linux/net/core/sock.c
Jakub Kicinski a6ec08beec Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

Conflicts:

drivers/net/ethernet/broadcom/bnxt/bnxt.c
  1e7962114c10 ("bnxt_en: Restore PTP tx_avail count in case of skb_pad() error")
  165f87691a89 ("bnxt_en: add timestamping statistics support")

No adjacent changes.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-06-20 13:49:59 -07:00

4311 lines
106 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Generic socket support routines. Memory allocators, socket lock/release
* handler for protocols to use and generic option handler.
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Florian La Roche, <flla@stud.uni-sb.de>
* Alan Cox, <A.Cox@swansea.ac.uk>
*
* Fixes:
* Alan Cox : Numerous verify_area() problems
* Alan Cox : Connecting on a connecting socket
* now returns an error for tcp.
* Alan Cox : sock->protocol is set correctly.
* and is not sometimes left as 0.
* Alan Cox : connect handles icmp errors on a
* connect properly. Unfortunately there
* is a restart syscall nasty there. I
* can't match BSD without hacking the C
* library. Ideas urgently sought!
* Alan Cox : Disallow bind() to addresses that are
* not ours - especially broadcast ones!!
* Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
* Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
* instead they leave that for the DESTROY timer.
* Alan Cox : Clean up error flag in accept
* Alan Cox : TCP ack handling is buggy, the DESTROY timer
* was buggy. Put a remove_sock() in the handler
* for memory when we hit 0. Also altered the timer
* code. The ACK stuff can wait and needs major
* TCP layer surgery.
* Alan Cox : Fixed TCP ack bug, removed remove sock
* and fixed timer/inet_bh race.
* Alan Cox : Added zapped flag for TCP
* Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
* Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
* Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
* Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
* Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
* Rick Sladkey : Relaxed UDP rules for matching packets.
* C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
* Pauline Middelink : identd support
* Alan Cox : Fixed connect() taking signals I think.
* Alan Cox : SO_LINGER supported
* Alan Cox : Error reporting fixes
* Anonymous : inet_create tidied up (sk->reuse setting)
* Alan Cox : inet sockets don't set sk->type!
* Alan Cox : Split socket option code
* Alan Cox : Callbacks
* Alan Cox : Nagle flag for Charles & Johannes stuff
* Alex : Removed restriction on inet fioctl
* Alan Cox : Splitting INET from NET core
* Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
* Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
* Alan Cox : Split IP from generic code
* Alan Cox : New kfree_skbmem()
* Alan Cox : Make SO_DEBUG superuser only.
* Alan Cox : Allow anyone to clear SO_DEBUG
* (compatibility fix)
* Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
* Alan Cox : Allocator for a socket is settable.
* Alan Cox : SO_ERROR includes soft errors.
* Alan Cox : Allow NULL arguments on some SO_ opts
* Alan Cox : Generic socket allocation to make hooks
* easier (suggested by Craig Metz).
* Michael Pall : SO_ERROR returns positive errno again
* Steve Whitehouse: Added default destructor to free
* protocol private data.
* Steve Whitehouse: Added various other default routines
* common to several socket families.
* Chris Evans : Call suser() check last on F_SETOWN
* Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
* Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
* Andi Kleen : Fix write_space callback
* Chris Evans : Security fixes - signedness again
* Arnaldo C. Melo : cleanups, use skb_queue_purge
*
* To Fix:
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <asm/unaligned.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/errqueue.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/user_namespace.h>
#include <linux/static_key.h>
#include <linux/memcontrol.h>
#include <linux/prefetch.h>
#include <linux/compat.h>
#include <linux/mroute.h>
#include <linux/mroute6.h>
#include <linux/icmpv6.h>
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <net/protocol.h>
#include <linux/skbuff.h>
#include <net/net_namespace.h>
#include <net/request_sock.h>
#include <net/sock.h>
#include <net/proto_memory.h>
#include <linux/net_tstamp.h>
#include <net/xfrm.h>
#include <linux/ipsec.h>
#include <net/cls_cgroup.h>
#include <net/netprio_cgroup.h>
#include <linux/sock_diag.h>
#include <linux/filter.h>
#include <net/sock_reuseport.h>
#include <net/bpf_sk_storage.h>
#include <trace/events/sock.h>
#include <net/tcp.h>
#include <net/busy_poll.h>
#include <net/phonet/phonet.h>
#include <linux/ethtool.h>
#include "dev.h"
static DEFINE_MUTEX(proto_list_mutex);
static LIST_HEAD(proto_list);
static void sock_def_write_space_wfree(struct sock *sk);
static void sock_def_write_space(struct sock *sk);
/**
* sk_ns_capable - General socket capability test
* @sk: Socket to use a capability on or through
* @user_ns: The user namespace of the capability to use
* @cap: The capability to use
*
* Test to see if the opener of the socket had when the socket was
* created and the current process has the capability @cap in the user
* namespace @user_ns.
*/
bool sk_ns_capable(const struct sock *sk,
struct user_namespace *user_ns, int cap)
{
return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
ns_capable(user_ns, cap);
}
EXPORT_SYMBOL(sk_ns_capable);
/**
* sk_capable - Socket global capability test
* @sk: Socket to use a capability on or through
* @cap: The global capability to use
*
* Test to see if the opener of the socket had when the socket was
* created and the current process has the capability @cap in all user
* namespaces.
*/
bool sk_capable(const struct sock *sk, int cap)
{
return sk_ns_capable(sk, &init_user_ns, cap);
}
EXPORT_SYMBOL(sk_capable);
/**
* sk_net_capable - Network namespace socket capability test
* @sk: Socket to use a capability on or through
* @cap: The capability to use
*
* Test to see if the opener of the socket had when the socket was created
* and the current process has the capability @cap over the network namespace
* the socket is a member of.
*/
bool sk_net_capable(const struct sock *sk, int cap)
{
return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
}
EXPORT_SYMBOL(sk_net_capable);
/*
* Each address family might have different locking rules, so we have
* one slock key per address family and separate keys for internal and
* userspace sockets.
*/
static struct lock_class_key af_family_keys[AF_MAX];
static struct lock_class_key af_family_kern_keys[AF_MAX];
static struct lock_class_key af_family_slock_keys[AF_MAX];
static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
/*
* Make lock validator output more readable. (we pre-construct these
* strings build-time, so that runtime initialization of socket
* locks is fast):
*/
#define _sock_locks(x) \
x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
x "27" , x "28" , x "AF_CAN" , \
x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
x "AF_MCTP" , \
x "AF_MAX"
static const char *const af_family_key_strings[AF_MAX+1] = {
_sock_locks("sk_lock-")
};
static const char *const af_family_slock_key_strings[AF_MAX+1] = {
_sock_locks("slock-")
};
static const char *const af_family_clock_key_strings[AF_MAX+1] = {
_sock_locks("clock-")
};
static const char *const af_family_kern_key_strings[AF_MAX+1] = {
_sock_locks("k-sk_lock-")
};
static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
_sock_locks("k-slock-")
};
static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
_sock_locks("k-clock-")
};
static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
_sock_locks("rlock-")
};
static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
_sock_locks("wlock-")
};
static const char *const af_family_elock_key_strings[AF_MAX+1] = {
_sock_locks("elock-")
};
/*
* sk_callback_lock and sk queues locking rules are per-address-family,
* so split the lock classes by using a per-AF key:
*/
static struct lock_class_key af_callback_keys[AF_MAX];
static struct lock_class_key af_rlock_keys[AF_MAX];
static struct lock_class_key af_wlock_keys[AF_MAX];
static struct lock_class_key af_elock_keys[AF_MAX];
static struct lock_class_key af_kern_callback_keys[AF_MAX];
/* Run time adjustable parameters. */
__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
EXPORT_SYMBOL(sysctl_wmem_max);
__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
EXPORT_SYMBOL(sysctl_rmem_max);
__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
int sysctl_tstamp_allow_data __read_mostly = 1;
DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
EXPORT_SYMBOL_GPL(memalloc_socks_key);
/**
* sk_set_memalloc - sets %SOCK_MEMALLOC
* @sk: socket to set it on
*
* Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
* It's the responsibility of the admin to adjust min_free_kbytes
* to meet the requirements
*/
void sk_set_memalloc(struct sock *sk)
{
sock_set_flag(sk, SOCK_MEMALLOC);
sk->sk_allocation |= __GFP_MEMALLOC;
static_branch_inc(&memalloc_socks_key);
}
EXPORT_SYMBOL_GPL(sk_set_memalloc);
void sk_clear_memalloc(struct sock *sk)
{
sock_reset_flag(sk, SOCK_MEMALLOC);
sk->sk_allocation &= ~__GFP_MEMALLOC;
static_branch_dec(&memalloc_socks_key);
/*
* SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
* progress of swapping. SOCK_MEMALLOC may be cleared while
* it has rmem allocations due to the last swapfile being deactivated
* but there is a risk that the socket is unusable due to exceeding
* the rmem limits. Reclaim the reserves and obey rmem limits again.
*/
sk_mem_reclaim(sk);
}
EXPORT_SYMBOL_GPL(sk_clear_memalloc);
int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
{
int ret;
unsigned int noreclaim_flag;
/* these should have been dropped before queueing */
BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
noreclaim_flag = memalloc_noreclaim_save();
ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
tcp_v6_do_rcv,
tcp_v4_do_rcv,
sk, skb);
memalloc_noreclaim_restore(noreclaim_flag);
return ret;
}
EXPORT_SYMBOL(__sk_backlog_rcv);
void sk_error_report(struct sock *sk)
{
sk->sk_error_report(sk);
switch (sk->sk_family) {
case AF_INET:
fallthrough;
case AF_INET6:
trace_inet_sk_error_report(sk);
break;
default:
break;
}
}
EXPORT_SYMBOL(sk_error_report);
int sock_get_timeout(long timeo, void *optval, bool old_timeval)
{
struct __kernel_sock_timeval tv;
if (timeo == MAX_SCHEDULE_TIMEOUT) {
tv.tv_sec = 0;
tv.tv_usec = 0;
} else {
tv.tv_sec = timeo / HZ;
tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
}
if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
*(struct old_timeval32 *)optval = tv32;
return sizeof(tv32);
}
if (old_timeval) {
struct __kernel_old_timeval old_tv;
old_tv.tv_sec = tv.tv_sec;
old_tv.tv_usec = tv.tv_usec;
*(struct __kernel_old_timeval *)optval = old_tv;
return sizeof(old_tv);
}
*(struct __kernel_sock_timeval *)optval = tv;
return sizeof(tv);
}
EXPORT_SYMBOL(sock_get_timeout);
int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
sockptr_t optval, int optlen, bool old_timeval)
{
if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
struct old_timeval32 tv32;
if (optlen < sizeof(tv32))
return -EINVAL;
if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
return -EFAULT;
tv->tv_sec = tv32.tv_sec;
tv->tv_usec = tv32.tv_usec;
} else if (old_timeval) {
struct __kernel_old_timeval old_tv;
if (optlen < sizeof(old_tv))
return -EINVAL;
if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
return -EFAULT;
tv->tv_sec = old_tv.tv_sec;
tv->tv_usec = old_tv.tv_usec;
} else {
if (optlen < sizeof(*tv))
return -EINVAL;
if (copy_from_sockptr(tv, optval, sizeof(*tv)))
return -EFAULT;
}
return 0;
}
EXPORT_SYMBOL(sock_copy_user_timeval);
static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
bool old_timeval)
{
struct __kernel_sock_timeval tv;
int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
long val;
if (err)
return err;
if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
return -EDOM;
if (tv.tv_sec < 0) {
static int warned __read_mostly;
WRITE_ONCE(*timeo_p, 0);
if (warned < 10 && net_ratelimit()) {
warned++;
pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
__func__, current->comm, task_pid_nr(current));
}
return 0;
}
val = MAX_SCHEDULE_TIMEOUT;
if ((tv.tv_sec || tv.tv_usec) &&
(tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
USEC_PER_SEC / HZ);
WRITE_ONCE(*timeo_p, val);
return 0;
}
static bool sock_needs_netstamp(const struct sock *sk)
{
switch (sk->sk_family) {
case AF_UNSPEC:
case AF_UNIX:
return false;
default:
return true;
}
}
static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
{
if (sk->sk_flags & flags) {
sk->sk_flags &= ~flags;
if (sock_needs_netstamp(sk) &&
!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
net_disable_timestamp();
}
}
int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
unsigned long flags;
struct sk_buff_head *list = &sk->sk_receive_queue;
if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
atomic_inc(&sk->sk_drops);
trace_sock_rcvqueue_full(sk, skb);
return -ENOMEM;
}
if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
atomic_inc(&sk->sk_drops);
return -ENOBUFS;
}
skb->dev = NULL;
skb_set_owner_r(skb, sk);
/* we escape from rcu protected region, make sure we dont leak
* a norefcounted dst
*/
skb_dst_force(skb);
spin_lock_irqsave(&list->lock, flags);
sock_skb_set_dropcount(sk, skb);
__skb_queue_tail(list, skb);
spin_unlock_irqrestore(&list->lock, flags);
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_data_ready(sk);
return 0;
}
EXPORT_SYMBOL(__sock_queue_rcv_skb);
int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
enum skb_drop_reason *reason)
{
enum skb_drop_reason drop_reason;
int err;
err = sk_filter(sk, skb);
if (err) {
drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
goto out;
}
err = __sock_queue_rcv_skb(sk, skb);
switch (err) {
case -ENOMEM:
drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
break;
case -ENOBUFS:
drop_reason = SKB_DROP_REASON_PROTO_MEM;
break;
default:
drop_reason = SKB_NOT_DROPPED_YET;
break;
}
out:
if (reason)
*reason = drop_reason;
return err;
}
EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
const int nested, unsigned int trim_cap, bool refcounted)
{
int rc = NET_RX_SUCCESS;
if (sk_filter_trim_cap(sk, skb, trim_cap))
goto discard_and_relse;
skb->dev = NULL;
if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
atomic_inc(&sk->sk_drops);
goto discard_and_relse;
}
if (nested)
bh_lock_sock_nested(sk);
else
bh_lock_sock(sk);
if (!sock_owned_by_user(sk)) {
/*
* trylock + unlock semantics:
*/
mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
rc = sk_backlog_rcv(sk, skb);
mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
bh_unlock_sock(sk);
atomic_inc(&sk->sk_drops);
goto discard_and_relse;
}
bh_unlock_sock(sk);
out:
if (refcounted)
sock_put(sk);
return rc;
discard_and_relse:
kfree_skb(skb);
goto out;
}
EXPORT_SYMBOL(__sk_receive_skb);
INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
u32));
INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
u32));
struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
{
struct dst_entry *dst = __sk_dst_get(sk);
if (dst && dst->obsolete &&
INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
dst, cookie) == NULL) {
sk_tx_queue_clear(sk);
WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
dst_release(dst);
return NULL;
}
return dst;
}
EXPORT_SYMBOL(__sk_dst_check);
struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
{
struct dst_entry *dst = sk_dst_get(sk);
if (dst && dst->obsolete &&
INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
dst, cookie) == NULL) {
sk_dst_reset(sk);
dst_release(dst);
return NULL;
}
return dst;
}
EXPORT_SYMBOL(sk_dst_check);
static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
{
int ret = -ENOPROTOOPT;
#ifdef CONFIG_NETDEVICES
struct net *net = sock_net(sk);
/* Sorry... */
ret = -EPERM;
if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
goto out;
ret = -EINVAL;
if (ifindex < 0)
goto out;
/* Paired with all READ_ONCE() done locklessly. */
WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
if (sk->sk_prot->rehash)
sk->sk_prot->rehash(sk);
sk_dst_reset(sk);
ret = 0;
out:
#endif
return ret;
}
int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
{
int ret;
if (lock_sk)
lock_sock(sk);
ret = sock_bindtoindex_locked(sk, ifindex);
if (lock_sk)
release_sock(sk);
return ret;
}
EXPORT_SYMBOL(sock_bindtoindex);
static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
{
int ret = -ENOPROTOOPT;
#ifdef CONFIG_NETDEVICES
struct net *net = sock_net(sk);
char devname[IFNAMSIZ];
int index;
ret = -EINVAL;
if (optlen < 0)
goto out;
/* Bind this socket to a particular device like "eth0",
* as specified in the passed interface name. If the
* name is "" or the option length is zero the socket
* is not bound.
*/
if (optlen > IFNAMSIZ - 1)
optlen = IFNAMSIZ - 1;
memset(devname, 0, sizeof(devname));
ret = -EFAULT;
if (copy_from_sockptr(devname, optval, optlen))
goto out;
index = 0;
if (devname[0] != '\0') {
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_name_rcu(net, devname);
if (dev)
index = dev->ifindex;
rcu_read_unlock();
ret = -ENODEV;
if (!dev)
goto out;
}
sockopt_lock_sock(sk);
ret = sock_bindtoindex_locked(sk, index);
sockopt_release_sock(sk);
out:
#endif
return ret;
}
static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
sockptr_t optlen, int len)
{
int ret = -ENOPROTOOPT;
#ifdef CONFIG_NETDEVICES
int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
struct net *net = sock_net(sk);
char devname[IFNAMSIZ];
if (bound_dev_if == 0) {
len = 0;
goto zero;
}
ret = -EINVAL;
if (len < IFNAMSIZ)
goto out;
ret = netdev_get_name(net, devname, bound_dev_if);
if (ret)
goto out;
len = strlen(devname) + 1;
ret = -EFAULT;
if (copy_to_sockptr(optval, devname, len))
goto out;
zero:
ret = -EFAULT;
if (copy_to_sockptr(optlen, &len, sizeof(int)))
goto out;
ret = 0;
out:
#endif
return ret;
}
bool sk_mc_loop(const struct sock *sk)
{
if (dev_recursion_level())
return false;
if (!sk)
return true;
/* IPV6_ADDRFORM can change sk->sk_family under us. */
switch (READ_ONCE(sk->sk_family)) {
case AF_INET:
return inet_test_bit(MC_LOOP, sk);
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
return inet6_test_bit(MC6_LOOP, sk);
#endif
}
WARN_ON_ONCE(1);
return true;
}
EXPORT_SYMBOL(sk_mc_loop);
void sock_set_reuseaddr(struct sock *sk)
{
lock_sock(sk);
sk->sk_reuse = SK_CAN_REUSE;
release_sock(sk);
}
EXPORT_SYMBOL(sock_set_reuseaddr);
void sock_set_reuseport(struct sock *sk)
{
lock_sock(sk);
sk->sk_reuseport = true;
release_sock(sk);
}
EXPORT_SYMBOL(sock_set_reuseport);
void sock_no_linger(struct sock *sk)
{
lock_sock(sk);
WRITE_ONCE(sk->sk_lingertime, 0);
sock_set_flag(sk, SOCK_LINGER);
release_sock(sk);
}
EXPORT_SYMBOL(sock_no_linger);
void sock_set_priority(struct sock *sk, u32 priority)
{
WRITE_ONCE(sk->sk_priority, priority);
}
EXPORT_SYMBOL(sock_set_priority);
void sock_set_sndtimeo(struct sock *sk, s64 secs)
{
lock_sock(sk);
if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
else
WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
release_sock(sk);
}
EXPORT_SYMBOL(sock_set_sndtimeo);
static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
{
if (val) {
sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
sock_set_flag(sk, SOCK_RCVTSTAMP);
sock_enable_timestamp(sk, SOCK_TIMESTAMP);
} else {
sock_reset_flag(sk, SOCK_RCVTSTAMP);
sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
}
}
void sock_enable_timestamps(struct sock *sk)
{
lock_sock(sk);
__sock_set_timestamps(sk, true, false, true);
release_sock(sk);
}
EXPORT_SYMBOL(sock_enable_timestamps);
void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
{
switch (optname) {
case SO_TIMESTAMP_OLD:
__sock_set_timestamps(sk, valbool, false, false);
break;
case SO_TIMESTAMP_NEW:
__sock_set_timestamps(sk, valbool, true, false);
break;
case SO_TIMESTAMPNS_OLD:
__sock_set_timestamps(sk, valbool, false, true);
break;
case SO_TIMESTAMPNS_NEW:
__sock_set_timestamps(sk, valbool, true, true);
break;
}
}
static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
{
struct net *net = sock_net(sk);
struct net_device *dev = NULL;
bool match = false;
int *vclock_index;
int i, num;
if (sk->sk_bound_dev_if)
dev = dev_get_by_index(net, sk->sk_bound_dev_if);
if (!dev) {
pr_err("%s: sock not bind to device\n", __func__);
return -EOPNOTSUPP;
}
num = ethtool_get_phc_vclocks(dev, &vclock_index);
dev_put(dev);
for (i = 0; i < num; i++) {
if (*(vclock_index + i) == phc_index) {
match = true;
break;
}
}
if (num > 0)
kfree(vclock_index);
if (!match)
return -EINVAL;
WRITE_ONCE(sk->sk_bind_phc, phc_index);
return 0;
}
int sock_set_timestamping(struct sock *sk, int optname,
struct so_timestamping timestamping)
{
int val = timestamping.flags;
int ret;
if (val & ~SOF_TIMESTAMPING_MASK)
return -EINVAL;
if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
!(val & SOF_TIMESTAMPING_OPT_ID))
return -EINVAL;
if (val & SOF_TIMESTAMPING_OPT_ID &&
!(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
if (sk_is_tcp(sk)) {
if ((1 << sk->sk_state) &
(TCPF_CLOSE | TCPF_LISTEN))
return -EINVAL;
if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
else
atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
} else {
atomic_set(&sk->sk_tskey, 0);
}
}
if (val & SOF_TIMESTAMPING_OPT_STATS &&
!(val & SOF_TIMESTAMPING_OPT_TSONLY))
return -EINVAL;
if (val & SOF_TIMESTAMPING_BIND_PHC) {
ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
if (ret)
return ret;
}
WRITE_ONCE(sk->sk_tsflags, val);
sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
sock_enable_timestamp(sk,
SOCK_TIMESTAMPING_RX_SOFTWARE);
else
sock_disable_timestamp(sk,
(1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
return 0;
}
void sock_set_keepalive(struct sock *sk)
{
lock_sock(sk);
if (sk->sk_prot->keepalive)
sk->sk_prot->keepalive(sk, true);
sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
release_sock(sk);
}
EXPORT_SYMBOL(sock_set_keepalive);
static void __sock_set_rcvbuf(struct sock *sk, int val)
{
/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
* as a negative value.
*/
val = min_t(int, val, INT_MAX / 2);
sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
/* We double it on the way in to account for "struct sk_buff" etc.
* overhead. Applications assume that the SO_RCVBUF setting they make
* will allow that much actual data to be received on that socket.
*
* Applications are unaware that "struct sk_buff" and other overheads
* allocate from the receive buffer during socket buffer allocation.
*
* And after considering the possible alternatives, returning the value
* we actually used in getsockopt is the most desirable behavior.
*/
WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
}
void sock_set_rcvbuf(struct sock *sk, int val)
{
lock_sock(sk);
__sock_set_rcvbuf(sk, val);
release_sock(sk);
}
EXPORT_SYMBOL(sock_set_rcvbuf);
static void __sock_set_mark(struct sock *sk, u32 val)
{
if (val != sk->sk_mark) {
WRITE_ONCE(sk->sk_mark, val);
sk_dst_reset(sk);
}
}
void sock_set_mark(struct sock *sk, u32 val)
{
lock_sock(sk);
__sock_set_mark(sk, val);
release_sock(sk);
}
EXPORT_SYMBOL(sock_set_mark);
static void sock_release_reserved_memory(struct sock *sk, int bytes)
{
/* Round down bytes to multiple of pages */
bytes = round_down(bytes, PAGE_SIZE);
WARN_ON(bytes > sk->sk_reserved_mem);
WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
sk_mem_reclaim(sk);
}
static int sock_reserve_memory(struct sock *sk, int bytes)
{
long allocated;
bool charged;
int pages;
if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
return -EOPNOTSUPP;
if (!bytes)
return 0;
pages = sk_mem_pages(bytes);
/* pre-charge to memcg */
charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
GFP_KERNEL | __GFP_RETRY_MAYFAIL);
if (!charged)
return -ENOMEM;
/* pre-charge to forward_alloc */
sk_memory_allocated_add(sk, pages);
allocated = sk_memory_allocated(sk);
/* If the system goes into memory pressure with this
* precharge, give up and return error.
*/
if (allocated > sk_prot_mem_limits(sk, 1)) {
sk_memory_allocated_sub(sk, pages);
mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
return -ENOMEM;
}
sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
WRITE_ONCE(sk->sk_reserved_mem,
sk->sk_reserved_mem + (pages << PAGE_SHIFT));
return 0;
}
void sockopt_lock_sock(struct sock *sk)
{
/* When current->bpf_ctx is set, the setsockopt is called from
* a bpf prog. bpf has ensured the sk lock has been
* acquired before calling setsockopt().
*/
if (has_current_bpf_ctx())
return;
lock_sock(sk);
}
EXPORT_SYMBOL(sockopt_lock_sock);
void sockopt_release_sock(struct sock *sk)
{
if (has_current_bpf_ctx())
return;
release_sock(sk);
}
EXPORT_SYMBOL(sockopt_release_sock);
bool sockopt_ns_capable(struct user_namespace *ns, int cap)
{
return has_current_bpf_ctx() || ns_capable(ns, cap);
}
EXPORT_SYMBOL(sockopt_ns_capable);
bool sockopt_capable(int cap)
{
return has_current_bpf_ctx() || capable(cap);
}
EXPORT_SYMBOL(sockopt_capable);
static int sockopt_validate_clockid(__kernel_clockid_t value)
{
switch (value) {
case CLOCK_REALTIME:
case CLOCK_MONOTONIC:
case CLOCK_TAI:
return 0;
}
return -EINVAL;
}
/*
* This is meant for all protocols to use and covers goings on
* at the socket level. Everything here is generic.
*/
int sk_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct so_timestamping timestamping;
struct socket *sock = sk->sk_socket;
struct sock_txtime sk_txtime;
int val;
int valbool;
struct linger ling;
int ret = 0;
/*
* Options without arguments
*/
if (optname == SO_BINDTODEVICE)
return sock_setbindtodevice(sk, optval, optlen);
if (optlen < sizeof(int))
return -EINVAL;
if (copy_from_sockptr(&val, optval, sizeof(val)))
return -EFAULT;
valbool = val ? 1 : 0;
/* handle options which do not require locking the socket. */
switch (optname) {
case SO_PRIORITY:
if ((val >= 0 && val <= 6) ||
sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
sock_set_priority(sk, val);
return 0;
}
return -EPERM;
case SO_PASSSEC:
assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
return 0;
case SO_PASSCRED:
assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
return 0;
case SO_PASSPIDFD:
assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
return 0;
case SO_TYPE:
case SO_PROTOCOL:
case SO_DOMAIN:
case SO_ERROR:
return -ENOPROTOOPT;
#ifdef CONFIG_NET_RX_BUSY_POLL
case SO_BUSY_POLL:
if (val < 0)
return -EINVAL;
WRITE_ONCE(sk->sk_ll_usec, val);
return 0;
case SO_PREFER_BUSY_POLL:
if (valbool && !sockopt_capable(CAP_NET_ADMIN))
return -EPERM;
WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
return 0;
case SO_BUSY_POLL_BUDGET:
if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
!sockopt_capable(CAP_NET_ADMIN))
return -EPERM;
if (val < 0 || val > U16_MAX)
return -EINVAL;
WRITE_ONCE(sk->sk_busy_poll_budget, val);
return 0;
#endif
case SO_MAX_PACING_RATE:
{
unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
unsigned long pacing_rate;
if (sizeof(ulval) != sizeof(val) &&
optlen >= sizeof(ulval) &&
copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
return -EFAULT;
}
if (ulval != ~0UL)
cmpxchg(&sk->sk_pacing_status,
SK_PACING_NONE,
SK_PACING_NEEDED);
/* Pairs with READ_ONCE() from sk_getsockopt() */
WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
pacing_rate = READ_ONCE(sk->sk_pacing_rate);
if (ulval < pacing_rate)
WRITE_ONCE(sk->sk_pacing_rate, ulval);
return 0;
}
case SO_TXREHASH:
if (val < -1 || val > 1)
return -EINVAL;
if ((u8)val == SOCK_TXREHASH_DEFAULT)
val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
/* Paired with READ_ONCE() in tcp_rtx_synack()
* and sk_getsockopt().
*/
WRITE_ONCE(sk->sk_txrehash, (u8)val);
return 0;
case SO_PEEK_OFF:
{
int (*set_peek_off)(struct sock *sk, int val);
set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
if (set_peek_off)
ret = set_peek_off(sk, val);
else
ret = -EOPNOTSUPP;
return ret;
}
}
sockopt_lock_sock(sk);
switch (optname) {
case SO_DEBUG:
if (val && !sockopt_capable(CAP_NET_ADMIN))
ret = -EACCES;
else
sock_valbool_flag(sk, SOCK_DBG, valbool);
break;
case SO_REUSEADDR:
sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
break;
case SO_REUSEPORT:
sk->sk_reuseport = valbool;
break;
case SO_DONTROUTE:
sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
sk_dst_reset(sk);
break;
case SO_BROADCAST:
sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
break;
case SO_SNDBUF:
/* Don't error on this BSD doesn't and if you think
* about it this is right. Otherwise apps have to
* play 'guess the biggest size' games. RCVBUF/SNDBUF
* are treated in BSD as hints
*/
val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
set_sndbuf:
/* Ensure val * 2 fits into an int, to prevent max_t()
* from treating it as a negative value.
*/
val = min_t(int, val, INT_MAX / 2);
sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
WRITE_ONCE(sk->sk_sndbuf,
max_t(int, val * 2, SOCK_MIN_SNDBUF));
/* Wake up sending tasks if we upped the value. */
sk->sk_write_space(sk);
break;
case SO_SNDBUFFORCE:
if (!sockopt_capable(CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
/* No negative values (to prevent underflow, as val will be
* multiplied by 2).
*/
if (val < 0)
val = 0;
goto set_sndbuf;
case SO_RCVBUF:
/* Don't error on this BSD doesn't and if you think
* about it this is right. Otherwise apps have to
* play 'guess the biggest size' games. RCVBUF/SNDBUF
* are treated in BSD as hints
*/
__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
break;
case SO_RCVBUFFORCE:
if (!sockopt_capable(CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
/* No negative values (to prevent underflow, as val will be
* multiplied by 2).
*/
__sock_set_rcvbuf(sk, max(val, 0));
break;
case SO_KEEPALIVE:
if (sk->sk_prot->keepalive)
sk->sk_prot->keepalive(sk, valbool);
sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
break;
case SO_OOBINLINE:
sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
break;
case SO_NO_CHECK:
sk->sk_no_check_tx = valbool;
break;
case SO_LINGER:
if (optlen < sizeof(ling)) {
ret = -EINVAL; /* 1003.1g */
break;
}
if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
ret = -EFAULT;
break;
}
if (!ling.l_onoff) {
sock_reset_flag(sk, SOCK_LINGER);
} else {
unsigned long t_sec = ling.l_linger;
if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
else
WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
sock_set_flag(sk, SOCK_LINGER);
}
break;
case SO_BSDCOMPAT:
break;
case SO_TIMESTAMP_OLD:
case SO_TIMESTAMP_NEW:
case SO_TIMESTAMPNS_OLD:
case SO_TIMESTAMPNS_NEW:
sock_set_timestamp(sk, optname, valbool);
break;
case SO_TIMESTAMPING_NEW:
case SO_TIMESTAMPING_OLD:
if (optlen == sizeof(timestamping)) {
if (copy_from_sockptr(&timestamping, optval,
sizeof(timestamping))) {
ret = -EFAULT;
break;
}
} else {
memset(&timestamping, 0, sizeof(timestamping));
timestamping.flags = val;
}
ret = sock_set_timestamping(sk, optname, timestamping);
break;
case SO_RCVLOWAT:
{
int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
if (val < 0)
val = INT_MAX;
if (sock)
set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
if (set_rcvlowat)
ret = set_rcvlowat(sk, val);
else
WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
break;
}
case SO_RCVTIMEO_OLD:
case SO_RCVTIMEO_NEW:
ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
optlen, optname == SO_RCVTIMEO_OLD);
break;
case SO_SNDTIMEO_OLD:
case SO_SNDTIMEO_NEW:
ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
optlen, optname == SO_SNDTIMEO_OLD);
break;
case SO_ATTACH_FILTER: {
struct sock_fprog fprog;
ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
if (!ret)
ret = sk_attach_filter(&fprog, sk);
break;
}
case SO_ATTACH_BPF:
ret = -EINVAL;
if (optlen == sizeof(u32)) {
u32 ufd;
ret = -EFAULT;
if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
break;
ret = sk_attach_bpf(ufd, sk);
}
break;
case SO_ATTACH_REUSEPORT_CBPF: {
struct sock_fprog fprog;
ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
if (!ret)
ret = sk_reuseport_attach_filter(&fprog, sk);
break;
}
case SO_ATTACH_REUSEPORT_EBPF:
ret = -EINVAL;
if (optlen == sizeof(u32)) {
u32 ufd;
ret = -EFAULT;
if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
break;
ret = sk_reuseport_attach_bpf(ufd, sk);
}
break;
case SO_DETACH_REUSEPORT_BPF:
ret = reuseport_detach_prog(sk);
break;
case SO_DETACH_FILTER:
ret = sk_detach_filter(sk);
break;
case SO_LOCK_FILTER:
if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
ret = -EPERM;
else
sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
break;
case SO_MARK:
if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
__sock_set_mark(sk, val);
break;
case SO_RCVMARK:
sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
break;
case SO_RXQ_OVFL:
sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
break;
case SO_WIFI_STATUS:
sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
break;
case SO_NOFCS:
sock_valbool_flag(sk, SOCK_NOFCS, valbool);
break;
case SO_SELECT_ERR_QUEUE:
sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
break;
case SO_INCOMING_CPU:
reuseport_update_incoming_cpu(sk, val);
break;
case SO_CNX_ADVICE:
if (val == 1)
dst_negative_advice(sk);
break;
case SO_ZEROCOPY:
if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
if (!(sk_is_tcp(sk) ||
(sk->sk_type == SOCK_DGRAM &&
sk->sk_protocol == IPPROTO_UDP)))
ret = -EOPNOTSUPP;
} else if (sk->sk_family != PF_RDS) {
ret = -EOPNOTSUPP;
}
if (!ret) {
if (val < 0 || val > 1)
ret = -EINVAL;
else
sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
}
break;
case SO_TXTIME:
if (optlen != sizeof(struct sock_txtime)) {
ret = -EINVAL;
break;
} else if (copy_from_sockptr(&sk_txtime, optval,
sizeof(struct sock_txtime))) {
ret = -EFAULT;
break;
} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
ret = -EINVAL;
break;
}
/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
* scheduler has enough safe guards.
*/
if (sk_txtime.clockid != CLOCK_MONOTONIC &&
!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
ret = sockopt_validate_clockid(sk_txtime.clockid);
if (ret)
break;
sock_valbool_flag(sk, SOCK_TXTIME, true);
sk->sk_clockid = sk_txtime.clockid;
sk->sk_txtime_deadline_mode =
!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
sk->sk_txtime_report_errors =
!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
break;
case SO_BINDTOIFINDEX:
ret = sock_bindtoindex_locked(sk, val);
break;
case SO_BUF_LOCK:
if (val & ~SOCK_BUF_LOCK_MASK) {
ret = -EINVAL;
break;
}
sk->sk_userlocks = val | (sk->sk_userlocks &
~SOCK_BUF_LOCK_MASK);
break;
case SO_RESERVE_MEM:
{
int delta;
if (val < 0) {
ret = -EINVAL;
break;
}
delta = val - sk->sk_reserved_mem;
if (delta < 0)
sock_release_reserved_memory(sk, -delta);
else
ret = sock_reserve_memory(sk, delta);
break;
}
default:
ret = -ENOPROTOOPT;
break;
}
sockopt_release_sock(sk);
return ret;
}
int sock_setsockopt(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
return sk_setsockopt(sock->sk, level, optname,
optval, optlen);
}
EXPORT_SYMBOL(sock_setsockopt);
static const struct cred *sk_get_peer_cred(struct sock *sk)
{
const struct cred *cred;
spin_lock(&sk->sk_peer_lock);
cred = get_cred(sk->sk_peer_cred);
spin_unlock(&sk->sk_peer_lock);
return cred;
}
static void cred_to_ucred(struct pid *pid, const struct cred *cred,
struct ucred *ucred)
{
ucred->pid = pid_vnr(pid);
ucred->uid = ucred->gid = -1;
if (cred) {
struct user_namespace *current_ns = current_user_ns();
ucred->uid = from_kuid_munged(current_ns, cred->euid);
ucred->gid = from_kgid_munged(current_ns, cred->egid);
}
}
static int groups_to_user(sockptr_t dst, const struct group_info *src)
{
struct user_namespace *user_ns = current_user_ns();
int i;
for (i = 0; i < src->ngroups; i++) {
gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
return -EFAULT;
}
return 0;
}
int sk_getsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, sockptr_t optlen)
{
struct socket *sock = sk->sk_socket;
union {
int val;
u64 val64;
unsigned long ulval;
struct linger ling;
struct old_timeval32 tm32;
struct __kernel_old_timeval tm;
struct __kernel_sock_timeval stm;
struct sock_txtime txtime;
struct so_timestamping timestamping;
} v;
int lv = sizeof(int);
int len;
if (copy_from_sockptr(&len, optlen, sizeof(int)))
return -EFAULT;
if (len < 0)
return -EINVAL;
memset(&v, 0, sizeof(v));
switch (optname) {
case SO_DEBUG:
v.val = sock_flag(sk, SOCK_DBG);
break;
case SO_DONTROUTE:
v.val = sock_flag(sk, SOCK_LOCALROUTE);
break;
case SO_BROADCAST:
v.val = sock_flag(sk, SOCK_BROADCAST);
break;
case SO_SNDBUF:
v.val = READ_ONCE(sk->sk_sndbuf);
break;
case SO_RCVBUF:
v.val = READ_ONCE(sk->sk_rcvbuf);
break;
case SO_REUSEADDR:
v.val = sk->sk_reuse;
break;
case SO_REUSEPORT:
v.val = sk->sk_reuseport;
break;
case SO_KEEPALIVE:
v.val = sock_flag(sk, SOCK_KEEPOPEN);
break;
case SO_TYPE:
v.val = sk->sk_type;
break;
case SO_PROTOCOL:
v.val = sk->sk_protocol;
break;
case SO_DOMAIN:
v.val = sk->sk_family;
break;
case SO_ERROR:
v.val = -sock_error(sk);
if (v.val == 0)
v.val = xchg(&sk->sk_err_soft, 0);
break;
case SO_OOBINLINE:
v.val = sock_flag(sk, SOCK_URGINLINE);
break;
case SO_NO_CHECK:
v.val = sk->sk_no_check_tx;
break;
case SO_PRIORITY:
v.val = READ_ONCE(sk->sk_priority);
break;
case SO_LINGER:
lv = sizeof(v.ling);
v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ;
break;
case SO_BSDCOMPAT:
break;
case SO_TIMESTAMP_OLD:
v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
!sock_flag(sk, SOCK_TSTAMP_NEW) &&
!sock_flag(sk, SOCK_RCVTSTAMPNS);
break;
case SO_TIMESTAMPNS_OLD:
v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
break;
case SO_TIMESTAMP_NEW:
v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
break;
case SO_TIMESTAMPNS_NEW:
v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
break;
case SO_TIMESTAMPING_OLD:
case SO_TIMESTAMPING_NEW:
lv = sizeof(v.timestamping);
/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
* returning the flags when they were set through the same option.
* Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
*/
if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
}
break;
case SO_RCVTIMEO_OLD:
case SO_RCVTIMEO_NEW:
lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
SO_RCVTIMEO_OLD == optname);
break;
case SO_SNDTIMEO_OLD:
case SO_SNDTIMEO_NEW:
lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
SO_SNDTIMEO_OLD == optname);
break;
case SO_RCVLOWAT:
v.val = READ_ONCE(sk->sk_rcvlowat);
break;
case SO_SNDLOWAT:
v.val = 1;
break;
case SO_PASSCRED:
v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
break;
case SO_PASSPIDFD:
v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
break;
case SO_PEERCRED:
{
struct ucred peercred;
if (len > sizeof(peercred))
len = sizeof(peercred);
spin_lock(&sk->sk_peer_lock);
cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
spin_unlock(&sk->sk_peer_lock);
if (copy_to_sockptr(optval, &peercred, len))
return -EFAULT;
goto lenout;
}
case SO_PEERPIDFD:
{
struct pid *peer_pid;
struct file *pidfd_file = NULL;
int pidfd;
if (len > sizeof(pidfd))
len = sizeof(pidfd);
spin_lock(&sk->sk_peer_lock);
peer_pid = get_pid(sk->sk_peer_pid);
spin_unlock(&sk->sk_peer_lock);
if (!peer_pid)
return -ENODATA;
pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
put_pid(peer_pid);
if (pidfd < 0)
return pidfd;
if (copy_to_sockptr(optval, &pidfd, len) ||
copy_to_sockptr(optlen, &len, sizeof(int))) {
put_unused_fd(pidfd);
fput(pidfd_file);
return -EFAULT;
}
fd_install(pidfd, pidfd_file);
return 0;
}
case SO_PEERGROUPS:
{
const struct cred *cred;
int ret, n;
cred = sk_get_peer_cred(sk);
if (!cred)
return -ENODATA;
n = cred->group_info->ngroups;
if (len < n * sizeof(gid_t)) {
len = n * sizeof(gid_t);
put_cred(cred);
return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
}
len = n * sizeof(gid_t);
ret = groups_to_user(optval, cred->group_info);
put_cred(cred);
if (ret)
return ret;
goto lenout;
}
case SO_PEERNAME:
{
struct sockaddr_storage address;
lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
if (lv < 0)
return -ENOTCONN;
if (lv < len)
return -EINVAL;
if (copy_to_sockptr(optval, &address, len))
return -EFAULT;
goto lenout;
}
/* Dubious BSD thing... Probably nobody even uses it, but
* the UNIX standard wants it for whatever reason... -DaveM
*/
case SO_ACCEPTCONN:
v.val = sk->sk_state == TCP_LISTEN;
break;
case SO_PASSSEC:
v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
break;
case SO_PEERSEC:
return security_socket_getpeersec_stream(sock,
optval, optlen, len);
case SO_MARK:
v.val = READ_ONCE(sk->sk_mark);
break;
case SO_RCVMARK:
v.val = sock_flag(sk, SOCK_RCVMARK);
break;
case SO_RXQ_OVFL:
v.val = sock_flag(sk, SOCK_RXQ_OVFL);
break;
case SO_WIFI_STATUS:
v.val = sock_flag(sk, SOCK_WIFI_STATUS);
break;
case SO_PEEK_OFF:
if (!READ_ONCE(sock->ops)->set_peek_off)
return -EOPNOTSUPP;
v.val = READ_ONCE(sk->sk_peek_off);
break;
case SO_NOFCS:
v.val = sock_flag(sk, SOCK_NOFCS);
break;
case SO_BINDTODEVICE:
return sock_getbindtodevice(sk, optval, optlen, len);
case SO_GET_FILTER:
len = sk_get_filter(sk, optval, len);
if (len < 0)
return len;
goto lenout;
case SO_LOCK_FILTER:
v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
break;
case SO_BPF_EXTENSIONS:
v.val = bpf_tell_extensions();
break;
case SO_SELECT_ERR_QUEUE:
v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
break;
#ifdef CONFIG_NET_RX_BUSY_POLL
case SO_BUSY_POLL:
v.val = READ_ONCE(sk->sk_ll_usec);
break;
case SO_PREFER_BUSY_POLL:
v.val = READ_ONCE(sk->sk_prefer_busy_poll);
break;
#endif
case SO_MAX_PACING_RATE:
/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
lv = sizeof(v.ulval);
v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
} else {
/* 32bit version */
v.val = min_t(unsigned long, ~0U,
READ_ONCE(sk->sk_max_pacing_rate));
}
break;
case SO_INCOMING_CPU:
v.val = READ_ONCE(sk->sk_incoming_cpu);
break;
case SO_MEMINFO:
{
u32 meminfo[SK_MEMINFO_VARS];
sk_get_meminfo(sk, meminfo);
len = min_t(unsigned int, len, sizeof(meminfo));
if (copy_to_sockptr(optval, &meminfo, len))
return -EFAULT;
goto lenout;
}
#ifdef CONFIG_NET_RX_BUSY_POLL
case SO_INCOMING_NAPI_ID:
v.val = READ_ONCE(sk->sk_napi_id);
/* aggregate non-NAPI IDs down to 0 */
if (v.val < MIN_NAPI_ID)
v.val = 0;
break;
#endif
case SO_COOKIE:
lv = sizeof(u64);
if (len < lv)
return -EINVAL;
v.val64 = sock_gen_cookie(sk);
break;
case SO_ZEROCOPY:
v.val = sock_flag(sk, SOCK_ZEROCOPY);
break;
case SO_TXTIME:
lv = sizeof(v.txtime);
v.txtime.clockid = sk->sk_clockid;
v.txtime.flags |= sk->sk_txtime_deadline_mode ?
SOF_TXTIME_DEADLINE_MODE : 0;
v.txtime.flags |= sk->sk_txtime_report_errors ?
SOF_TXTIME_REPORT_ERRORS : 0;
break;
case SO_BINDTOIFINDEX:
v.val = READ_ONCE(sk->sk_bound_dev_if);
break;
case SO_NETNS_COOKIE:
lv = sizeof(u64);
if (len != lv)
return -EINVAL;
v.val64 = sock_net(sk)->net_cookie;
break;
case SO_BUF_LOCK:
v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
break;
case SO_RESERVE_MEM:
v.val = READ_ONCE(sk->sk_reserved_mem);
break;
case SO_TXREHASH:
/* Paired with WRITE_ONCE() in sk_setsockopt() */
v.val = READ_ONCE(sk->sk_txrehash);
break;
default:
/* We implement the SO_SNDLOWAT etc to not be settable
* (1003.1g 7).
*/
return -ENOPROTOOPT;
}
if (len > lv)
len = lv;
if (copy_to_sockptr(optval, &v, len))
return -EFAULT;
lenout:
if (copy_to_sockptr(optlen, &len, sizeof(int)))
return -EFAULT;
return 0;
}
/*
* Initialize an sk_lock.
*
* (We also register the sk_lock with the lock validator.)
*/
static inline void sock_lock_init(struct sock *sk)
{
if (sk->sk_kern_sock)
sock_lock_init_class_and_name(
sk,
af_family_kern_slock_key_strings[sk->sk_family],
af_family_kern_slock_keys + sk->sk_family,
af_family_kern_key_strings[sk->sk_family],
af_family_kern_keys + sk->sk_family);
else
sock_lock_init_class_and_name(
sk,
af_family_slock_key_strings[sk->sk_family],
af_family_slock_keys + sk->sk_family,
af_family_key_strings[sk->sk_family],
af_family_keys + sk->sk_family);
}
/*
* Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
* even temporarly, because of RCU lookups. sk_node should also be left as is.
* We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
*/
static void sock_copy(struct sock *nsk, const struct sock *osk)
{
const struct proto *prot = READ_ONCE(osk->sk_prot);
#ifdef CONFIG_SECURITY_NETWORK
void *sptr = nsk->sk_security;
#endif
/* If we move sk_tx_queue_mapping out of the private section,
* we must check if sk_tx_queue_clear() is called after
* sock_copy() in sk_clone_lock().
*/
BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
offsetof(struct sock, sk_dontcopy_begin) ||
offsetof(struct sock, sk_tx_queue_mapping) >=
offsetof(struct sock, sk_dontcopy_end));
memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
/* alloc is larger than struct, see sk_prot_alloc() */);
#ifdef CONFIG_SECURITY_NETWORK
nsk->sk_security = sptr;
security_sk_clone(osk, nsk);
#endif
}
static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
int family)
{
struct sock *sk;
struct kmem_cache *slab;
slab = prot->slab;
if (slab != NULL) {
sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
if (!sk)
return sk;
if (want_init_on_alloc(priority))
sk_prot_clear_nulls(sk, prot->obj_size);
} else
sk = kmalloc(prot->obj_size, priority);
if (sk != NULL) {
if (security_sk_alloc(sk, family, priority))
goto out_free;
if (!try_module_get(prot->owner))
goto out_free_sec;
}
return sk;
out_free_sec:
security_sk_free(sk);
out_free:
if (slab != NULL)
kmem_cache_free(slab, sk);
else
kfree(sk);
return NULL;
}
static void sk_prot_free(struct proto *prot, struct sock *sk)
{
struct kmem_cache *slab;
struct module *owner;
owner = prot->owner;
slab = prot->slab;
cgroup_sk_free(&sk->sk_cgrp_data);
mem_cgroup_sk_free(sk);
security_sk_free(sk);
if (slab != NULL)
kmem_cache_free(slab, sk);
else
kfree(sk);
module_put(owner);
}
/**
* sk_alloc - All socket objects are allocated here
* @net: the applicable net namespace
* @family: protocol family
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
* @prot: struct proto associated with this new sock instance
* @kern: is this to be a kernel socket?
*/
struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
struct proto *prot, int kern)
{
struct sock *sk;
sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
if (sk) {
sk->sk_family = family;
/*
* See comment in struct sock definition to understand
* why we need sk_prot_creator -acme
*/
sk->sk_prot = sk->sk_prot_creator = prot;
sk->sk_kern_sock = kern;
sock_lock_init(sk);
sk->sk_net_refcnt = kern ? 0 : 1;
if (likely(sk->sk_net_refcnt)) {
get_net_track(net, &sk->ns_tracker, priority);
sock_inuse_add(net, 1);
} else {
__netns_tracker_alloc(net, &sk->ns_tracker,
false, priority);
}
sock_net_set(sk, net);
refcount_set(&sk->sk_wmem_alloc, 1);
mem_cgroup_sk_alloc(sk);
cgroup_sk_alloc(&sk->sk_cgrp_data);
sock_update_classid(&sk->sk_cgrp_data);
sock_update_netprioidx(&sk->sk_cgrp_data);
sk_tx_queue_clear(sk);
}
return sk;
}
EXPORT_SYMBOL(sk_alloc);
/* Sockets having SOCK_RCU_FREE will call this function after one RCU
* grace period. This is the case for UDP sockets and TCP listeners.
*/
static void __sk_destruct(struct rcu_head *head)
{
struct sock *sk = container_of(head, struct sock, sk_rcu);
struct sk_filter *filter;
if (sk->sk_destruct)
sk->sk_destruct(sk);
filter = rcu_dereference_check(sk->sk_filter,
refcount_read(&sk->sk_wmem_alloc) == 0);
if (filter) {
sk_filter_uncharge(sk, filter);
RCU_INIT_POINTER(sk->sk_filter, NULL);
}
sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
#ifdef CONFIG_BPF_SYSCALL
bpf_sk_storage_free(sk);
#endif
if (atomic_read(&sk->sk_omem_alloc))
pr_debug("%s: optmem leakage (%d bytes) detected\n",
__func__, atomic_read(&sk->sk_omem_alloc));
if (sk->sk_frag.page) {
put_page(sk->sk_frag.page);
sk->sk_frag.page = NULL;
}
/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
put_cred(sk->sk_peer_cred);
put_pid(sk->sk_peer_pid);
if (likely(sk->sk_net_refcnt))
put_net_track(sock_net(sk), &sk->ns_tracker);
else
__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
sk_prot_free(sk->sk_prot_creator, sk);
}
void sk_destruct(struct sock *sk)
{
bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
if (rcu_access_pointer(sk->sk_reuseport_cb)) {
reuseport_detach_sock(sk);
use_call_rcu = true;
}
if (use_call_rcu)
call_rcu(&sk->sk_rcu, __sk_destruct);
else
__sk_destruct(&sk->sk_rcu);
}
static void __sk_free(struct sock *sk)
{
if (likely(sk->sk_net_refcnt))
sock_inuse_add(sock_net(sk), -1);
if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
sock_diag_broadcast_destroy(sk);
else
sk_destruct(sk);
}
void sk_free(struct sock *sk)
{
/*
* We subtract one from sk_wmem_alloc and can know if
* some packets are still in some tx queue.
* If not null, sock_wfree() will call __sk_free(sk) later
*/
if (refcount_dec_and_test(&sk->sk_wmem_alloc))
__sk_free(sk);
}
EXPORT_SYMBOL(sk_free);
static void sk_init_common(struct sock *sk)
{
skb_queue_head_init(&sk->sk_receive_queue);
skb_queue_head_init(&sk->sk_write_queue);
skb_queue_head_init(&sk->sk_error_queue);
rwlock_init(&sk->sk_callback_lock);
lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
af_rlock_keys + sk->sk_family,
af_family_rlock_key_strings[sk->sk_family]);
lockdep_set_class_and_name(&sk->sk_write_queue.lock,
af_wlock_keys + sk->sk_family,
af_family_wlock_key_strings[sk->sk_family]);
lockdep_set_class_and_name(&sk->sk_error_queue.lock,
af_elock_keys + sk->sk_family,
af_family_elock_key_strings[sk->sk_family]);
if (sk->sk_kern_sock)
lockdep_set_class_and_name(&sk->sk_callback_lock,
af_kern_callback_keys + sk->sk_family,
af_family_kern_clock_key_strings[sk->sk_family]);
else
lockdep_set_class_and_name(&sk->sk_callback_lock,
af_callback_keys + sk->sk_family,
af_family_clock_key_strings[sk->sk_family]);
}
/**
* sk_clone_lock - clone a socket, and lock its clone
* @sk: the socket to clone
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
*
* Caller must unlock socket even in error path (bh_unlock_sock(newsk))
*/
struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
{
struct proto *prot = READ_ONCE(sk->sk_prot);
struct sk_filter *filter;
bool is_charged = true;
struct sock *newsk;
newsk = sk_prot_alloc(prot, priority, sk->sk_family);
if (!newsk)
goto out;
sock_copy(newsk, sk);
newsk->sk_prot_creator = prot;
/* SANITY */
if (likely(newsk->sk_net_refcnt)) {
get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
sock_inuse_add(sock_net(newsk), 1);
} else {
/* Kernel sockets are not elevating the struct net refcount.
* Instead, use a tracker to more easily detect if a layer
* is not properly dismantling its kernel sockets at netns
* destroy time.
*/
__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
false, priority);
}
sk_node_init(&newsk->sk_node);
sock_lock_init(newsk);
bh_lock_sock(newsk);
newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
newsk->sk_backlog.len = 0;
atomic_set(&newsk->sk_rmem_alloc, 0);
/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
refcount_set(&newsk->sk_wmem_alloc, 1);
atomic_set(&newsk->sk_omem_alloc, 0);
sk_init_common(newsk);
newsk->sk_dst_cache = NULL;
newsk->sk_dst_pending_confirm = 0;
newsk->sk_wmem_queued = 0;
newsk->sk_forward_alloc = 0;
newsk->sk_reserved_mem = 0;
atomic_set(&newsk->sk_drops, 0);
newsk->sk_send_head = NULL;
newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
atomic_set(&newsk->sk_zckey, 0);
sock_reset_flag(newsk, SOCK_DONE);
/* sk->sk_memcg will be populated at accept() time */
newsk->sk_memcg = NULL;
cgroup_sk_clone(&newsk->sk_cgrp_data);
rcu_read_lock();
filter = rcu_dereference(sk->sk_filter);
if (filter != NULL)
/* though it's an empty new sock, the charging may fail
* if sysctl_optmem_max was changed between creation of
* original socket and cloning
*/
is_charged = sk_filter_charge(newsk, filter);
RCU_INIT_POINTER(newsk->sk_filter, filter);
rcu_read_unlock();
if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
/* We need to make sure that we don't uncharge the new
* socket if we couldn't charge it in the first place
* as otherwise we uncharge the parent's filter.
*/
if (!is_charged)
RCU_INIT_POINTER(newsk->sk_filter, NULL);
sk_free_unlock_clone(newsk);
newsk = NULL;
goto out;
}
RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
if (bpf_sk_storage_clone(sk, newsk)) {
sk_free_unlock_clone(newsk);
newsk = NULL;
goto out;
}
/* Clear sk_user_data if parent had the pointer tagged
* as not suitable for copying when cloning.
*/
if (sk_user_data_is_nocopy(newsk))
newsk->sk_user_data = NULL;
newsk->sk_err = 0;
newsk->sk_err_soft = 0;
newsk->sk_priority = 0;
newsk->sk_incoming_cpu = raw_smp_processor_id();
/* Before updating sk_refcnt, we must commit prior changes to memory
* (Documentation/RCU/rculist_nulls.rst for details)
*/
smp_wmb();
refcount_set(&newsk->sk_refcnt, 2);
sk_set_socket(newsk, NULL);
sk_tx_queue_clear(newsk);
RCU_INIT_POINTER(newsk->sk_wq, NULL);
if (newsk->sk_prot->sockets_allocated)
sk_sockets_allocated_inc(newsk);
if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
net_enable_timestamp();
out:
return newsk;
}
EXPORT_SYMBOL_GPL(sk_clone_lock);
void sk_free_unlock_clone(struct sock *sk)
{
/* It is still raw copy of parent, so invalidate
* destructor and make plain sk_free() */
sk->sk_destruct = NULL;
bh_unlock_sock(sk);
sk_free(sk);
}
EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
{
bool is_ipv6 = false;
u32 max_size;
#if IS_ENABLED(CONFIG_IPV6)
is_ipv6 = (sk->sk_family == AF_INET6 &&
!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
#endif
/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
READ_ONCE(dst->dev->gso_ipv4_max_size);
if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
max_size = GSO_LEGACY_MAX_SIZE;
return max_size - (MAX_TCP_HEADER + 1);
}
void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
{
u32 max_segs = 1;
sk->sk_route_caps = dst->dev->features;
if (sk_is_tcp(sk))
sk->sk_route_caps |= NETIF_F_GSO;
if (sk->sk_route_caps & NETIF_F_GSO)
sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
if (unlikely(sk->sk_gso_disabled))
sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
if (sk_can_gso(sk)) {
if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
} else {
sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
}
}
sk->sk_gso_max_segs = max_segs;
sk_dst_set(sk, dst);
}
EXPORT_SYMBOL_GPL(sk_setup_caps);
/*
* Simple resource managers for sockets.
*/
/*
* Write buffer destructor automatically called from kfree_skb.
*/
void sock_wfree(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
unsigned int len = skb->truesize;
bool free;
if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
if (sock_flag(sk, SOCK_RCU_FREE) &&
sk->sk_write_space == sock_def_write_space) {
rcu_read_lock();
free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
sock_def_write_space_wfree(sk);
rcu_read_unlock();
if (unlikely(free))
__sk_free(sk);
return;
}
/*
* Keep a reference on sk_wmem_alloc, this will be released
* after sk_write_space() call
*/
WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
sk->sk_write_space(sk);
len = 1;
}
/*
* if sk_wmem_alloc reaches 0, we must finish what sk_free()
* could not do because of in-flight packets
*/
if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
__sk_free(sk);
}
EXPORT_SYMBOL(sock_wfree);
/* This variant of sock_wfree() is used by TCP,
* since it sets SOCK_USE_WRITE_QUEUE.
*/
void __sock_wfree(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
__sk_free(sk);
}
void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
{
skb_orphan(skb);
skb->sk = sk;
#ifdef CONFIG_INET
if (unlikely(!sk_fullsock(sk))) {
skb->destructor = sock_edemux;
sock_hold(sk);
return;
}
#endif
skb->destructor = sock_wfree;
skb_set_hash_from_sk(skb, sk);
/*
* We used to take a refcount on sk, but following operation
* is enough to guarantee sk_free() wont free this sock until
* all in-flight packets are completed
*/
refcount_add(skb->truesize, &sk->sk_wmem_alloc);
}
EXPORT_SYMBOL(skb_set_owner_w);
static bool can_skb_orphan_partial(const struct sk_buff *skb)
{
/* Drivers depend on in-order delivery for crypto offload,
* partial orphan breaks out-of-order-OK logic.
*/
if (skb_is_decrypted(skb))
return false;
return (skb->destructor == sock_wfree ||
(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
}
/* This helper is used by netem, as it can hold packets in its
* delay queue. We want to allow the owner socket to send more
* packets, as if they were already TX completed by a typical driver.
* But we also want to keep skb->sk set because some packet schedulers
* rely on it (sch_fq for example).
*/
void skb_orphan_partial(struct sk_buff *skb)
{
if (skb_is_tcp_pure_ack(skb))
return;
if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
return;
skb_orphan(skb);
}
EXPORT_SYMBOL(skb_orphan_partial);
/*
* Read buffer destructor automatically called from kfree_skb.
*/
void sock_rfree(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
unsigned int len = skb->truesize;
atomic_sub(len, &sk->sk_rmem_alloc);
sk_mem_uncharge(sk, len);
}
EXPORT_SYMBOL(sock_rfree);
/*
* Buffer destructor for skbs that are not used directly in read or write
* path, e.g. for error handler skbs. Automatically called from kfree_skb.
*/
void sock_efree(struct sk_buff *skb)
{
sock_put(skb->sk);
}
EXPORT_SYMBOL(sock_efree);
/* Buffer destructor for prefetch/receive path where reference count may
* not be held, e.g. for listen sockets.
*/
#ifdef CONFIG_INET
void sock_pfree(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
if (!sk_is_refcounted(sk))
return;
if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
inet_reqsk(sk)->rsk_listener = NULL;
reqsk_free(inet_reqsk(sk));
return;
}
sock_gen_put(sk);
}
EXPORT_SYMBOL(sock_pfree);
#endif /* CONFIG_INET */
kuid_t sock_i_uid(struct sock *sk)
{
kuid_t uid;
read_lock_bh(&sk->sk_callback_lock);
uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
read_unlock_bh(&sk->sk_callback_lock);
return uid;
}
EXPORT_SYMBOL(sock_i_uid);
unsigned long __sock_i_ino(struct sock *sk)
{
unsigned long ino;
read_lock(&sk->sk_callback_lock);
ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
read_unlock(&sk->sk_callback_lock);
return ino;
}
EXPORT_SYMBOL(__sock_i_ino);
unsigned long sock_i_ino(struct sock *sk)
{
unsigned long ino;
local_bh_disable();
ino = __sock_i_ino(sk);
local_bh_enable();
return ino;
}
EXPORT_SYMBOL(sock_i_ino);
/*
* Allocate a skb from the socket's send buffer.
*/
struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
gfp_t priority)
{
if (force ||
refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
struct sk_buff *skb = alloc_skb(size, priority);
if (skb) {
skb_set_owner_w(skb, sk);
return skb;
}
}
return NULL;
}
EXPORT_SYMBOL(sock_wmalloc);
static void sock_ofree(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
atomic_sub(skb->truesize, &sk->sk_omem_alloc);
}
struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
gfp_t priority)
{
struct sk_buff *skb;
/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
return NULL;
skb = alloc_skb(size, priority);
if (!skb)
return NULL;
atomic_add(skb->truesize, &sk->sk_omem_alloc);
skb->sk = sk;
skb->destructor = sock_ofree;
return skb;
}
/*
* Allocate a memory block from the socket's option memory buffer.
*/
void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
{
int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
if ((unsigned int)size <= optmem_max &&
atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
void *mem;
/* First do the add, to avoid the race if kmalloc
* might sleep.
*/
atomic_add(size, &sk->sk_omem_alloc);
mem = kmalloc(size, priority);
if (mem)
return mem;
atomic_sub(size, &sk->sk_omem_alloc);
}
return NULL;
}
EXPORT_SYMBOL(sock_kmalloc);
/* Free an option memory block. Note, we actually want the inline
* here as this allows gcc to detect the nullify and fold away the
* condition entirely.
*/
static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
const bool nullify)
{
if (WARN_ON_ONCE(!mem))
return;
if (nullify)
kfree_sensitive(mem);
else
kfree(mem);
atomic_sub(size, &sk->sk_omem_alloc);
}
void sock_kfree_s(struct sock *sk, void *mem, int size)
{
__sock_kfree_s(sk, mem, size, false);
}
EXPORT_SYMBOL(sock_kfree_s);
void sock_kzfree_s(struct sock *sk, void *mem, int size)
{
__sock_kfree_s(sk, mem, size, true);
}
EXPORT_SYMBOL(sock_kzfree_s);
/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
I think, these locks should be removed for datagram sockets.
*/
static long sock_wait_for_wmem(struct sock *sk, long timeo)
{
DEFINE_WAIT(wait);
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
for (;;) {
if (!timeo)
break;
if (signal_pending(current))
break;
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
break;
if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
break;
if (READ_ONCE(sk->sk_err))
break;
timeo = schedule_timeout(timeo);
}
finish_wait(sk_sleep(sk), &wait);
return timeo;
}
/*
* Generic send/receive buffer handlers
*/
struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
unsigned long data_len, int noblock,
int *errcode, int max_page_order)
{
struct sk_buff *skb;
long timeo;
int err;
timeo = sock_sndtimeo(sk, noblock);
for (;;) {
err = sock_error(sk);
if (err != 0)
goto failure;
err = -EPIPE;
if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
goto failure;
if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
break;
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
err = -EAGAIN;
if (!timeo)
goto failure;
if (signal_pending(current))
goto interrupted;
timeo = sock_wait_for_wmem(sk, timeo);
}
skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
errcode, sk->sk_allocation);
if (skb)
skb_set_owner_w(skb, sk);
return skb;
interrupted:
err = sock_intr_errno(timeo);
failure:
*errcode = err;
return NULL;
}
EXPORT_SYMBOL(sock_alloc_send_pskb);
int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
struct sockcm_cookie *sockc)
{
u32 tsflags;
switch (cmsg->cmsg_type) {
case SO_MARK:
if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
return -EPERM;
if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
return -EINVAL;
sockc->mark = *(u32 *)CMSG_DATA(cmsg);
break;
case SO_TIMESTAMPING_OLD:
case SO_TIMESTAMPING_NEW:
if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
return -EINVAL;
tsflags = *(u32 *)CMSG_DATA(cmsg);
if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
return -EINVAL;
sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
sockc->tsflags |= tsflags;
break;
case SCM_TXTIME:
if (!sock_flag(sk, SOCK_TXTIME))
return -EINVAL;
if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
return -EINVAL;
sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
break;
/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
case SCM_RIGHTS:
case SCM_CREDENTIALS:
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(__sock_cmsg_send);
int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
struct sockcm_cookie *sockc)
{
struct cmsghdr *cmsg;
int ret;
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_SOCKET)
continue;
ret = __sock_cmsg_send(sk, cmsg, sockc);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(sock_cmsg_send);
static void sk_enter_memory_pressure(struct sock *sk)
{
if (!sk->sk_prot->enter_memory_pressure)
return;
sk->sk_prot->enter_memory_pressure(sk);
}
static void sk_leave_memory_pressure(struct sock *sk)
{
if (sk->sk_prot->leave_memory_pressure) {
INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
tcp_leave_memory_pressure, sk);
} else {
unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
if (memory_pressure && READ_ONCE(*memory_pressure))
WRITE_ONCE(*memory_pressure, 0);
}
}
DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
/**
* skb_page_frag_refill - check that a page_frag contains enough room
* @sz: minimum size of the fragment we want to get
* @pfrag: pointer to page_frag
* @gfp: priority for memory allocation
*
* Note: While this allocator tries to use high order pages, there is
* no guarantee that allocations succeed. Therefore, @sz MUST be
* less or equal than PAGE_SIZE.
*/
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
{
if (pfrag->page) {
if (page_ref_count(pfrag->page) == 1) {
pfrag->offset = 0;
return true;
}
if (pfrag->offset + sz <= pfrag->size)
return true;
put_page(pfrag->page);
}
pfrag->offset = 0;
if (SKB_FRAG_PAGE_ORDER &&
!static_branch_unlikely(&net_high_order_alloc_disable_key)) {
/* Avoid direct reclaim but allow kswapd to wake */
pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
__GFP_COMP | __GFP_NOWARN |
__GFP_NORETRY,
SKB_FRAG_PAGE_ORDER);
if (likely(pfrag->page)) {
pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
return true;
}
}
pfrag->page = alloc_page(gfp);
if (likely(pfrag->page)) {
pfrag->size = PAGE_SIZE;
return true;
}
return false;
}
EXPORT_SYMBOL(skb_page_frag_refill);
bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
{
if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
return true;
sk_enter_memory_pressure(sk);
sk_stream_moderate_sndbuf(sk);
return false;
}
EXPORT_SYMBOL(sk_page_frag_refill);
void __lock_sock(struct sock *sk)
__releases(&sk->sk_lock.slock)
__acquires(&sk->sk_lock.slock)
{
DEFINE_WAIT(wait);
for (;;) {
prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
TASK_UNINTERRUPTIBLE);
spin_unlock_bh(&sk->sk_lock.slock);
schedule();
spin_lock_bh(&sk->sk_lock.slock);
if (!sock_owned_by_user(sk))
break;
}
finish_wait(&sk->sk_lock.wq, &wait);
}
void __release_sock(struct sock *sk)
__releases(&sk->sk_lock.slock)
__acquires(&sk->sk_lock.slock)
{
struct sk_buff *skb, *next;
while ((skb = sk->sk_backlog.head) != NULL) {
sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
spin_unlock_bh(&sk->sk_lock.slock);
do {
next = skb->next;
prefetch(next);
DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
skb_mark_not_on_list(skb);
sk_backlog_rcv(sk, skb);
cond_resched();
skb = next;
} while (skb != NULL);
spin_lock_bh(&sk->sk_lock.slock);
}
/*
* Doing the zeroing here guarantee we can not loop forever
* while a wild producer attempts to flood us.
*/
sk->sk_backlog.len = 0;
}
void __sk_flush_backlog(struct sock *sk)
{
spin_lock_bh(&sk->sk_lock.slock);
__release_sock(sk);
if (sk->sk_prot->release_cb)
INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
tcp_release_cb, sk);
spin_unlock_bh(&sk->sk_lock.slock);
}
EXPORT_SYMBOL_GPL(__sk_flush_backlog);
/**
* sk_wait_data - wait for data to arrive at sk_receive_queue
* @sk: sock to wait on
* @timeo: for how long
* @skb: last skb seen on sk_receive_queue
*
* Now socket state including sk->sk_err is changed only under lock,
* hence we may omit checks after joining wait queue.
* We check receive queue before schedule() only as optimization;
* it is very likely that release_sock() added new data.
*/
int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
int rc;
add_wait_queue(sk_sleep(sk), &wait);
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
remove_wait_queue(sk_sleep(sk), &wait);
return rc;
}
EXPORT_SYMBOL(sk_wait_data);
/**
* __sk_mem_raise_allocated - increase memory_allocated
* @sk: socket
* @size: memory size to allocate
* @amt: pages to allocate
* @kind: allocation type
*
* Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
*
* Unlike the globally shared limits among the sockets under same protocol,
* consuming the budget of a memcg won't have direct effect on other ones.
* So be optimistic about memcg's tolerance, and leave the callers to decide
* whether or not to raise allocated through sk_under_memory_pressure() or
* its variants.
*/
int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
{
struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
struct proto *prot = sk->sk_prot;
bool charged = false;
long allocated;
sk_memory_allocated_add(sk, amt);
allocated = sk_memory_allocated(sk);
if (memcg) {
if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
goto suppress_allocation;
charged = true;
}
/* Under limit. */
if (allocated <= sk_prot_mem_limits(sk, 0)) {
sk_leave_memory_pressure(sk);
return 1;
}
/* Under pressure. */
if (allocated > sk_prot_mem_limits(sk, 1))
sk_enter_memory_pressure(sk);
/* Over hard limit. */
if (allocated > sk_prot_mem_limits(sk, 2))
goto suppress_allocation;
/* Guarantee minimum buffer size under pressure (either global
* or memcg) to make sure features described in RFC 7323 (TCP
* Extensions for High Performance) work properly.
*
* This rule does NOT stand when exceeds global or memcg's hard
* limit, or else a DoS attack can be taken place by spawning
* lots of sockets whose usage are under minimum buffer size.
*/
if (kind == SK_MEM_RECV) {
if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
return 1;
} else { /* SK_MEM_SEND */
int wmem0 = sk_get_wmem0(sk, prot);
if (sk->sk_type == SOCK_STREAM) {
if (sk->sk_wmem_queued < wmem0)
return 1;
} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
return 1;
}
}
if (sk_has_memory_pressure(sk)) {
u64 alloc;
/* The following 'average' heuristic is within the
* scope of global accounting, so it only makes
* sense for global memory pressure.
*/
if (!sk_under_global_memory_pressure(sk))
return 1;
/* Try to be fair among all the sockets under global
* pressure by allowing the ones that below average
* usage to raise.
*/
alloc = sk_sockets_allocated_read_positive(sk);
if (sk_prot_mem_limits(sk, 2) > alloc *
sk_mem_pages(sk->sk_wmem_queued +
atomic_read(&sk->sk_rmem_alloc) +
sk->sk_forward_alloc))
return 1;
}
suppress_allocation:
if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
sk_stream_moderate_sndbuf(sk);
/* Fail only if socket is _under_ its sndbuf.
* In this case we cannot block, so that we have to fail.
*/
if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
/* Force charge with __GFP_NOFAIL */
if (memcg && !charged) {
mem_cgroup_charge_skmem(memcg, amt,
gfp_memcg_charge() | __GFP_NOFAIL);
}
return 1;
}
}
if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
sk_memory_allocated_sub(sk, amt);
if (charged)
mem_cgroup_uncharge_skmem(memcg, amt);
return 0;
}
/**
* __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
* @sk: socket
* @size: memory size to allocate
* @kind: allocation type
*
* If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
* rmem allocation. This function assumes that protocols which have
* memory_pressure use sk_wmem_queued as write buffer accounting.
*/
int __sk_mem_schedule(struct sock *sk, int size, int kind)
{
int ret, amt = sk_mem_pages(size);
sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
ret = __sk_mem_raise_allocated(sk, size, amt, kind);
if (!ret)
sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
return ret;
}
EXPORT_SYMBOL(__sk_mem_schedule);
/**
* __sk_mem_reduce_allocated - reclaim memory_allocated
* @sk: socket
* @amount: number of quanta
*
* Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
*/
void __sk_mem_reduce_allocated(struct sock *sk, int amount)
{
sk_memory_allocated_sub(sk, amount);
if (mem_cgroup_sockets_enabled && sk->sk_memcg)
mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
if (sk_under_global_memory_pressure(sk) &&
(sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
sk_leave_memory_pressure(sk);
}
/**
* __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
* @sk: socket
* @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
*/
void __sk_mem_reclaim(struct sock *sk, int amount)
{
amount >>= PAGE_SHIFT;
sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
__sk_mem_reduce_allocated(sk, amount);
}
EXPORT_SYMBOL(__sk_mem_reclaim);
int sk_set_peek_off(struct sock *sk, int val)
{
WRITE_ONCE(sk->sk_peek_off, val);
return 0;
}
EXPORT_SYMBOL_GPL(sk_set_peek_off);
/*
* Set of default routines for initialising struct proto_ops when
* the protocol does not support a particular function. In certain
* cases where it makes no sense for a protocol to have a "do nothing"
* function, some default processing is provided.
*/
int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_bind);
int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
int len, int flags)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_connect);
int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_socketpair);
int sock_no_accept(struct socket *sock, struct socket *newsock,
struct proto_accept_arg *arg)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_accept);
int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
int peer)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_getname);
int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_ioctl);
int sock_no_listen(struct socket *sock, int backlog)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_listen);
int sock_no_shutdown(struct socket *sock, int how)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_shutdown);
int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_sendmsg);
int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_sendmsg_locked);
int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
int flags)
{
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(sock_no_recvmsg);
int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
{
/* Mirror missing mmap method error code */
return -ENODEV;
}
EXPORT_SYMBOL(sock_no_mmap);
/*
* When a file is received (via SCM_RIGHTS, etc), we must bump the
* various sock-based usage counts.
*/
void __receive_sock(struct file *file)
{
struct socket *sock;
sock = sock_from_file(file);
if (sock) {
sock_update_netprioidx(&sock->sk->sk_cgrp_data);
sock_update_classid(&sock->sk->sk_cgrp_data);
}
}
/*
* Default Socket Callbacks
*/
static void sock_def_wakeup(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_all(&wq->wait);
rcu_read_unlock();
}
static void sock_def_error_report(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_poll(&wq->wait, EPOLLERR);
sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
rcu_read_unlock();
}
void sock_def_readable(struct sock *sk)
{
struct socket_wq *wq;
trace_sk_data_ready(sk);
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
EPOLLRDNORM | EPOLLRDBAND);
sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
rcu_read_unlock();
}
static void sock_def_write_space(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
/* Do not wake up a writer until he can make "significant"
* progress. --DaveM
*/
if (sock_writeable(sk)) {
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
EPOLLWRNORM | EPOLLWRBAND);
/* Should agree with poll, otherwise some programs break */
sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
}
rcu_read_unlock();
}
/* An optimised version of sock_def_write_space(), should only be called
* for SOCK_RCU_FREE sockets under RCU read section and after putting
* ->sk_wmem_alloc.
*/
static void sock_def_write_space_wfree(struct sock *sk)
{
/* Do not wake up a writer until he can make "significant"
* progress. --DaveM
*/
if (sock_writeable(sk)) {
struct socket_wq *wq = rcu_dereference(sk->sk_wq);
/* rely on refcount_sub from sock_wfree() */
smp_mb__after_atomic();
if (wq && waitqueue_active(&wq->wait))
wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
EPOLLWRNORM | EPOLLWRBAND);
/* Should agree with poll, otherwise some programs break */
sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
}
}
static void sock_def_destruct(struct sock *sk)
{
}
void sk_send_sigurg(struct sock *sk)
{
if (sk->sk_socket && sk->sk_socket->file)
if (send_sigurg(&sk->sk_socket->file->f_owner))
sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
}
EXPORT_SYMBOL(sk_send_sigurg);
void sk_reset_timer(struct sock *sk, struct timer_list* timer,
unsigned long expires)
{
if (!mod_timer(timer, expires))
sock_hold(sk);
}
EXPORT_SYMBOL(sk_reset_timer);
void sk_stop_timer(struct sock *sk, struct timer_list* timer)
{
if (del_timer(timer))
__sock_put(sk);
}
EXPORT_SYMBOL(sk_stop_timer);
void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
{
if (del_timer_sync(timer))
__sock_put(sk);
}
EXPORT_SYMBOL(sk_stop_timer_sync);
void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
{
sk_init_common(sk);
sk->sk_send_head = NULL;
timer_setup(&sk->sk_timer, NULL, 0);
sk->sk_allocation = GFP_KERNEL;
sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
sk->sk_state = TCP_CLOSE;
sk->sk_use_task_frag = true;
sk_set_socket(sk, sock);
sock_set_flag(sk, SOCK_ZAPPED);
if (sock) {
sk->sk_type = sock->type;
RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
sock->sk = sk;
} else {
RCU_INIT_POINTER(sk->sk_wq, NULL);
}
sk->sk_uid = uid;
sk->sk_state_change = sock_def_wakeup;
sk->sk_data_ready = sock_def_readable;
sk->sk_write_space = sock_def_write_space;
sk->sk_error_report = sock_def_error_report;
sk->sk_destruct = sock_def_destruct;
sk->sk_frag.page = NULL;
sk->sk_frag.offset = 0;
sk->sk_peek_off = -1;
sk->sk_peer_pid = NULL;
sk->sk_peer_cred = NULL;
spin_lock_init(&sk->sk_peer_lock);
sk->sk_write_pending = 0;
sk->sk_rcvlowat = 1;
sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
sk->sk_stamp = SK_DEFAULT_STAMP;
#if BITS_PER_LONG==32
seqlock_init(&sk->sk_stamp_seq);
#endif
atomic_set(&sk->sk_zckey, 0);
#ifdef CONFIG_NET_RX_BUSY_POLL
sk->sk_napi_id = 0;
sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
#endif
sk->sk_max_pacing_rate = ~0UL;
sk->sk_pacing_rate = ~0UL;
WRITE_ONCE(sk->sk_pacing_shift, 10);
sk->sk_incoming_cpu = -1;
sk_rx_queue_clear(sk);
/*
* Before updating sk_refcnt, we must commit prior changes to memory
* (Documentation/RCU/rculist_nulls.rst for details)
*/
smp_wmb();
refcount_set(&sk->sk_refcnt, 1);
atomic_set(&sk->sk_drops, 0);
}
EXPORT_SYMBOL(sock_init_data_uid);
void sock_init_data(struct socket *sock, struct sock *sk)
{
kuid_t uid = sock ?
SOCK_INODE(sock)->i_uid :
make_kuid(sock_net(sk)->user_ns, 0);
sock_init_data_uid(sock, sk, uid);
}
EXPORT_SYMBOL(sock_init_data);
void lock_sock_nested(struct sock *sk, int subclass)
{
/* The sk_lock has mutex_lock() semantics here. */
mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
might_sleep();
spin_lock_bh(&sk->sk_lock.slock);
if (sock_owned_by_user_nocheck(sk))
__lock_sock(sk);
sk->sk_lock.owned = 1;
spin_unlock_bh(&sk->sk_lock.slock);
}
EXPORT_SYMBOL(lock_sock_nested);
void release_sock(struct sock *sk)
{
spin_lock_bh(&sk->sk_lock.slock);
if (sk->sk_backlog.tail)
__release_sock(sk);
if (sk->sk_prot->release_cb)
INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
tcp_release_cb, sk);
sock_release_ownership(sk);
if (waitqueue_active(&sk->sk_lock.wq))
wake_up(&sk->sk_lock.wq);
spin_unlock_bh(&sk->sk_lock.slock);
}
EXPORT_SYMBOL(release_sock);
bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
{
might_sleep();
spin_lock_bh(&sk->sk_lock.slock);
if (!sock_owned_by_user_nocheck(sk)) {
/*
* Fast path return with bottom halves disabled and
* sock::sk_lock.slock held.
*
* The 'mutex' is not contended and holding
* sock::sk_lock.slock prevents all other lockers to
* proceed so the corresponding unlock_sock_fast() can
* avoid the slow path of release_sock() completely and
* just release slock.
*
* From a semantical POV this is equivalent to 'acquiring'
* the 'mutex', hence the corresponding lockdep
* mutex_release() has to happen in the fast path of
* unlock_sock_fast().
*/
return false;
}
__lock_sock(sk);
sk->sk_lock.owned = 1;
__acquire(&sk->sk_lock.slock);
spin_unlock_bh(&sk->sk_lock.slock);
return true;
}
EXPORT_SYMBOL(__lock_sock_fast);
int sock_gettstamp(struct socket *sock, void __user *userstamp,
bool timeval, bool time32)
{
struct sock *sk = sock->sk;
struct timespec64 ts;
sock_enable_timestamp(sk, SOCK_TIMESTAMP);
ts = ktime_to_timespec64(sock_read_timestamp(sk));
if (ts.tv_sec == -1)
return -ENOENT;
if (ts.tv_sec == 0) {
ktime_t kt = ktime_get_real();
sock_write_timestamp(sk, kt);
ts = ktime_to_timespec64(kt);
}
if (timeval)
ts.tv_nsec /= 1000;
#ifdef CONFIG_COMPAT_32BIT_TIME
if (time32)
return put_old_timespec32(&ts, userstamp);
#endif
#ifdef CONFIG_SPARC64
/* beware of padding in sparc64 timeval */
if (timeval && !in_compat_syscall()) {
struct __kernel_old_timeval __user tv = {
.tv_sec = ts.tv_sec,
.tv_usec = ts.tv_nsec,
};
if (copy_to_user(userstamp, &tv, sizeof(tv)))
return -EFAULT;
return 0;
}
#endif
return put_timespec64(&ts, userstamp);
}
EXPORT_SYMBOL(sock_gettstamp);
void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
{
if (!sock_flag(sk, flag)) {
unsigned long previous_flags = sk->sk_flags;
sock_set_flag(sk, flag);
/*
* we just set one of the two flags which require net
* time stamping, but time stamping might have been on
* already because of the other one
*/
if (sock_needs_netstamp(sk) &&
!(previous_flags & SK_FLAGS_TIMESTAMP))
net_enable_timestamp();
}
}
int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
int level, int type)
{
struct sock_exterr_skb *serr;
struct sk_buff *skb;
int copied, err;
err = -EAGAIN;
skb = sock_dequeue_err_skb(sk);
if (skb == NULL)
goto out;
copied = skb->len;
if (copied > len) {
msg->msg_flags |= MSG_TRUNC;
copied = len;
}
err = skb_copy_datagram_msg(skb, 0, msg, copied);
if (err)
goto out_free_skb;
sock_recv_timestamp(msg, sk, skb);
serr = SKB_EXT_ERR(skb);
put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
msg->msg_flags |= MSG_ERRQUEUE;
err = copied;
out_free_skb:
kfree_skb(skb);
out:
return err;
}
EXPORT_SYMBOL(sock_recv_errqueue);
/*
* Get a socket option on an socket.
*
* FIX: POSIX 1003.1g is very ambiguous here. It states that
* asynchronous errors should be reported by getsockopt. We assume
* this means if you specify SO_ERROR (otherwise whats the point of it).
*/
int sock_common_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
/* IPV6_ADDRFORM can change sk->sk_prot under us. */
return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
}
EXPORT_SYMBOL(sock_common_getsockopt);
int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
int flags)
{
struct sock *sk = sock->sk;
int addr_len = 0;
int err;
err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
if (err >= 0)
msg->msg_namelen = addr_len;
return err;
}
EXPORT_SYMBOL(sock_common_recvmsg);
/*
* Set socket options on an inet socket.
*/
int sock_common_setsockopt(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
/* IPV6_ADDRFORM can change sk->sk_prot under us. */
return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
}
EXPORT_SYMBOL(sock_common_setsockopt);
void sk_common_release(struct sock *sk)
{
if (sk->sk_prot->destroy)
sk->sk_prot->destroy(sk);
/*
* Observation: when sk_common_release is called, processes have
* no access to socket. But net still has.
* Step one, detach it from networking:
*
* A. Remove from hash tables.
*/
sk->sk_prot->unhash(sk);
if (sk->sk_socket)
sk->sk_socket->sk = NULL;
/*
* In this point socket cannot receive new packets, but it is possible
* that some packets are in flight because some CPU runs receiver and
* did hash table lookup before we unhashed socket. They will achieve
* receive queue and will be purged by socket destructor.
*
* Also we still have packets pending on receive queue and probably,
* our own packets waiting in device queues. sock_destroy will drain
* receive queue, but transmitted packets will delay socket destruction
* until the last reference will be released.
*/
sock_orphan(sk);
xfrm_sk_free_policy(sk);
sock_put(sk);
}
EXPORT_SYMBOL(sk_common_release);
void sk_get_meminfo(const struct sock *sk, u32 *mem)
{
memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
}
#ifdef CONFIG_PROC_FS
static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
int sock_prot_inuse_get(struct net *net, struct proto *prot)
{
int cpu, idx = prot->inuse_idx;
int res = 0;
for_each_possible_cpu(cpu)
res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
return res >= 0 ? res : 0;
}
EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
int sock_inuse_get(struct net *net)
{
int cpu, res = 0;
for_each_possible_cpu(cpu)
res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
return res;
}
EXPORT_SYMBOL_GPL(sock_inuse_get);
static int __net_init sock_inuse_init_net(struct net *net)
{
net->core.prot_inuse = alloc_percpu(struct prot_inuse);
if (net->core.prot_inuse == NULL)
return -ENOMEM;
return 0;
}
static void __net_exit sock_inuse_exit_net(struct net *net)
{
free_percpu(net->core.prot_inuse);
}
static struct pernet_operations net_inuse_ops = {
.init = sock_inuse_init_net,
.exit = sock_inuse_exit_net,
};
static __init int net_inuse_init(void)
{
if (register_pernet_subsys(&net_inuse_ops))
panic("Cannot initialize net inuse counters");
return 0;
}
core_initcall(net_inuse_init);
static int assign_proto_idx(struct proto *prot)
{
prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
pr_err("PROTO_INUSE_NR exhausted\n");
return -ENOSPC;
}
set_bit(prot->inuse_idx, proto_inuse_idx);
return 0;
}
static void release_proto_idx(struct proto *prot)
{
if (prot->inuse_idx != PROTO_INUSE_NR - 1)
clear_bit(prot->inuse_idx, proto_inuse_idx);
}
#else
static inline int assign_proto_idx(struct proto *prot)
{
return 0;
}
static inline void release_proto_idx(struct proto *prot)
{
}
#endif
static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
{
if (!twsk_prot)
return;
kfree(twsk_prot->twsk_slab_name);
twsk_prot->twsk_slab_name = NULL;
kmem_cache_destroy(twsk_prot->twsk_slab);
twsk_prot->twsk_slab = NULL;
}
static int tw_prot_init(const struct proto *prot)
{
struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
if (!twsk_prot)
return 0;
twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
prot->name);
if (!twsk_prot->twsk_slab_name)
return -ENOMEM;
twsk_prot->twsk_slab =
kmem_cache_create(twsk_prot->twsk_slab_name,
twsk_prot->twsk_obj_size, 0,
SLAB_ACCOUNT | prot->slab_flags,
NULL);
if (!twsk_prot->twsk_slab) {
pr_crit("%s: Can't create timewait sock SLAB cache!\n",
prot->name);
return -ENOMEM;
}
return 0;
}
static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
{
if (!rsk_prot)
return;
kfree(rsk_prot->slab_name);
rsk_prot->slab_name = NULL;
kmem_cache_destroy(rsk_prot->slab);
rsk_prot->slab = NULL;
}
static int req_prot_init(const struct proto *prot)
{
struct request_sock_ops *rsk_prot = prot->rsk_prot;
if (!rsk_prot)
return 0;
rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
prot->name);
if (!rsk_prot->slab_name)
return -ENOMEM;
rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
rsk_prot->obj_size, 0,
SLAB_ACCOUNT | prot->slab_flags,
NULL);
if (!rsk_prot->slab) {
pr_crit("%s: Can't create request sock SLAB cache!\n",
prot->name);
return -ENOMEM;
}
return 0;
}
int proto_register(struct proto *prot, int alloc_slab)
{
int ret = -ENOBUFS;
if (prot->memory_allocated && !prot->sysctl_mem) {
pr_err("%s: missing sysctl_mem\n", prot->name);
return -EINVAL;
}
if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
return -EINVAL;
}
if (alloc_slab) {
prot->slab = kmem_cache_create_usercopy(prot->name,
prot->obj_size, 0,
SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
prot->slab_flags,
prot->useroffset, prot->usersize,
NULL);
if (prot->slab == NULL) {
pr_crit("%s: Can't create sock SLAB cache!\n",
prot->name);
goto out;
}
if (req_prot_init(prot))
goto out_free_request_sock_slab;
if (tw_prot_init(prot))
goto out_free_timewait_sock_slab;
}
mutex_lock(&proto_list_mutex);
ret = assign_proto_idx(prot);
if (ret) {
mutex_unlock(&proto_list_mutex);
goto out_free_timewait_sock_slab;
}
list_add(&prot->node, &proto_list);
mutex_unlock(&proto_list_mutex);
return ret;
out_free_timewait_sock_slab:
if (alloc_slab)
tw_prot_cleanup(prot->twsk_prot);
out_free_request_sock_slab:
if (alloc_slab) {
req_prot_cleanup(prot->rsk_prot);
kmem_cache_destroy(prot->slab);
prot->slab = NULL;
}
out:
return ret;
}
EXPORT_SYMBOL(proto_register);
void proto_unregister(struct proto *prot)
{
mutex_lock(&proto_list_mutex);
release_proto_idx(prot);
list_del(&prot->node);
mutex_unlock(&proto_list_mutex);
kmem_cache_destroy(prot->slab);
prot->slab = NULL;
req_prot_cleanup(prot->rsk_prot);
tw_prot_cleanup(prot->twsk_prot);
}
EXPORT_SYMBOL(proto_unregister);
int sock_load_diag_module(int family, int protocol)
{
if (!protocol) {
if (!sock_is_registered(family))
return -ENOENT;
return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
NETLINK_SOCK_DIAG, family);
}
#ifdef CONFIG_INET
if (family == AF_INET &&
protocol != IPPROTO_RAW &&
protocol < MAX_INET_PROTOS &&
!rcu_access_pointer(inet_protos[protocol]))
return -ENOENT;
#endif
return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
NETLINK_SOCK_DIAG, family, protocol);
}
EXPORT_SYMBOL(sock_load_diag_module);
#ifdef CONFIG_PROC_FS
static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(proto_list_mutex)
{
mutex_lock(&proto_list_mutex);
return seq_list_start_head(&proto_list, *pos);
}
static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
return seq_list_next(v, &proto_list, pos);
}
static void proto_seq_stop(struct seq_file *seq, void *v)
__releases(proto_list_mutex)
{
mutex_unlock(&proto_list_mutex);
}
static char proto_method_implemented(const void *method)
{
return method == NULL ? 'n' : 'y';
}
static long sock_prot_memory_allocated(struct proto *proto)
{
return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
}
static const char *sock_prot_memory_pressure(struct proto *proto)
{
return proto->memory_pressure != NULL ?
proto_memory_pressure(proto) ? "yes" : "no" : "NI";
}
static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
{
seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
proto->name,
proto->obj_size,
sock_prot_inuse_get(seq_file_net(seq), proto),
sock_prot_memory_allocated(proto),
sock_prot_memory_pressure(proto),
proto->max_header,
proto->slab == NULL ? "no" : "yes",
module_name(proto->owner),
proto_method_implemented(proto->close),
proto_method_implemented(proto->connect),
proto_method_implemented(proto->disconnect),
proto_method_implemented(proto->accept),
proto_method_implemented(proto->ioctl),
proto_method_implemented(proto->init),
proto_method_implemented(proto->destroy),
proto_method_implemented(proto->shutdown),
proto_method_implemented(proto->setsockopt),
proto_method_implemented(proto->getsockopt),
proto_method_implemented(proto->sendmsg),
proto_method_implemented(proto->recvmsg),
proto_method_implemented(proto->bind),
proto_method_implemented(proto->backlog_rcv),
proto_method_implemented(proto->hash),
proto_method_implemented(proto->unhash),
proto_method_implemented(proto->get_port),
proto_method_implemented(proto->enter_memory_pressure));
}
static int proto_seq_show(struct seq_file *seq, void *v)
{
if (v == &proto_list)
seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
"protocol",
"size",
"sockets",
"memory",
"press",
"maxhdr",
"slab",
"module",
"cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
else
proto_seq_printf(seq, list_entry(v, struct proto, node));
return 0;
}
static const struct seq_operations proto_seq_ops = {
.start = proto_seq_start,
.next = proto_seq_next,
.stop = proto_seq_stop,
.show = proto_seq_show,
};
static __net_init int proto_init_net(struct net *net)
{
if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
sizeof(struct seq_net_private)))
return -ENOMEM;
return 0;
}
static __net_exit void proto_exit_net(struct net *net)
{
remove_proc_entry("protocols", net->proc_net);
}
static __net_initdata struct pernet_operations proto_net_ops = {
.init = proto_init_net,
.exit = proto_exit_net,
};
static int __init proto_init(void)
{
return register_pernet_subsys(&proto_net_ops);
}
subsys_initcall(proto_init);
#endif /* PROC_FS */
#ifdef CONFIG_NET_RX_BUSY_POLL
bool sk_busy_loop_end(void *p, unsigned long start_time)
{
struct sock *sk = p;
if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
return true;
if (sk_is_udp(sk) &&
!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
return true;
return sk_busy_loop_timeout(sk, start_time);
}
EXPORT_SYMBOL(sk_busy_loop_end);
#endif /* CONFIG_NET_RX_BUSY_POLL */
int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
{
if (!sk->sk_prot->bind_add)
return -EOPNOTSUPP;
return sk->sk_prot->bind_add(sk, addr, addr_len);
}
EXPORT_SYMBOL(sock_bind_add);
/* Copy 'size' bytes from userspace and return `size` back to userspace */
int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
void __user *arg, void *karg, size_t size)
{
int ret;
if (copy_from_user(karg, arg, size))
return -EFAULT;
ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
if (ret)
return ret;
if (copy_to_user(arg, karg, size))
return -EFAULT;
return 0;
}
EXPORT_SYMBOL(sock_ioctl_inout);
/* This is the most common ioctl prep function, where the result (4 bytes) is
* copied back to userspace if the ioctl() returns successfully. No input is
* copied from userspace as input argument.
*/
static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
{
int ret, karg = 0;
ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
if (ret)
return ret;
return put_user(karg, (int __user *)arg);
}
/* A wrapper around sock ioctls, which copies the data from userspace
* (depending on the protocol/ioctl), and copies back the result to userspace.
* The main motivation for this function is to pass kernel memory to the
* protocol ioctl callbacks, instead of userspace memory.
*/
int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
{
int rc = 1;
if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
rc = ipmr_sk_ioctl(sk, cmd, arg);
else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
rc = ip6mr_sk_ioctl(sk, cmd, arg);
else if (sk_is_phonet(sk))
rc = phonet_sk_ioctl(sk, cmd, arg);
/* If ioctl was processed, returns its value */
if (rc <= 0)
return rc;
/* Otherwise call the default handler */
return sock_ioctl_out(sk, cmd, arg);
}
EXPORT_SYMBOL(sk_ioctl);
static int __init sock_struct_check(void)
{
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
return 0;
}
core_initcall(sock_struct_check);