linux/drivers/ata/libata-acpi.c
Tejun Heo fafbae87db libata-acpi: implement ata_acpi_associate()
* Add acpi_handle to ata_host and ata_port.  Rename
  ata_device->obj_handle to ->acpi_handle and move it above such that
  it doesn't get cleared on reconfiguration.

* Replace ACPI node association which ata_acpi_associate() which is
  called once during host initialization.  Unlike the previous
  implementation, ata_acpi_associate() uses ATA_FLAG_ACPI_SATA to
  choose between IDE or SATA ACPI hierarchy and uses simple child look
  up instead of recursive walk to match the nodes.  This is way safer
  and simpler.  Please read the following message for more info.

  http://article.gmane.org/gmane.linux.ide/17554

Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-07-09 12:17:31 -04:00

436 lines
11 KiB
C

/*
* libata-acpi.c
* Provides ACPI support for PATA/SATA.
*
* Copyright (C) 2006 Intel Corp.
* Copyright (C) 2006 Randy Dunlap
*/
#include <linux/ata.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/acpi.h>
#include <linux/libata.h>
#include <linux/pci.h>
#include "libata.h"
#include <acpi/acpi_bus.h>
#include <acpi/acnames.h>
#include <acpi/acnamesp.h>
#include <acpi/acparser.h>
#include <acpi/acexcep.h>
#include <acpi/acmacros.h>
#include <acpi/actypes.h>
#define NO_PORT_MULT 0xffff
#define SATA_ADR(root,pmp) (((root) << 16) | (pmp))
#define REGS_PER_GTF 7
struct taskfile_array {
u8 tfa[REGS_PER_GTF]; /* regs. 0x1f1 - 0x1f7 */
};
/*
* Helper - belongs in the PCI layer somewhere eventually
*/
static int is_pci_dev(struct device *dev)
{
return (dev->bus == &pci_bus_type);
}
static void ata_acpi_associate_sata_port(struct ata_port *ap)
{
acpi_integer adr = SATA_ADR(ap->port_no, NO_PORT_MULT);
ap->device->acpi_handle = acpi_get_child(ap->host->acpi_handle, adr);
}
static void ata_acpi_associate_ide_port(struct ata_port *ap)
{
int max_devices, i;
ap->acpi_handle = acpi_get_child(ap->host->acpi_handle, ap->port_no);
if (!ap->acpi_handle)
return;
max_devices = 1;
if (ap->flags & ATA_FLAG_SLAVE_POSS)
max_devices++;
for (i = 0; i < max_devices; i++) {
struct ata_device *dev = &ap->device[i];
dev->acpi_handle = acpi_get_child(ap->acpi_handle, i);
}
}
/**
* ata_acpi_associate - associate ATA host with ACPI objects
* @host: target ATA host
*
* Look up ACPI objects associated with @host and initialize
* acpi_handle fields of @host, its ports and devices accordingly.
*
* LOCKING:
* EH context.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
void ata_acpi_associate(struct ata_host *host)
{
int i;
if (!is_pci_dev(host->dev) || libata_noacpi)
return;
host->acpi_handle = DEVICE_ACPI_HANDLE(host->dev);
if (!host->acpi_handle)
return;
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (host->ports[0]->flags & ATA_FLAG_ACPI_SATA)
ata_acpi_associate_sata_port(ap);
else
ata_acpi_associate_ide_port(ap);
}
}
/**
* do_drive_get_GTF - get the drive bootup default taskfile settings
* @dev: target ATA device
* @gtf_length: number of bytes of _GTF data returned at @gtf_address
* @gtf_address: buffer containing _GTF taskfile arrays
*
* This applies to both PATA and SATA drives.
*
* The _GTF method has no input parameters.
* It returns a variable number of register set values (registers
* hex 1F1..1F7, taskfiles).
* The <variable number> is not known in advance, so have ACPI-CA
* allocate the buffer as needed and return it, then free it later.
*
* The returned @gtf_length and @gtf_address are only valid if the
* function return value is 0.
*/
static int do_drive_get_GTF(struct ata_device *dev, unsigned int *gtf_length,
unsigned long *gtf_address, unsigned long *obj_loc)
{
struct ata_port *ap = dev->ap;
acpi_status status;
struct acpi_buffer output;
union acpi_object *out_obj;
int err = -ENODEV;
*gtf_length = 0;
*gtf_address = 0UL;
*obj_loc = 0UL;
if (!dev->acpi_handle)
return 0;
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER: port#: %d\n",
__FUNCTION__, ap->port_no);
if (!ata_dev_enabled(dev) || (ap->flags & ATA_FLAG_DISABLED)) {
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: ERR: "
"ata_dev_present: %d, PORT_DISABLED: %lu\n",
__FUNCTION__, ata_dev_enabled(dev),
ap->flags & ATA_FLAG_DISABLED);
goto out;
}
/* Setting up output buffer */
output.length = ACPI_ALLOCATE_BUFFER;
output.pointer = NULL; /* ACPI-CA sets this; save/free it later */
/* _GTF has no input parameters */
err = -EIO;
status = acpi_evaluate_object(dev->acpi_handle, "_GTF",
NULL, &output);
if (ACPI_FAILURE(status)) {
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG,
"%s: Run _GTF error: status = 0x%x\n",
__FUNCTION__, status);
goto out;
}
if (!output.length || !output.pointer) {
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: Run _GTF: "
"length or ptr is NULL (0x%llx, 0x%p)\n",
__FUNCTION__,
(unsigned long long)output.length,
output.pointer);
kfree(output.pointer);
goto out;
}
out_obj = output.pointer;
if (out_obj->type != ACPI_TYPE_BUFFER) {
kfree(output.pointer);
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: Run _GTF: "
"error: expected object type of "
" ACPI_TYPE_BUFFER, got 0x%x\n",
__FUNCTION__, out_obj->type);
err = -ENOENT;
goto out;
}
if (!out_obj->buffer.length || !out_obj->buffer.pointer ||
out_obj->buffer.length % REGS_PER_GTF) {
if (ata_msg_drv(ap))
ata_dev_printk(dev, KERN_ERR,
"%s: unexpected GTF length (%d) or addr (0x%p)\n",
__FUNCTION__, out_obj->buffer.length,
out_obj->buffer.pointer);
err = -ENOENT;
goto out;
}
*gtf_length = out_obj->buffer.length;
*gtf_address = (unsigned long)out_obj->buffer.pointer;
*obj_loc = (unsigned long)out_obj;
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: returning "
"gtf_length=%d, gtf_address=0x%lx, obj_loc=0x%lx\n",
__FUNCTION__, *gtf_length, *gtf_address, *obj_loc);
err = 0;
out:
return err;
}
/**
* taskfile_load_raw - send taskfile registers to host controller
* @dev: target ATA device
* @gtf: raw ATA taskfile register set (0x1f1 - 0x1f7)
*
* Outputs ATA taskfile to standard ATA host controller using MMIO
* or PIO as indicated by the ATA_FLAG_MMIO flag.
* Writes the control, feature, nsect, lbal, lbam, and lbah registers.
* Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
* hob_lbal, hob_lbam, and hob_lbah.
*
* This function waits for idle (!BUSY and !DRQ) after writing
* registers. If the control register has a new value, this
* function also waits for idle after writing control and before
* writing the remaining registers.
*
* LOCKING: TBD:
* Inherited from caller.
*/
static void taskfile_load_raw(struct ata_device *dev,
const struct taskfile_array *gtf)
{
struct ata_port *ap = dev->ap;
struct ata_taskfile tf;
unsigned int err;
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: (0x1f1-1f7): hex: "
"%02x %02x %02x %02x %02x %02x %02x\n",
__FUNCTION__,
gtf->tfa[0], gtf->tfa[1], gtf->tfa[2],
gtf->tfa[3], gtf->tfa[4], gtf->tfa[5], gtf->tfa[6]);
if ((gtf->tfa[0] == 0) && (gtf->tfa[1] == 0) && (gtf->tfa[2] == 0)
&& (gtf->tfa[3] == 0) && (gtf->tfa[4] == 0) && (gtf->tfa[5] == 0)
&& (gtf->tfa[6] == 0))
return;
ata_tf_init(dev, &tf);
/* convert gtf to tf */
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; /* TBD */
tf.protocol = ATA_PROT_NODATA;
tf.feature = gtf->tfa[0]; /* 0x1f1 */
tf.nsect = gtf->tfa[1]; /* 0x1f2 */
tf.lbal = gtf->tfa[2]; /* 0x1f3 */
tf.lbam = gtf->tfa[3]; /* 0x1f4 */
tf.lbah = gtf->tfa[4]; /* 0x1f5 */
tf.device = gtf->tfa[5]; /* 0x1f6 */
tf.command = gtf->tfa[6]; /* 0x1f7 */
err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
if (err && ata_msg_probe(ap))
ata_dev_printk(dev, KERN_ERR,
"%s: ata_exec_internal failed: %u\n",
__FUNCTION__, err);
}
/**
* do_drive_set_taskfiles - write the drive taskfile settings from _GTF
* @dev: target ATA device
* @gtf_length: total number of bytes of _GTF taskfiles
* @gtf_address: location of _GTF taskfile arrays
*
* This applies to both PATA and SATA drives.
*
* Write {gtf_address, length gtf_length} in groups of
* REGS_PER_GTF bytes.
*/
static int do_drive_set_taskfiles(struct ata_device *dev,
unsigned int gtf_length,
unsigned long gtf_address)
{
struct ata_port *ap = dev->ap;
int err = -ENODEV;
int gtf_count = gtf_length / REGS_PER_GTF;
int ix;
struct taskfile_array *gtf;
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER: port#: %d\n",
__FUNCTION__, ap->port_no);
if (!(ap->flags & ATA_FLAG_ACPI_SATA))
return 0;
if (!ata_dev_enabled(dev) || (ap->flags & ATA_FLAG_DISABLED))
goto out;
if (!gtf_count) /* shouldn't be here */
goto out;
if (gtf_length % REGS_PER_GTF) {
if (ata_msg_drv(ap))
ata_dev_printk(dev, KERN_ERR,
"%s: unexpected GTF length (%d)\n",
__FUNCTION__, gtf_length);
goto out;
}
for (ix = 0; ix < gtf_count; ix++) {
gtf = (struct taskfile_array *)
(gtf_address + ix * REGS_PER_GTF);
/* send all TaskFile registers (0x1f1-0x1f7) *in*that*order* */
taskfile_load_raw(dev, gtf);
}
err = 0;
out:
return err;
}
/**
* ata_acpi_exec_tfs - get then write drive taskfile settings
* @ap: the ata_port for the drive
*
* This applies to both PATA and SATA drives.
*/
int ata_acpi_exec_tfs(struct ata_port *ap)
{
int ix;
int ret = 0;
unsigned int gtf_length;
unsigned long gtf_address;
unsigned long obj_loc;
/*
* TBD - implement PATA support. For now,
* we should not run GTF on PATA devices since some
* PATA require execution of GTM/STM before GTF.
*/
if (!(ap->flags & ATA_FLAG_ACPI_SATA))
return 0;
for (ix = 0; ix < ATA_MAX_DEVICES; ix++) {
struct ata_device *dev = &ap->device[ix];
if (!ata_dev_enabled(dev))
continue;
ret = do_drive_get_GTF(dev, &gtf_length, &gtf_address,
&obj_loc);
if (ret < 0) {
if (ata_msg_probe(ap))
ata_port_printk(ap, KERN_DEBUG,
"%s: get_GTF error (%d)\n",
__FUNCTION__, ret);
break;
}
ret = do_drive_set_taskfiles(dev, gtf_length, gtf_address);
kfree((void *)obj_loc);
if (ret < 0) {
if (ata_msg_probe(ap))
ata_port_printk(ap, KERN_DEBUG,
"%s: set_taskfiles error (%d)\n",
__FUNCTION__, ret);
break;
}
}
return ret;
}
/**
* ata_acpi_push_id - send Identify data to drive
* @dev: target ATA device
*
* _SDD ACPI object: for SATA mode only
* Must be after Identify (Packet) Device -- uses its data
* ATM this function never returns a failure. It is an optional
* method and if it fails for whatever reason, we should still
* just keep going.
*/
int ata_acpi_push_id(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
int err;
acpi_status status;
struct acpi_object_list input;
union acpi_object in_params[1];
if (!dev->acpi_handle)
return 0;
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: ix = %d, port#: %d\n",
__FUNCTION__, dev->devno, ap->port_no);
/* Don't continue if not a SATA device. */
if (!(ap->flags & ATA_FLAG_ACPI_SATA)) {
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG,
"%s: Not a SATA device\n", __FUNCTION__);
goto out;
}
/* Give the drive Identify data to the drive via the _SDD method */
/* _SDD: set up input parameters */
input.count = 1;
input.pointer = in_params;
in_params[0].type = ACPI_TYPE_BUFFER;
in_params[0].buffer.length = sizeof(dev->id[0]) * ATA_ID_WORDS;
in_params[0].buffer.pointer = (u8 *)dev->id;
/* Output buffer: _SDD has no output */
/* It's OK for _SDD to be missing too. */
swap_buf_le16(dev->id, ATA_ID_WORDS);
status = acpi_evaluate_object(dev->acpi_handle, "_SDD", &input, NULL);
swap_buf_le16(dev->id, ATA_ID_WORDS);
err = ACPI_FAILURE(status) ? -EIO : 0;
if (err < 0) {
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG,
"%s _SDD error: status = 0x%x\n",
__FUNCTION__, status);
}
/* always return success */
out:
return 0;
}