
|
* a modification to the chunk btree - use cases for the later are adding,
|
|
* removing and resizing a device as well as relocation of a system chunk.
|
|
* See the comment below for more details.
|
|
*
|
|
* The reservation of system space, done through check_system_chunk(), as well
|
|
* as all the updates and insertions into the chunk btree must be done while
|
|
* holding fs_info->chunk_mutex. This is important to guarantee that while COWing
|
|
* an extent buffer from the chunks btree we never trigger allocation of a new
|
|
* system chunk, which would result in a deadlock (trying to lock twice an
|
|
* extent buffer of the chunk btree, first time before triggering the chunk
|
|
* allocation and the second time during chunk allocation while attempting to
|
|
* update the chunks btree). The system chunk array is also updated while holding
|
|
* that mutex. The same logic applies to removing chunks - we must reserve system
|
|
* space, update the chunk btree and the system chunk array in the superblock
|
|
* while holding fs_info->chunk_mutex.
|
|
*
|
|
* This function, btrfs_chunk_alloc(), belongs to phase 1.
|
|
*
|
|
* If @force is CHUNK_ALLOC_FORCE:
|
|
* - return 1 if it successfully allocates a chunk,
|
|
* - return errors including -ENOSPC otherwise.
|
|
* If @force is NOT CHUNK_ALLOC_FORCE:
|
|
* - return 0 if it doesn't need to allocate a new chunk,
|
|
* - return 1 if it successfully allocates a chunk,
|
|
* - return errors including -ENOSPC otherwise.
|
|
*/
|
|
int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
|
|
enum btrfs_chunk_alloc_enum force)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_block_group *ret_bg;
|
|
bool wait_for_alloc = false;
|
|
bool should_alloc = false;
|
|
bool from_extent_allocation = false;
|
|
int ret = 0;
|
|
|
|
if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
|
|
from_extent_allocation = true;
|
|
force = CHUNK_ALLOC_FORCE;
|
|
}
|
|
|
|
/* Don't re-enter if we're already allocating a chunk */
|
|
if (trans->allocating_chunk)
|
|
return -ENOSPC;
|
|
/*
|
|
* Allocation of system chunks can not happen through this path, as we
|
|
* could end up in a deadlock if we are allocating a data or metadata
|
|
* chunk and there is another task modifying the chunk btree.
|
|
*
|
|
* This is because while we are holding the chunk mutex, we will attempt
|
|
* to add the new chunk item to the chunk btree or update an existing
|
|
* device item in the chunk btree, while the other task that is modifying
|
|
* the chunk btree is attempting to COW an extent buffer while holding a
|
|
* lock on it and on its parent - if the COW operation triggers a system
|
|
* chunk allocation, then we can deadlock because we are holding the
|
|
* chunk mutex and we may need to access that extent buffer or its parent
|
|
* in order to add the chunk item or update a device item.
|
|
*
|
|
* Tasks that want to modify the chunk tree should reserve system space
|
|
* before updating the chunk btree, by calling either
|
|
* btrfs_reserve_chunk_metadata() or check_system_chunk().
|
|
* It's possible that after a task reserves the space, it still ends up
|
|
* here - this happens in the cases described above at do_chunk_alloc().
|
|
* The task will have to either retry or fail.
|
|
*/
|
|
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
return -ENOSPC;
|
|
|
|
space_info = btrfs_find_space_info(fs_info, flags);
|
|
ASSERT(space_info);
|
|
|
|
do {
|
|
spin_lock(&space_info->lock);
|
|
if (force < space_info->force_alloc)
|
|
force = space_info->force_alloc;
|
|
should_alloc = should_alloc_chunk(fs_info, space_info, force);
|
|
if (space_info->full) {
|
|
/* No more free physical space */
|
|
if (should_alloc)
|
|
ret = -ENOSPC;
|
|
else
|
|
ret = 0;
|
|
spin_unlock(&space_info->lock);
|
|
return ret;
|
|
} else if (!should_alloc) {
|
|
spin_unlock(&space_info->lock);
|
|
return 0;
|
|
} else if (space_info->chunk_alloc) {
|
|
/*
|
|
* Someone is already allocating, so we need to block
|
|
* until this someone is finished and then loop to
|
|
* recheck if we should continue with our allocation
|
|
* attempt.
|
|
*/
|
|
wait_for_alloc = true;
|
|
force = CHUNK_ALLOC_NO_FORCE;
|
|
spin_unlock(&space_info->lock);
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
} else {
|
|
/* Proceed with allocation */
|
|
space_info->chunk_alloc = 1;
|
|
wait_for_alloc = false;
|
|
spin_unlock(&space_info->lock);
|
|
}
|
|
|
|
cond_resched();
|
|
} while (wait_for_alloc);
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
trans->allocating_chunk = true;
|
|
|
|
/*
|
|
* If we have mixed data/metadata chunks we want to make sure we keep
|
|
* allocating mixed chunks instead of individual chunks.
|
|
*/
|
|
if (btrfs_mixed_space_info(space_info))
|
|
flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
|
|
|
|
/*
|
|
* if we're doing a data chunk, go ahead and make sure that
|
|
* we keep a reasonable number of metadata chunks allocated in the
|
|
* FS as well.
|
|
*/
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
|
|
fs_info->data_chunk_allocations++;
|
|
if (!(fs_info->data_chunk_allocations %
|
|
fs_info->metadata_ratio))
|
|
force_metadata_allocation(fs_info);
|
|
}
|
|
|
|
ret_bg = do_chunk_alloc(trans, flags);
|
|
trans->allocating_chunk = false;
|
|
|
|
if (IS_ERR(ret_bg)) {
|
|
ret = PTR_ERR(ret_bg);
|
|
} else if (from_extent_allocation) {
|
|
/*
|
|
* New block group is likely to be used soon. Try to activate
|
|
* it now. Failure is OK for now.
|
|
*/
|
|
btrfs_zone_activate(ret_bg);
|
|
}
|
|
|
|
if (!ret)
|
|
btrfs_put_block_group(ret_bg);
|
|
|
|
spin_lock(&space_info->lock);
|
|
if (ret < 0) {
|
|
if (ret == -ENOSPC)
|
|
space_info->full = 1;
|
|
else
|
|
goto out;
|
|
} else {
|
|
ret = 1;
|
|
space_info->max_extent_size = 0;
|
|
}
|
|
|
|
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
|
|
out:
|
|
space_info->chunk_alloc = 0;
|
|
spin_unlock(&space_info->lock);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
|
|
{
|
|
u64 num_dev;
|
|
|
|
num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
|
|
if (!num_dev)
|
|
num_dev = fs_info->fs_devices->rw_devices;
|
|
|
|
return num_dev;
|
|
}
|
|
|
|
static void reserve_chunk_space(struct btrfs_trans_handle *trans,
|
|
u64 bytes,
|
|
u64 type)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_space_info *info;
|
|
u64 left;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Needed because we can end up allocating a system chunk and for an
|
|
* atomic and race free space reservation in the chunk block reserve.
|
|
*/
|
|
lockdep_assert_held(&fs_info->chunk_mutex);
|
|
|
|
info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
|
|
spin_lock(&info->lock);
|
|
left = info->total_bytes - btrfs_space_info_used(info, true);
|
|
spin_unlock(&info->lock);
|
|
|
|
if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
|
|
btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
|
|
left, bytes, type);
|
|
btrfs_dump_space_info(fs_info, info, 0, 0);
|
|
}
|
|
|
|
if (left < bytes) {
|
|
u64 flags = btrfs_system_alloc_profile(fs_info);
|
|
struct btrfs_block_group *bg;
|
|
|
|
/*
|
|
* Ignore failure to create system chunk. We might end up not
|
|
* needing it, as we might not need to COW all nodes/leafs from
|
|
* the paths we visit in the chunk tree (they were already COWed
|
|
* or created in the current transaction for example).
|
|
*/
|
|
bg = btrfs_create_chunk(trans, flags);
|
|
if (IS_ERR(bg)) {
|
|
ret = PTR_ERR(bg);
|
|
} else {
|
|
/*
|
|
* We have a new chunk. We also need to activate it for
|
|
* zoned filesystem.
|
|
*/
|
|
ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
/*
|
|
* If we fail to add the chunk item here, we end up
|
|
* trying again at phase 2 of chunk allocation, at
|
|
* btrfs_create_pending_block_groups(). So ignore
|
|
* any error here. An ENOSPC here could happen, due to
|
|
* the cases described at do_chunk_alloc() - the system
|
|
* block group we just created was just turned into RO
|
|
* mode by a scrub for example, or a running discard
|
|
* temporarily removed its free space entries, etc.
|
|
*/
|
|
btrfs_chunk_alloc_add_chunk_item(trans, bg);
|
|
}
|
|
}
|
|
|
|
if (!ret) {
|
|
ret = btrfs_block_rsv_add(fs_info,
|
|
&fs_info->chunk_block_rsv,
|
|
bytes, BTRFS_RESERVE_NO_FLUSH);
|
|
if (!ret)
|
|
trans->chunk_bytes_reserved += bytes;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reserve space in the system space for allocating or removing a chunk.
|
|
* The caller must be holding fs_info->chunk_mutex.
|
|
*/
|
|
void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
const u64 num_devs = get_profile_num_devs(fs_info, type);
|
|
u64 bytes;
|
|
|
|
/* num_devs device items to update and 1 chunk item to add or remove. */
|
|
bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
|
|
btrfs_calc_insert_metadata_size(fs_info, 1);
|
|
|
|
reserve_chunk_space(trans, bytes, type);
|
|
}
|
|
|
|
/*
|
|
* Reserve space in the system space, if needed, for doing a modification to the
|
|
* chunk btree.
|
|
*
|
|
* @trans: A transaction handle.
|
|
* @is_item_insertion: Indicate if the modification is for inserting a new item
|
|
* in the chunk btree or if it's for the deletion or update
|
|
* of an existing item.
|
|
*
|
|
* This is used in a context where we need to update the chunk btree outside
|
|
* block group allocation and removal, to avoid a deadlock with a concurrent
|
|
* task that is allocating a metadata or data block group and therefore needs to
|
|
* update the chunk btree while holding the chunk mutex. After the update to the
|
|
* chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
|
|
*
|
|
*/
|
|
void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
|
|
bool is_item_insertion)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
u64 bytes;
|
|
|
|
if (is_item_insertion)
|
|
bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
|
|
else
|
|
bytes = btrfs_calc_metadata_size(fs_info, 1);
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
}
|
|
|
|
void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
|
|
block_group = btrfs_lookup_first_block_group(info, 0);
|
|
while (block_group) {
|
|
btrfs_wait_block_group_cache_done(block_group);
|
|
spin_lock(&block_group->lock);
|
|
if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
|
|
&block_group->runtime_flags)) {
|
|
struct inode *inode = block_group->inode;
|
|
|
|
block_group->inode = NULL;
|
|
spin_unlock(&block_group->lock);
|
|
|
|
ASSERT(block_group->io_ctl.inode == NULL);
|
|
iput(inode);
|
|
} else {
|
|
spin_unlock(&block_group->lock);
|
|
}
|
|
block_group = btrfs_next_block_group(block_group);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Must be called only after stopping all workers, since we could have block
|
|
* group caching kthreads running, and therefore they could race with us if we
|
|
* freed the block groups before stopping them.
|
|
*/
|
|
int btrfs_free_block_groups(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
struct rb_node *n;
|
|
|
|
write_lock(&info->block_group_cache_lock);
|
|
while (!list_empty(&info->caching_block_groups)) {
|
|
caching_ctl = list_entry(info->caching_block_groups.next,
|
|
struct btrfs_caching_control, list);
|
|
list_del(&caching_ctl->list);
|
|
btrfs_put_caching_control(caching_ctl);
|
|
}
|
|
write_unlock(&info->block_group_cache_lock);
|
|
|
|
spin_lock(&info->unused_bgs_lock);
|
|
while (!list_empty(&info->unused_bgs)) {
|
|
block_group = list_first_entry(&info->unused_bgs,
|
|
struct btrfs_block_group,
|
|
bg_list);
|
|
list_del_init(&block_group->bg_list);
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
|
|
while (!list_empty(&info->reclaim_bgs)) {
|
|
block_group = list_first_entry(&info->reclaim_bgs,
|
|
struct btrfs_block_group,
|
|
bg_list);
|
|
list_del_init(&block_group->bg_list);
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
spin_unlock(&info->unused_bgs_lock);
|
|
|
|
spin_lock(&info->zone_active_bgs_lock);
|
|
while (!list_empty(&info->zone_active_bgs)) {
|
|
block_group = list_first_entry(&info->zone_active_bgs,
|
|
struct btrfs_block_group,
|
|
active_bg_list);
|
|
list_del_init(&block_group->active_bg_list);
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
spin_unlock(&info->zone_active_bgs_lock);
|
|
|
|
write_lock(&info->block_group_cache_lock);
|
|
while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
|
|
block_group = rb_entry(n, struct btrfs_block_group,
|
|
cache_node);
|
|
rb_erase_cached(&block_group->cache_node,
|
|
&info->block_group_cache_tree);
|
|
RB_CLEAR_NODE(&block_group->cache_node);
|
|
write_unlock(&info->block_group_cache_lock);
|
|
|
|
down_write(&block_group->space_info->groups_sem);
|
|
list_del(&block_group->list);
|
|
up_write(&block_group->space_info->groups_sem);
|
|
|
|
/*
|
|
* We haven't cached this block group, which means we could
|
|
* possibly have excluded extents on this block group.
|
|
*/
|
|
if (block_group->cached == BTRFS_CACHE_NO ||
|
|
block_group->cached == BTRFS_CACHE_ERROR)
|
|
btrfs_free_excluded_extents(block_group);
|
|
|
|
btrfs_remove_free_space_cache(block_group);
|
|
ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
|
|
ASSERT(list_empty(&block_group->dirty_list));
|
|
ASSERT(list_empty(&block_group->io_list));
|
|
ASSERT(list_empty(&block_group->bg_list));
|
|
ASSERT(refcount_read(&block_group->refs) == 1);
|
|
ASSERT(block_group->swap_extents == 0);
|
|
btrfs_put_block_group(block_group);
|
|
|
|
write_lock(&info->block_group_cache_lock);
|
|
}
|
|
write_unlock(&info->block_group_cache_lock);
|
|
|
|
btrfs_release_global_block_rsv(info);
|
|
|
|
while (!list_empty(&info->space_info)) {
|
|
space_info = list_entry(info->space_info.next,
|
|
struct btrfs_space_info,
|
|
list);
|
|
|
|
/*
|
|
* Do not hide this behind enospc_debug, this is actually
|
|
* important and indicates a real bug if this happens.
|
|
*/
|
|
if (WARN_ON(space_info->bytes_pinned > 0 ||
|
|
space_info->bytes_may_use > 0))
|
|
btrfs_dump_space_info(info, space_info, 0, 0);
|
|
|
|
/*
|
|
* If there was a failure to cleanup a log tree, very likely due
|
|
* to an IO failure on a writeback attempt of one or more of its
|
|
* extent buffers, we could not do proper (and cheap) unaccounting
|
|
* of their reserved space, so don't warn on bytes_reserved > 0 in
|
|
* that case.
|
|
*/
|
|
if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
|
|
!BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
|
|
if (WARN_ON(space_info->bytes_reserved > 0))
|
|
btrfs_dump_space_info(info, space_info, 0, 0);
|
|
}
|
|
|
|
WARN_ON(space_info->reclaim_size > 0);
|
|
list_del(&space_info->list);
|
|
btrfs_sysfs_remove_space_info(space_info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_freeze_block_group(struct btrfs_block_group *cache)
|
|
{
|
|
atomic_inc(&cache->frozen);
|
|
}
|
|
|
|
void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
|
|
{
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
bool cleanup;
|
|
|
|
spin_lock(&block_group->lock);
|
|
cleanup = (atomic_dec_and_test(&block_group->frozen) &&
|
|
test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
|
|
spin_unlock(&block_group->lock);
|
|
|
|
if (cleanup) {
|
|
em_tree = &fs_info->mapping_tree;
|
|
write_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, block_group->start,
|
|
1);
|
|
BUG_ON(!em); /* logic error, can't happen */
|
|
remove_extent_mapping(em_tree, em);
|
|
write_unlock(&em_tree->lock);
|
|
|
|
/* once for us and once for the tree */
|
|
free_extent_map(em);
|
|
free_extent_map(em);
|
|
|
|
/*
|
|
* We may have left one free space entry and other possible
|
|
* tasks trimming this block group have left 1 entry each one.
|
|
* Free them if any.
|
|
*/
|
|
btrfs_remove_free_space_cache(block_group);
|
|
}
|
|
}
|
|
|
|
bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
|
|
{
|
|
bool ret = true;
|
|
|
|
spin_lock(&bg->lock);
|
|
if (bg->ro)
|
|
ret = false;
|
|
else
|
|
bg->swap_extents++;
|
|
spin_unlock(&bg->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
|
|
{
|
|
spin_lock(&bg->lock);
|
|
ASSERT(!bg->ro);
|
|
ASSERT(bg->swap_extents >= amount);
|
|
bg->swap_extents -= amount;
|
|
spin_unlock(&bg->lock);
|
|
}
|
|
|
|
enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
|
|
{
|
|
if (size <= SZ_128K)
|
|
return BTRFS_BG_SZ_SMALL;
|
|
if (size <= SZ_8M)
|
|
return BTRFS_BG_SZ_MEDIUM;
|
|
return BTRFS_BG_SZ_LARGE;
|
|
}
|
|
|
|
/*
|
|
* Handle a block group allocating an extent in a size class
|
|
*
|
|
* @bg: The block group we allocated in.
|
|
* @size_class: The size class of the allocation.
|
|
* @force_wrong_size_class: Whether we are desperate enough to allow
|
|
* mismatched size classes.
|
|
*
|
|
* Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
|
|
* case of a race that leads to the wrong size class without
|
|
* force_wrong_size_class set.
|
|
*
|
|
* find_free_extent will skip block groups with a mismatched size class until
|
|
* it really needs to avoid ENOSPC. In that case it will set
|
|
* force_wrong_size_class. However, if a block group is newly allocated and
|
|
* doesn't yet have a size class, then it is possible for two allocations of
|
|
* different sizes to race and both try to use it. The loser is caught here and
|
|
* has to retry.
|
|
*/
|
|
int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
|
|
enum btrfs_block_group_size_class size_class,
|
|
bool force_wrong_size_class)
|
|
{
|
|
ASSERT(size_class != BTRFS_BG_SZ_NONE);
|
|
|
|
/* The new allocation is in the right size class, do nothing */
|
|
if (bg->size_class == size_class)
|
|
return 0;
|
|
/*
|
|
* The new allocation is in a mismatched size class.
|
|
* This means one of two things:
|
|
*
|
|
* 1. Two tasks in find_free_extent for different size_classes raced
|
|
* and hit the same empty block_group. Make the loser try again.
|
|
* 2. A call to find_free_extent got desperate enough to set
|
|
* 'force_wrong_slab'. Don't change the size_class, but allow the
|
|
* allocation.
|
|
*/
|
|
if (bg->size_class != BTRFS_BG_SZ_NONE) {
|
|
if (force_wrong_size_class)
|
|
return 0;
|
|
return -EAGAIN;
|
|
}
|
|
/*
|
|
* The happy new block group case: the new allocation is the first
|
|
* one in the block_group so we set size_class.
|
|
*/
|
|
bg->size_class = size_class;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
|
|
{
|
|
if (btrfs_is_zoned(bg->fs_info))
|
|
return false;
|
|
if (!btrfs_is_block_group_data_only(bg))
|
|
return false;
|
|
return true;
|
|
}
|