linux/fs/inode.c
Kairui Song fb56fdf8b9 mm/list_lru: split the lock to per-cgroup scope
Currently, every list_lru has a per-node lock that protects adding,
deletion, isolation, and reparenting of all list_lru_one instances
belonging to this list_lru on this node.  This lock contention is heavy
when multiple cgroups modify the same list_lru.

This lock can be split into per-cgroup scope to reduce contention.

To achieve this, we need a stable list_lru_one for every cgroup.  This
commit adds a lock to each list_lru_one and introduced a helper function
lock_list_lru_of_memcg, making it possible to pin the list_lru of a memcg.
Then reworked the reparenting process.

Reparenting will switch the list_lru_one instances one by one.  By locking
each instance and marking it dead using the nr_items counter, reparenting
ensures that all items in the corresponding cgroup (on-list or not,
because items have a stable cgroup, see below) will see the list_lru_one
switch synchronously.

Objcg reparent is also moved after list_lru reparent so items will have a
stable mem cgroup until all list_lru_one instances are drained.

The only caller that doesn't work the *_obj interfaces are direct calls to
list_lru_{add,del}.  But it's only used by zswap and that's also based on
objcg, so it's fine.

This also changes the bahaviour of the isolation function when LRU_RETRY
or LRU_REMOVED_RETRY is returned, because now releasing the lock could
unblock reparenting and free the list_lru_one, isolation function will
have to return withoug re-lock the lru.

prepare() {
    mkdir /tmp/test-fs
    modprobe brd rd_nr=1 rd_size=33554432
    mkfs.xfs -f /dev/ram0
    mount -t xfs /dev/ram0 /tmp/test-fs
    for i in $(seq 1 512); do
        mkdir "/tmp/test-fs/$i"
        for j in $(seq 1 10240); do
            echo TEST-CONTENT > "/tmp/test-fs/$i/$j"
        done &
    done; wait
}

do_test() {
    read_worker() {
        sleep 1
        tar -cv "$1" &>/dev/null
    }
    read_in_all() {
        cd "/tmp/test-fs" && ls
        for i in $(seq 1 512); do
            (exec sh -c 'echo "$PPID"') > "/sys/fs/cgroup/benchmark/$i/cgroup.procs"
            read_worker "$i" &
        done; wait
    }
    for i in $(seq 1 512); do
        mkdir -p "/sys/fs/cgroup/benchmark/$i"
    done
    echo +memory > /sys/fs/cgroup/benchmark/cgroup.subtree_control
    echo 512M > /sys/fs/cgroup/benchmark/memory.max
    echo 3 > /proc/sys/vm/drop_caches
    time read_in_all
}

Above script simulates compression of small files in multiple cgroups
with memory pressure. Run prepare() then do_test for 6 times:

Before:
real      0m7.762s user      0m11.340s sys       3m11.224s
real      0m8.123s user      0m11.548s sys       3m2.549s
real      0m7.736s user      0m11.515s sys       3m11.171s
real      0m8.539s user      0m11.508s sys       3m7.618s
real      0m7.928s user      0m11.349s sys       3m13.063s
real      0m8.105s user      0m11.128s sys       3m14.313s

After this commit (about ~15% faster):
real      0m6.953s user      0m11.327s sys       2m42.912s
real      0m7.453s user      0m11.343s sys       2m51.942s
real      0m6.916s user      0m11.269s sys       2m43.957s
real      0m6.894s user      0m11.528s sys       2m45.346s
real      0m6.911s user      0m11.095s sys       2m43.168s
real      0m6.773s user      0m11.518s sys       2m40.774s

Link: https://lkml.kernel.org/r/20241104175257.60853-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-11 17:22:26 -08:00

2717 lines
74 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* (C) 1997 Linus Torvalds
* (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
*/
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/filelock.h>
#include <linux/mm.h>
#include <linux/backing-dev.h>
#include <linux/hash.h>
#include <linux/swap.h>
#include <linux/security.h>
#include <linux/cdev.h>
#include <linux/memblock.h>
#include <linux/fsnotify.h>
#include <linux/mount.h>
#include <linux/posix_acl.h>
#include <linux/buffer_head.h> /* for inode_has_buffers */
#include <linux/ratelimit.h>
#include <linux/list_lru.h>
#include <linux/iversion.h>
#include <linux/rw_hint.h>
#include <trace/events/writeback.h>
#include "internal.h"
/*
* Inode locking rules:
*
* inode->i_lock protects:
* inode->i_state, inode->i_hash, __iget(), inode->i_io_list
* Inode LRU list locks protect:
* inode->i_sb->s_inode_lru, inode->i_lru
* inode->i_sb->s_inode_list_lock protects:
* inode->i_sb->s_inodes, inode->i_sb_list
* bdi->wb.list_lock protects:
* bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
* inode_hash_lock protects:
* inode_hashtable, inode->i_hash
*
* Lock ordering:
*
* inode->i_sb->s_inode_list_lock
* inode->i_lock
* Inode LRU list locks
*
* bdi->wb.list_lock
* inode->i_lock
*
* inode_hash_lock
* inode->i_sb->s_inode_list_lock
* inode->i_lock
*
* iunique_lock
* inode_hash_lock
*/
static unsigned int i_hash_mask __ro_after_init;
static unsigned int i_hash_shift __ro_after_init;
static struct hlist_head *inode_hashtable __ro_after_init;
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
/*
* Empty aops. Can be used for the cases where the user does not
* define any of the address_space operations.
*/
const struct address_space_operations empty_aops = {
};
EXPORT_SYMBOL(empty_aops);
static DEFINE_PER_CPU(unsigned long, nr_inodes);
static DEFINE_PER_CPU(unsigned long, nr_unused);
static struct kmem_cache *inode_cachep __ro_after_init;
static long get_nr_inodes(void)
{
int i;
long sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_inodes, i);
return sum < 0 ? 0 : sum;
}
static inline long get_nr_inodes_unused(void)
{
int i;
long sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_unused, i);
return sum < 0 ? 0 : sum;
}
long get_nr_dirty_inodes(void)
{
/* not actually dirty inodes, but a wild approximation */
long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
return nr_dirty > 0 ? nr_dirty : 0;
}
/*
* Handle nr_inode sysctl
*/
#ifdef CONFIG_SYSCTL
/*
* Statistics gathering..
*/
static struct inodes_stat_t inodes_stat;
static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
inodes_stat.nr_inodes = get_nr_inodes();
inodes_stat.nr_unused = get_nr_inodes_unused();
return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
}
static struct ctl_table inodes_sysctls[] = {
{
.procname = "inode-nr",
.data = &inodes_stat,
.maxlen = 2*sizeof(long),
.mode = 0444,
.proc_handler = proc_nr_inodes,
},
{
.procname = "inode-state",
.data = &inodes_stat,
.maxlen = 7*sizeof(long),
.mode = 0444,
.proc_handler = proc_nr_inodes,
},
};
static int __init init_fs_inode_sysctls(void)
{
register_sysctl_init("fs", inodes_sysctls);
return 0;
}
early_initcall(init_fs_inode_sysctls);
#endif
static int no_open(struct inode *inode, struct file *file)
{
return -ENXIO;
}
/**
* inode_init_always_gfp - perform inode structure initialisation
* @sb: superblock inode belongs to
* @inode: inode to initialise
* @gfp: allocation flags
*
* These are initializations that need to be done on every inode
* allocation as the fields are not initialised by slab allocation.
* If there are additional allocations required @gfp is used.
*/
int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
{
static const struct inode_operations empty_iops;
static const struct file_operations no_open_fops = {.open = no_open};
struct address_space *const mapping = &inode->i_data;
inode->i_sb = sb;
inode->i_blkbits = sb->s_blocksize_bits;
inode->i_flags = 0;
inode->i_state = 0;
atomic64_set(&inode->i_sequence, 0);
atomic_set(&inode->i_count, 1);
inode->i_op = &empty_iops;
inode->i_fop = &no_open_fops;
inode->i_ino = 0;
inode->__i_nlink = 1;
inode->i_opflags = 0;
if (sb->s_xattr)
inode->i_opflags |= IOP_XATTR;
i_uid_write(inode, 0);
i_gid_write(inode, 0);
atomic_set(&inode->i_writecount, 0);
inode->i_size = 0;
inode->i_write_hint = WRITE_LIFE_NOT_SET;
inode->i_blocks = 0;
inode->i_bytes = 0;
inode->i_generation = 0;
inode->i_pipe = NULL;
inode->i_cdev = NULL;
inode->i_link = NULL;
inode->i_dir_seq = 0;
inode->i_rdev = 0;
inode->dirtied_when = 0;
#ifdef CONFIG_CGROUP_WRITEBACK
inode->i_wb_frn_winner = 0;
inode->i_wb_frn_avg_time = 0;
inode->i_wb_frn_history = 0;
#endif
spin_lock_init(&inode->i_lock);
lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
init_rwsem(&inode->i_rwsem);
lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
atomic_set(&inode->i_dio_count, 0);
mapping->a_ops = &empty_aops;
mapping->host = inode;
mapping->flags = 0;
mapping->wb_err = 0;
atomic_set(&mapping->i_mmap_writable, 0);
#ifdef CONFIG_READ_ONLY_THP_FOR_FS
atomic_set(&mapping->nr_thps, 0);
#endif
mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
mapping->i_private_data = NULL;
mapping->writeback_index = 0;
init_rwsem(&mapping->invalidate_lock);
lockdep_set_class_and_name(&mapping->invalidate_lock,
&sb->s_type->invalidate_lock_key,
"mapping.invalidate_lock");
if (sb->s_iflags & SB_I_STABLE_WRITES)
mapping_set_stable_writes(mapping);
inode->i_private = NULL;
inode->i_mapping = mapping;
INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
#ifdef CONFIG_FS_POSIX_ACL
inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
#endif
#ifdef CONFIG_FSNOTIFY
inode->i_fsnotify_mask = 0;
#endif
inode->i_flctx = NULL;
if (unlikely(security_inode_alloc(inode, gfp)))
return -ENOMEM;
this_cpu_inc(nr_inodes);
return 0;
}
EXPORT_SYMBOL(inode_init_always_gfp);
void free_inode_nonrcu(struct inode *inode)
{
kmem_cache_free(inode_cachep, inode);
}
EXPORT_SYMBOL(free_inode_nonrcu);
static void i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
if (inode->free_inode)
inode->free_inode(inode);
else
free_inode_nonrcu(inode);
}
static struct inode *alloc_inode(struct super_block *sb)
{
const struct super_operations *ops = sb->s_op;
struct inode *inode;
if (ops->alloc_inode)
inode = ops->alloc_inode(sb);
else
inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
if (!inode)
return NULL;
if (unlikely(inode_init_always(sb, inode))) {
if (ops->destroy_inode) {
ops->destroy_inode(inode);
if (!ops->free_inode)
return NULL;
}
inode->free_inode = ops->free_inode;
i_callback(&inode->i_rcu);
return NULL;
}
return inode;
}
void __destroy_inode(struct inode *inode)
{
BUG_ON(inode_has_buffers(inode));
inode_detach_wb(inode);
security_inode_free(inode);
fsnotify_inode_delete(inode);
locks_free_lock_context(inode);
if (!inode->i_nlink) {
WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
atomic_long_dec(&inode->i_sb->s_remove_count);
}
#ifdef CONFIG_FS_POSIX_ACL
if (inode->i_acl && !is_uncached_acl(inode->i_acl))
posix_acl_release(inode->i_acl);
if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
posix_acl_release(inode->i_default_acl);
#endif
this_cpu_dec(nr_inodes);
}
EXPORT_SYMBOL(__destroy_inode);
static void destroy_inode(struct inode *inode)
{
const struct super_operations *ops = inode->i_sb->s_op;
BUG_ON(!list_empty(&inode->i_lru));
__destroy_inode(inode);
if (ops->destroy_inode) {
ops->destroy_inode(inode);
if (!ops->free_inode)
return;
}
inode->free_inode = ops->free_inode;
call_rcu(&inode->i_rcu, i_callback);
}
/**
* drop_nlink - directly drop an inode's link count
* @inode: inode
*
* This is a low-level filesystem helper to replace any
* direct filesystem manipulation of i_nlink. In cases
* where we are attempting to track writes to the
* filesystem, a decrement to zero means an imminent
* write when the file is truncated and actually unlinked
* on the filesystem.
*/
void drop_nlink(struct inode *inode)
{
WARN_ON(inode->i_nlink == 0);
inode->__i_nlink--;
if (!inode->i_nlink)
atomic_long_inc(&inode->i_sb->s_remove_count);
}
EXPORT_SYMBOL(drop_nlink);
/**
* clear_nlink - directly zero an inode's link count
* @inode: inode
*
* This is a low-level filesystem helper to replace any
* direct filesystem manipulation of i_nlink. See
* drop_nlink() for why we care about i_nlink hitting zero.
*/
void clear_nlink(struct inode *inode)
{
if (inode->i_nlink) {
inode->__i_nlink = 0;
atomic_long_inc(&inode->i_sb->s_remove_count);
}
}
EXPORT_SYMBOL(clear_nlink);
/**
* set_nlink - directly set an inode's link count
* @inode: inode
* @nlink: new nlink (should be non-zero)
*
* This is a low-level filesystem helper to replace any
* direct filesystem manipulation of i_nlink.
*/
void set_nlink(struct inode *inode, unsigned int nlink)
{
if (!nlink) {
clear_nlink(inode);
} else {
/* Yes, some filesystems do change nlink from zero to one */
if (inode->i_nlink == 0)
atomic_long_dec(&inode->i_sb->s_remove_count);
inode->__i_nlink = nlink;
}
}
EXPORT_SYMBOL(set_nlink);
/**
* inc_nlink - directly increment an inode's link count
* @inode: inode
*
* This is a low-level filesystem helper to replace any
* direct filesystem manipulation of i_nlink. Currently,
* it is only here for parity with dec_nlink().
*/
void inc_nlink(struct inode *inode)
{
if (unlikely(inode->i_nlink == 0)) {
WARN_ON(!(inode->i_state & I_LINKABLE));
atomic_long_dec(&inode->i_sb->s_remove_count);
}
inode->__i_nlink++;
}
EXPORT_SYMBOL(inc_nlink);
static void __address_space_init_once(struct address_space *mapping)
{
xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
init_rwsem(&mapping->i_mmap_rwsem);
INIT_LIST_HEAD(&mapping->i_private_list);
spin_lock_init(&mapping->i_private_lock);
mapping->i_mmap = RB_ROOT_CACHED;
}
void address_space_init_once(struct address_space *mapping)
{
memset(mapping, 0, sizeof(*mapping));
__address_space_init_once(mapping);
}
EXPORT_SYMBOL(address_space_init_once);
/*
* These are initializations that only need to be done
* once, because the fields are idempotent across use
* of the inode, so let the slab aware of that.
*/
void inode_init_once(struct inode *inode)
{
memset(inode, 0, sizeof(*inode));
INIT_HLIST_NODE(&inode->i_hash);
INIT_LIST_HEAD(&inode->i_devices);
INIT_LIST_HEAD(&inode->i_io_list);
INIT_LIST_HEAD(&inode->i_wb_list);
INIT_LIST_HEAD(&inode->i_lru);
INIT_LIST_HEAD(&inode->i_sb_list);
__address_space_init_once(&inode->i_data);
i_size_ordered_init(inode);
}
EXPORT_SYMBOL(inode_init_once);
static void init_once(void *foo)
{
struct inode *inode = (struct inode *) foo;
inode_init_once(inode);
}
/*
* get additional reference to inode; caller must already hold one.
*/
void ihold(struct inode *inode)
{
WARN_ON(atomic_inc_return(&inode->i_count) < 2);
}
EXPORT_SYMBOL(ihold);
static void __inode_add_lru(struct inode *inode, bool rotate)
{
if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
return;
if (atomic_read(&inode->i_count))
return;
if (!(inode->i_sb->s_flags & SB_ACTIVE))
return;
if (!mapping_shrinkable(&inode->i_data))
return;
if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
this_cpu_inc(nr_unused);
else if (rotate)
inode->i_state |= I_REFERENCED;
}
struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
struct inode *inode, u32 bit)
{
void *bit_address;
bit_address = inode_state_wait_address(inode, bit);
init_wait_var_entry(wqe, bit_address, 0);
return __var_waitqueue(bit_address);
}
EXPORT_SYMBOL(inode_bit_waitqueue);
/*
* Add inode to LRU if needed (inode is unused and clean).
*
* Needs inode->i_lock held.
*/
void inode_add_lru(struct inode *inode)
{
__inode_add_lru(inode, false);
}
static void inode_lru_list_del(struct inode *inode)
{
if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
this_cpu_dec(nr_unused);
}
static void inode_pin_lru_isolating(struct inode *inode)
{
lockdep_assert_held(&inode->i_lock);
WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
inode->i_state |= I_LRU_ISOLATING;
}
static void inode_unpin_lru_isolating(struct inode *inode)
{
spin_lock(&inode->i_lock);
WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
inode->i_state &= ~I_LRU_ISOLATING;
/* Called with inode->i_lock which ensures memory ordering. */
inode_wake_up_bit(inode, __I_LRU_ISOLATING);
spin_unlock(&inode->i_lock);
}
static void inode_wait_for_lru_isolating(struct inode *inode)
{
struct wait_bit_queue_entry wqe;
struct wait_queue_head *wq_head;
lockdep_assert_held(&inode->i_lock);
if (!(inode->i_state & I_LRU_ISOLATING))
return;
wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
for (;;) {
prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
/*
* Checking I_LRU_ISOLATING with inode->i_lock guarantees
* memory ordering.
*/
if (!(inode->i_state & I_LRU_ISOLATING))
break;
spin_unlock(&inode->i_lock);
schedule();
spin_lock(&inode->i_lock);
}
finish_wait(wq_head, &wqe.wq_entry);
WARN_ON(inode->i_state & I_LRU_ISOLATING);
}
/**
* inode_sb_list_add - add inode to the superblock list of inodes
* @inode: inode to add
*/
void inode_sb_list_add(struct inode *inode)
{
spin_lock(&inode->i_sb->s_inode_list_lock);
list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
spin_unlock(&inode->i_sb->s_inode_list_lock);
}
EXPORT_SYMBOL_GPL(inode_sb_list_add);
static inline void inode_sb_list_del(struct inode *inode)
{
if (!list_empty(&inode->i_sb_list)) {
spin_lock(&inode->i_sb->s_inode_list_lock);
list_del_init(&inode->i_sb_list);
spin_unlock(&inode->i_sb->s_inode_list_lock);
}
}
static unsigned long hash(struct super_block *sb, unsigned long hashval)
{
unsigned long tmp;
tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
L1_CACHE_BYTES;
tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
return tmp & i_hash_mask;
}
/**
* __insert_inode_hash - hash an inode
* @inode: unhashed inode
* @hashval: unsigned long value used to locate this object in the
* inode_hashtable.
*
* Add an inode to the inode hash for this superblock.
*/
void __insert_inode_hash(struct inode *inode, unsigned long hashval)
{
struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
spin_lock(&inode_hash_lock);
spin_lock(&inode->i_lock);
hlist_add_head_rcu(&inode->i_hash, b);
spin_unlock(&inode->i_lock);
spin_unlock(&inode_hash_lock);
}
EXPORT_SYMBOL(__insert_inode_hash);
/**
* __remove_inode_hash - remove an inode from the hash
* @inode: inode to unhash
*
* Remove an inode from the superblock.
*/
void __remove_inode_hash(struct inode *inode)
{
spin_lock(&inode_hash_lock);
spin_lock(&inode->i_lock);
hlist_del_init_rcu(&inode->i_hash);
spin_unlock(&inode->i_lock);
spin_unlock(&inode_hash_lock);
}
EXPORT_SYMBOL(__remove_inode_hash);
void dump_mapping(const struct address_space *mapping)
{
struct inode *host;
const struct address_space_operations *a_ops;
struct hlist_node *dentry_first;
struct dentry *dentry_ptr;
struct dentry dentry;
char fname[64] = {};
unsigned long ino;
/*
* If mapping is an invalid pointer, we don't want to crash
* accessing it, so probe everything depending on it carefully.
*/
if (get_kernel_nofault(host, &mapping->host) ||
get_kernel_nofault(a_ops, &mapping->a_ops)) {
pr_warn("invalid mapping:%px\n", mapping);
return;
}
if (!host) {
pr_warn("aops:%ps\n", a_ops);
return;
}
if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
get_kernel_nofault(ino, &host->i_ino)) {
pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
return;
}
if (!dentry_first) {
pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
return;
}
dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
if (get_kernel_nofault(dentry, dentry_ptr) ||
!dentry.d_parent || !dentry.d_name.name) {
pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
a_ops, ino, dentry_ptr);
return;
}
if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
strscpy(fname, "<invalid>");
/*
* Even if strncpy_from_kernel_nofault() succeeded,
* the fname could be unreliable
*/
pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
a_ops, ino, fname);
}
void clear_inode(struct inode *inode)
{
/*
* We have to cycle the i_pages lock here because reclaim can be in the
* process of removing the last page (in __filemap_remove_folio())
* and we must not free the mapping under it.
*/
xa_lock_irq(&inode->i_data.i_pages);
BUG_ON(inode->i_data.nrpages);
/*
* Almost always, mapping_empty(&inode->i_data) here; but there are
* two known and long-standing ways in which nodes may get left behind
* (when deep radix-tree node allocation failed partway; or when THP
* collapse_file() failed). Until those two known cases are cleaned up,
* or a cleanup function is called here, do not BUG_ON(!mapping_empty),
* nor even WARN_ON(!mapping_empty).
*/
xa_unlock_irq(&inode->i_data.i_pages);
BUG_ON(!list_empty(&inode->i_data.i_private_list));
BUG_ON(!(inode->i_state & I_FREEING));
BUG_ON(inode->i_state & I_CLEAR);
BUG_ON(!list_empty(&inode->i_wb_list));
/* don't need i_lock here, no concurrent mods to i_state */
inode->i_state = I_FREEING | I_CLEAR;
}
EXPORT_SYMBOL(clear_inode);
/*
* Free the inode passed in, removing it from the lists it is still connected
* to. We remove any pages still attached to the inode and wait for any IO that
* is still in progress before finally destroying the inode.
*
* An inode must already be marked I_FREEING so that we avoid the inode being
* moved back onto lists if we race with other code that manipulates the lists
* (e.g. writeback_single_inode). The caller is responsible for setting this.
*
* An inode must already be removed from the LRU list before being evicted from
* the cache. This should occur atomically with setting the I_FREEING state
* flag, so no inodes here should ever be on the LRU when being evicted.
*/
static void evict(struct inode *inode)
{
const struct super_operations *op = inode->i_sb->s_op;
BUG_ON(!(inode->i_state & I_FREEING));
BUG_ON(!list_empty(&inode->i_lru));
if (!list_empty(&inode->i_io_list))
inode_io_list_del(inode);
inode_sb_list_del(inode);
spin_lock(&inode->i_lock);
inode_wait_for_lru_isolating(inode);
/*
* Wait for flusher thread to be done with the inode so that filesystem
* does not start destroying it while writeback is still running. Since
* the inode has I_FREEING set, flusher thread won't start new work on
* the inode. We just have to wait for running writeback to finish.
*/
inode_wait_for_writeback(inode);
spin_unlock(&inode->i_lock);
if (op->evict_inode) {
op->evict_inode(inode);
} else {
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
}
if (S_ISCHR(inode->i_mode) && inode->i_cdev)
cd_forget(inode);
remove_inode_hash(inode);
/*
* Wake up waiters in __wait_on_freeing_inode().
*
* Lockless hash lookup may end up finding the inode before we removed
* it above, but only lock it *after* we are done with the wakeup below.
* In this case the potential waiter cannot safely block.
*
* The inode being unhashed after the call to remove_inode_hash() is
* used as an indicator whether blocking on it is safe.
*/
spin_lock(&inode->i_lock);
/*
* Pairs with the barrier in prepare_to_wait_event() to make sure
* ___wait_var_event() either sees the bit cleared or
* waitqueue_active() check in wake_up_var() sees the waiter.
*/
smp_mb();
inode_wake_up_bit(inode, __I_NEW);
BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
spin_unlock(&inode->i_lock);
destroy_inode(inode);
}
/*
* dispose_list - dispose of the contents of a local list
* @head: the head of the list to free
*
* Dispose-list gets a local list with local inodes in it, so it doesn't
* need to worry about list corruption and SMP locks.
*/
static void dispose_list(struct list_head *head)
{
while (!list_empty(head)) {
struct inode *inode;
inode = list_first_entry(head, struct inode, i_lru);
list_del_init(&inode->i_lru);
evict(inode);
cond_resched();
}
}
/**
* evict_inodes - evict all evictable inodes for a superblock
* @sb: superblock to operate on
*
* Make sure that no inodes with zero refcount are retained. This is
* called by superblock shutdown after having SB_ACTIVE flag removed,
* so any inode reaching zero refcount during or after that call will
* be immediately evicted.
*/
void evict_inodes(struct super_block *sb)
{
struct inode *inode, *next;
LIST_HEAD(dispose);
again:
spin_lock(&sb->s_inode_list_lock);
list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
if (atomic_read(&inode->i_count))
continue;
spin_lock(&inode->i_lock);
if (atomic_read(&inode->i_count)) {
spin_unlock(&inode->i_lock);
continue;
}
if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
spin_unlock(&inode->i_lock);
continue;
}
inode->i_state |= I_FREEING;
inode_lru_list_del(inode);
spin_unlock(&inode->i_lock);
list_add(&inode->i_lru, &dispose);
/*
* We can have a ton of inodes to evict at unmount time given
* enough memory, check to see if we need to go to sleep for a
* bit so we don't livelock.
*/
if (need_resched()) {
spin_unlock(&sb->s_inode_list_lock);
cond_resched();
dispose_list(&dispose);
goto again;
}
}
spin_unlock(&sb->s_inode_list_lock);
dispose_list(&dispose);
}
EXPORT_SYMBOL_GPL(evict_inodes);
/**
* invalidate_inodes - attempt to free all inodes on a superblock
* @sb: superblock to operate on
*
* Attempts to free all inodes (including dirty inodes) for a given superblock.
*/
void invalidate_inodes(struct super_block *sb)
{
struct inode *inode, *next;
LIST_HEAD(dispose);
again:
spin_lock(&sb->s_inode_list_lock);
list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
spin_lock(&inode->i_lock);
if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
spin_unlock(&inode->i_lock);
continue;
}
if (atomic_read(&inode->i_count)) {
spin_unlock(&inode->i_lock);
continue;
}
inode->i_state |= I_FREEING;
inode_lru_list_del(inode);
spin_unlock(&inode->i_lock);
list_add(&inode->i_lru, &dispose);
if (need_resched()) {
spin_unlock(&sb->s_inode_list_lock);
cond_resched();
dispose_list(&dispose);
goto again;
}
}
spin_unlock(&sb->s_inode_list_lock);
dispose_list(&dispose);
}
/*
* Isolate the inode from the LRU in preparation for freeing it.
*
* If the inode has the I_REFERENCED flag set, then it means that it has been
* used recently - the flag is set in iput_final(). When we encounter such an
* inode, clear the flag and move it to the back of the LRU so it gets another
* pass through the LRU before it gets reclaimed. This is necessary because of
* the fact we are doing lazy LRU updates to minimise lock contention so the
* LRU does not have strict ordering. Hence we don't want to reclaim inodes
* with this flag set because they are the inodes that are out of order.
*/
static enum lru_status inode_lru_isolate(struct list_head *item,
struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
{
struct list_head *freeable = arg;
struct inode *inode = container_of(item, struct inode, i_lru);
/*
* We are inverting the lru lock/inode->i_lock here, so use a
* trylock. If we fail to get the lock, just skip it.
*/
if (!spin_trylock(&inode->i_lock))
return LRU_SKIP;
/*
* Inodes can get referenced, redirtied, or repopulated while
* they're already on the LRU, and this can make them
* unreclaimable for a while. Remove them lazily here; iput,
* sync, or the last page cache deletion will requeue them.
*/
if (atomic_read(&inode->i_count) ||
(inode->i_state & ~I_REFERENCED) ||
!mapping_shrinkable(&inode->i_data)) {
list_lru_isolate(lru, &inode->i_lru);
spin_unlock(&inode->i_lock);
this_cpu_dec(nr_unused);
return LRU_REMOVED;
}
/* Recently referenced inodes get one more pass */
if (inode->i_state & I_REFERENCED) {
inode->i_state &= ~I_REFERENCED;
spin_unlock(&inode->i_lock);
return LRU_ROTATE;
}
/*
* On highmem systems, mapping_shrinkable() permits dropping
* page cache in order to free up struct inodes: lowmem might
* be under pressure before the cache inside the highmem zone.
*/
if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
inode_pin_lru_isolating(inode);
spin_unlock(&inode->i_lock);
spin_unlock(lru_lock);
if (remove_inode_buffers(inode)) {
unsigned long reap;
reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
if (current_is_kswapd())
__count_vm_events(KSWAPD_INODESTEAL, reap);
else
__count_vm_events(PGINODESTEAL, reap);
mm_account_reclaimed_pages(reap);
}
inode_unpin_lru_isolating(inode);
return LRU_RETRY;
}
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_FREEING;
list_lru_isolate_move(lru, &inode->i_lru, freeable);
spin_unlock(&inode->i_lock);
this_cpu_dec(nr_unused);
return LRU_REMOVED;
}
/*
* Walk the superblock inode LRU for freeable inodes and attempt to free them.
* This is called from the superblock shrinker function with a number of inodes
* to trim from the LRU. Inodes to be freed are moved to a temporary list and
* then are freed outside inode_lock by dispose_list().
*/
long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
{
LIST_HEAD(freeable);
long freed;
freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
inode_lru_isolate, &freeable);
dispose_list(&freeable);
return freed;
}
static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
/*
* Called with the inode lock held.
*/
static struct inode *find_inode(struct super_block *sb,
struct hlist_head *head,
int (*test)(struct inode *, void *),
void *data, bool is_inode_hash_locked)
{
struct inode *inode = NULL;
if (is_inode_hash_locked)
lockdep_assert_held(&inode_hash_lock);
else
lockdep_assert_not_held(&inode_hash_lock);
rcu_read_lock();
repeat:
hlist_for_each_entry_rcu(inode, head, i_hash) {
if (inode->i_sb != sb)
continue;
if (!test(inode, data))
continue;
spin_lock(&inode->i_lock);
if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
__wait_on_freeing_inode(inode, is_inode_hash_locked);
goto repeat;
}
if (unlikely(inode->i_state & I_CREATING)) {
spin_unlock(&inode->i_lock);
rcu_read_unlock();
return ERR_PTR(-ESTALE);
}
__iget(inode);
spin_unlock(&inode->i_lock);
rcu_read_unlock();
return inode;
}
rcu_read_unlock();
return NULL;
}
/*
* find_inode_fast is the fast path version of find_inode, see the comment at
* iget_locked for details.
*/
static struct inode *find_inode_fast(struct super_block *sb,
struct hlist_head *head, unsigned long ino,
bool is_inode_hash_locked)
{
struct inode *inode = NULL;
if (is_inode_hash_locked)
lockdep_assert_held(&inode_hash_lock);
else
lockdep_assert_not_held(&inode_hash_lock);
rcu_read_lock();
repeat:
hlist_for_each_entry_rcu(inode, head, i_hash) {
if (inode->i_ino != ino)
continue;
if (inode->i_sb != sb)
continue;
spin_lock(&inode->i_lock);
if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
__wait_on_freeing_inode(inode, is_inode_hash_locked);
goto repeat;
}
if (unlikely(inode->i_state & I_CREATING)) {
spin_unlock(&inode->i_lock);
rcu_read_unlock();
return ERR_PTR(-ESTALE);
}
__iget(inode);
spin_unlock(&inode->i_lock);
rcu_read_unlock();
return inode;
}
rcu_read_unlock();
return NULL;
}
/*
* Each cpu owns a range of LAST_INO_BATCH numbers.
* 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
* to renew the exhausted range.
*
* This does not significantly increase overflow rate because every CPU can
* consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
* NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
* 2^32 range, and is a worst-case. Even a 50% wastage would only increase
* overflow rate by 2x, which does not seem too significant.
*
* On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
* error if st_ino won't fit in target struct field. Use 32bit counter
* here to attempt to avoid that.
*/
#define LAST_INO_BATCH 1024
static DEFINE_PER_CPU(unsigned int, last_ino);
unsigned int get_next_ino(void)
{
unsigned int *p = &get_cpu_var(last_ino);
unsigned int res = *p;
#ifdef CONFIG_SMP
if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
static atomic_t shared_last_ino;
int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
res = next - LAST_INO_BATCH;
}
#endif
res++;
/* get_next_ino should not provide a 0 inode number */
if (unlikely(!res))
res++;
*p = res;
put_cpu_var(last_ino);
return res;
}
EXPORT_SYMBOL(get_next_ino);
/**
* new_inode_pseudo - obtain an inode
* @sb: superblock
*
* Allocates a new inode for given superblock.
* Inode wont be chained in superblock s_inodes list
* This means :
* - fs can't be unmount
* - quotas, fsnotify, writeback can't work
*/
struct inode *new_inode_pseudo(struct super_block *sb)
{
return alloc_inode(sb);
}
/**
* new_inode - obtain an inode
* @sb: superblock
*
* Allocates a new inode for given superblock. The default gfp_mask
* for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
* If HIGHMEM pages are unsuitable or it is known that pages allocated
* for the page cache are not reclaimable or migratable,
* mapping_set_gfp_mask() must be called with suitable flags on the
* newly created inode's mapping
*
*/
struct inode *new_inode(struct super_block *sb)
{
struct inode *inode;
inode = new_inode_pseudo(sb);
if (inode)
inode_sb_list_add(inode);
return inode;
}
EXPORT_SYMBOL(new_inode);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void lockdep_annotate_inode_mutex_key(struct inode *inode)
{
if (S_ISDIR(inode->i_mode)) {
struct file_system_type *type = inode->i_sb->s_type;
/* Set new key only if filesystem hasn't already changed it */
if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
/*
* ensure nobody is actually holding i_mutex
*/
// mutex_destroy(&inode->i_mutex);
init_rwsem(&inode->i_rwsem);
lockdep_set_class(&inode->i_rwsem,
&type->i_mutex_dir_key);
}
}
}
EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
#endif
/**
* unlock_new_inode - clear the I_NEW state and wake up any waiters
* @inode: new inode to unlock
*
* Called when the inode is fully initialised to clear the new state of the
* inode and wake up anyone waiting for the inode to finish initialisation.
*/
void unlock_new_inode(struct inode *inode)
{
lockdep_annotate_inode_mutex_key(inode);
spin_lock(&inode->i_lock);
WARN_ON(!(inode->i_state & I_NEW));
inode->i_state &= ~I_NEW & ~I_CREATING;
/*
* Pairs with the barrier in prepare_to_wait_event() to make sure
* ___wait_var_event() either sees the bit cleared or
* waitqueue_active() check in wake_up_var() sees the waiter.
*/
smp_mb();
inode_wake_up_bit(inode, __I_NEW);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL(unlock_new_inode);
void discard_new_inode(struct inode *inode)
{
lockdep_annotate_inode_mutex_key(inode);
spin_lock(&inode->i_lock);
WARN_ON(!(inode->i_state & I_NEW));
inode->i_state &= ~I_NEW;
/*
* Pairs with the barrier in prepare_to_wait_event() to make sure
* ___wait_var_event() either sees the bit cleared or
* waitqueue_active() check in wake_up_var() sees the waiter.
*/
smp_mb();
inode_wake_up_bit(inode, __I_NEW);
spin_unlock(&inode->i_lock);
iput(inode);
}
EXPORT_SYMBOL(discard_new_inode);
/**
* lock_two_nondirectories - take two i_mutexes on non-directory objects
*
* Lock any non-NULL argument. Passed objects must not be directories.
* Zero, one or two objects may be locked by this function.
*
* @inode1: first inode to lock
* @inode2: second inode to lock
*/
void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
{
if (inode1)
WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
if (inode2)
WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
if (inode1 > inode2)
swap(inode1, inode2);
if (inode1)
inode_lock(inode1);
if (inode2 && inode2 != inode1)
inode_lock_nested(inode2, I_MUTEX_NONDIR2);
}
EXPORT_SYMBOL(lock_two_nondirectories);
/**
* unlock_two_nondirectories - release locks from lock_two_nondirectories()
* @inode1: first inode to unlock
* @inode2: second inode to unlock
*/
void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
{
if (inode1) {
WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
inode_unlock(inode1);
}
if (inode2 && inode2 != inode1) {
WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
inode_unlock(inode2);
}
}
EXPORT_SYMBOL(unlock_two_nondirectories);
/**
* inode_insert5 - obtain an inode from a mounted file system
* @inode: pre-allocated inode to use for insert to cache
* @hashval: hash value (usually inode number) to get
* @test: callback used for comparisons between inodes
* @set: callback used to initialize a new struct inode
* @data: opaque data pointer to pass to @test and @set
*
* Search for the inode specified by @hashval and @data in the inode cache,
* and if present it is return it with an increased reference count. This is
* a variant of iget5_locked() for callers that don't want to fail on memory
* allocation of inode.
*
* If the inode is not in cache, insert the pre-allocated inode to cache and
* return it locked, hashed, and with the I_NEW flag set. The file system gets
* to fill it in before unlocking it via unlock_new_inode().
*
* Note both @test and @set are called with the inode_hash_lock held, so can't
* sleep.
*/
struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
int (*test)(struct inode *, void *),
int (*set)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
struct inode *old;
again:
spin_lock(&inode_hash_lock);
old = find_inode(inode->i_sb, head, test, data, true);
if (unlikely(old)) {
/*
* Uhhuh, somebody else created the same inode under us.
* Use the old inode instead of the preallocated one.
*/
spin_unlock(&inode_hash_lock);
if (IS_ERR(old))
return NULL;
wait_on_inode(old);
if (unlikely(inode_unhashed(old))) {
iput(old);
goto again;
}
return old;
}
if (set && unlikely(set(inode, data))) {
inode = NULL;
goto unlock;
}
/*
* Return the locked inode with I_NEW set, the
* caller is responsible for filling in the contents
*/
spin_lock(&inode->i_lock);
inode->i_state |= I_NEW;
hlist_add_head_rcu(&inode->i_hash, head);
spin_unlock(&inode->i_lock);
/*
* Add inode to the sb list if it's not already. It has I_NEW at this
* point, so it should be safe to test i_sb_list locklessly.
*/
if (list_empty(&inode->i_sb_list))
inode_sb_list_add(inode);
unlock:
spin_unlock(&inode_hash_lock);
return inode;
}
EXPORT_SYMBOL(inode_insert5);
/**
* iget5_locked - obtain an inode from a mounted file system
* @sb: super block of file system
* @hashval: hash value (usually inode number) to get
* @test: callback used for comparisons between inodes
* @set: callback used to initialize a new struct inode
* @data: opaque data pointer to pass to @test and @set
*
* Search for the inode specified by @hashval and @data in the inode cache,
* and if present it is return it with an increased reference count. This is
* a generalized version of iget_locked() for file systems where the inode
* number is not sufficient for unique identification of an inode.
*
* If the inode is not in cache, allocate a new inode and return it locked,
* hashed, and with the I_NEW flag set. The file system gets to fill it in
* before unlocking it via unlock_new_inode().
*
* Note both @test and @set are called with the inode_hash_lock held, so can't
* sleep.
*/
struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *),
int (*set)(struct inode *, void *), void *data)
{
struct inode *inode = ilookup5(sb, hashval, test, data);
if (!inode) {
struct inode *new = alloc_inode(sb);
if (new) {
inode = inode_insert5(new, hashval, test, set, data);
if (unlikely(inode != new))
destroy_inode(new);
}
}
return inode;
}
EXPORT_SYMBOL(iget5_locked);
/**
* iget5_locked_rcu - obtain an inode from a mounted file system
* @sb: super block of file system
* @hashval: hash value (usually inode number) to get
* @test: callback used for comparisons between inodes
* @set: callback used to initialize a new struct inode
* @data: opaque data pointer to pass to @test and @set
*
* This is equivalent to iget5_locked, except the @test callback must
* tolerate the inode not being stable, including being mid-teardown.
*/
struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *),
int (*set)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *inode, *new;
again:
inode = find_inode(sb, head, test, data, false);
if (inode) {
if (IS_ERR(inode))
return NULL;
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
return inode;
}
new = alloc_inode(sb);
if (new) {
inode = inode_insert5(new, hashval, test, set, data);
if (unlikely(inode != new))
destroy_inode(new);
}
return inode;
}
EXPORT_SYMBOL_GPL(iget5_locked_rcu);
/**
* iget_locked - obtain an inode from a mounted file system
* @sb: super block of file system
* @ino: inode number to get
*
* Search for the inode specified by @ino in the inode cache and if present
* return it with an increased reference count. This is for file systems
* where the inode number is sufficient for unique identification of an inode.
*
* If the inode is not in cache, allocate a new inode and return it locked,
* hashed, and with the I_NEW flag set. The file system gets to fill it in
* before unlocking it via unlock_new_inode().
*/
struct inode *iget_locked(struct super_block *sb, unsigned long ino)
{
struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *inode;
again:
inode = find_inode_fast(sb, head, ino, false);
if (inode) {
if (IS_ERR(inode))
return NULL;
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
return inode;
}
inode = alloc_inode(sb);
if (inode) {
struct inode *old;
spin_lock(&inode_hash_lock);
/* We released the lock, so.. */
old = find_inode_fast(sb, head, ino, true);
if (!old) {
inode->i_ino = ino;
spin_lock(&inode->i_lock);
inode->i_state = I_NEW;
hlist_add_head_rcu(&inode->i_hash, head);
spin_unlock(&inode->i_lock);
inode_sb_list_add(inode);
spin_unlock(&inode_hash_lock);
/* Return the locked inode with I_NEW set, the
* caller is responsible for filling in the contents
*/
return inode;
}
/*
* Uhhuh, somebody else created the same inode under
* us. Use the old inode instead of the one we just
* allocated.
*/
spin_unlock(&inode_hash_lock);
destroy_inode(inode);
if (IS_ERR(old))
return NULL;
inode = old;
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
}
return inode;
}
EXPORT_SYMBOL(iget_locked);
/*
* search the inode cache for a matching inode number.
* If we find one, then the inode number we are trying to
* allocate is not unique and so we should not use it.
*
* Returns 1 if the inode number is unique, 0 if it is not.
*/
static int test_inode_iunique(struct super_block *sb, unsigned long ino)
{
struct hlist_head *b = inode_hashtable + hash(sb, ino);
struct inode *inode;
hlist_for_each_entry_rcu(inode, b, i_hash) {
if (inode->i_ino == ino && inode->i_sb == sb)
return 0;
}
return 1;
}
/**
* iunique - get a unique inode number
* @sb: superblock
* @max_reserved: highest reserved inode number
*
* Obtain an inode number that is unique on the system for a given
* superblock. This is used by file systems that have no natural
* permanent inode numbering system. An inode number is returned that
* is higher than the reserved limit but unique.
*
* BUGS:
* With a large number of inodes live on the file system this function
* currently becomes quite slow.
*/
ino_t iunique(struct super_block *sb, ino_t max_reserved)
{
/*
* On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
* error if st_ino won't fit in target struct field. Use 32bit counter
* here to attempt to avoid that.
*/
static DEFINE_SPINLOCK(iunique_lock);
static unsigned int counter;
ino_t res;
rcu_read_lock();
spin_lock(&iunique_lock);
do {
if (counter <= max_reserved)
counter = max_reserved + 1;
res = counter++;
} while (!test_inode_iunique(sb, res));
spin_unlock(&iunique_lock);
rcu_read_unlock();
return res;
}
EXPORT_SYMBOL(iunique);
struct inode *igrab(struct inode *inode)
{
spin_lock(&inode->i_lock);
if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
__iget(inode);
spin_unlock(&inode->i_lock);
} else {
spin_unlock(&inode->i_lock);
/*
* Handle the case where s_op->clear_inode is not been
* called yet, and somebody is calling igrab
* while the inode is getting freed.
*/
inode = NULL;
}
return inode;
}
EXPORT_SYMBOL(igrab);
/**
* ilookup5_nowait - search for an inode in the inode cache
* @sb: super block of file system to search
* @hashval: hash value (usually inode number) to search for
* @test: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @test
*
* Search for the inode specified by @hashval and @data in the inode cache.
* If the inode is in the cache, the inode is returned with an incremented
* reference count.
*
* Note: I_NEW is not waited upon so you have to be very careful what you do
* with the returned inode. You probably should be using ilookup5() instead.
*
* Note2: @test is called with the inode_hash_lock held, so can't sleep.
*/
struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *inode;
spin_lock(&inode_hash_lock);
inode = find_inode(sb, head, test, data, true);
spin_unlock(&inode_hash_lock);
return IS_ERR(inode) ? NULL : inode;
}
EXPORT_SYMBOL(ilookup5_nowait);
/**
* ilookup5 - search for an inode in the inode cache
* @sb: super block of file system to search
* @hashval: hash value (usually inode number) to search for
* @test: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @test
*
* Search for the inode specified by @hashval and @data in the inode cache,
* and if the inode is in the cache, return the inode with an incremented
* reference count. Waits on I_NEW before returning the inode.
* returned with an incremented reference count.
*
* This is a generalized version of ilookup() for file systems where the
* inode number is not sufficient for unique identification of an inode.
*
* Note: @test is called with the inode_hash_lock held, so can't sleep.
*/
struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct inode *inode;
again:
inode = ilookup5_nowait(sb, hashval, test, data);
if (inode) {
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
}
return inode;
}
EXPORT_SYMBOL(ilookup5);
/**
* ilookup - search for an inode in the inode cache
* @sb: super block of file system to search
* @ino: inode number to search for
*
* Search for the inode @ino in the inode cache, and if the inode is in the
* cache, the inode is returned with an incremented reference count.
*/
struct inode *ilookup(struct super_block *sb, unsigned long ino)
{
struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *inode;
again:
inode = find_inode_fast(sb, head, ino, false);
if (inode) {
if (IS_ERR(inode))
return NULL;
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
}
return inode;
}
EXPORT_SYMBOL(ilookup);
/**
* find_inode_nowait - find an inode in the inode cache
* @sb: super block of file system to search
* @hashval: hash value (usually inode number) to search for
* @match: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @match
*
* Search for the inode specified by @hashval and @data in the inode
* cache, where the helper function @match will return 0 if the inode
* does not match, 1 if the inode does match, and -1 if the search
* should be stopped. The @match function must be responsible for
* taking the i_lock spin_lock and checking i_state for an inode being
* freed or being initialized, and incrementing the reference count
* before returning 1. It also must not sleep, since it is called with
* the inode_hash_lock spinlock held.
*
* This is a even more generalized version of ilookup5() when the
* function must never block --- find_inode() can block in
* __wait_on_freeing_inode() --- or when the caller can not increment
* the reference count because the resulting iput() might cause an
* inode eviction. The tradeoff is that the @match funtion must be
* very carefully implemented.
*/
struct inode *find_inode_nowait(struct super_block *sb,
unsigned long hashval,
int (*match)(struct inode *, unsigned long,
void *),
void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *inode, *ret_inode = NULL;
int mval;
spin_lock(&inode_hash_lock);
hlist_for_each_entry(inode, head, i_hash) {
if (inode->i_sb != sb)
continue;
mval = match(inode, hashval, data);
if (mval == 0)
continue;
if (mval == 1)
ret_inode = inode;
goto out;
}
out:
spin_unlock(&inode_hash_lock);
return ret_inode;
}
EXPORT_SYMBOL(find_inode_nowait);
/**
* find_inode_rcu - find an inode in the inode cache
* @sb: Super block of file system to search
* @hashval: Key to hash
* @test: Function to test match on an inode
* @data: Data for test function
*
* Search for the inode specified by @hashval and @data in the inode cache,
* where the helper function @test will return 0 if the inode does not match
* and 1 if it does. The @test function must be responsible for taking the
* i_lock spin_lock and checking i_state for an inode being freed or being
* initialized.
*
* If successful, this will return the inode for which the @test function
* returned 1 and NULL otherwise.
*
* The @test function is not permitted to take a ref on any inode presented.
* It is also not permitted to sleep.
*
* The caller must hold the RCU read lock.
*/
struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *inode;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
"suspicious find_inode_rcu() usage");
hlist_for_each_entry_rcu(inode, head, i_hash) {
if (inode->i_sb == sb &&
!(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
test(inode, data))
return inode;
}
return NULL;
}
EXPORT_SYMBOL(find_inode_rcu);
/**
* find_inode_by_ino_rcu - Find an inode in the inode cache
* @sb: Super block of file system to search
* @ino: The inode number to match
*
* Search for the inode specified by @hashval and @data in the inode cache,
* where the helper function @test will return 0 if the inode does not match
* and 1 if it does. The @test function must be responsible for taking the
* i_lock spin_lock and checking i_state for an inode being freed or being
* initialized.
*
* If successful, this will return the inode for which the @test function
* returned 1 and NULL otherwise.
*
* The @test function is not permitted to take a ref on any inode presented.
* It is also not permitted to sleep.
*
* The caller must hold the RCU read lock.
*/
struct inode *find_inode_by_ino_rcu(struct super_block *sb,
unsigned long ino)
{
struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *inode;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
"suspicious find_inode_by_ino_rcu() usage");
hlist_for_each_entry_rcu(inode, head, i_hash) {
if (inode->i_ino == ino &&
inode->i_sb == sb &&
!(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
return inode;
}
return NULL;
}
EXPORT_SYMBOL(find_inode_by_ino_rcu);
int insert_inode_locked(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
ino_t ino = inode->i_ino;
struct hlist_head *head = inode_hashtable + hash(sb, ino);
while (1) {
struct inode *old = NULL;
spin_lock(&inode_hash_lock);
hlist_for_each_entry(old, head, i_hash) {
if (old->i_ino != ino)
continue;
if (old->i_sb != sb)
continue;
spin_lock(&old->i_lock);
if (old->i_state & (I_FREEING|I_WILL_FREE)) {
spin_unlock(&old->i_lock);
continue;
}
break;
}
if (likely(!old)) {
spin_lock(&inode->i_lock);
inode->i_state |= I_NEW | I_CREATING;
hlist_add_head_rcu(&inode->i_hash, head);
spin_unlock(&inode->i_lock);
spin_unlock(&inode_hash_lock);
return 0;
}
if (unlikely(old->i_state & I_CREATING)) {
spin_unlock(&old->i_lock);
spin_unlock(&inode_hash_lock);
return -EBUSY;
}
__iget(old);
spin_unlock(&old->i_lock);
spin_unlock(&inode_hash_lock);
wait_on_inode(old);
if (unlikely(!inode_unhashed(old))) {
iput(old);
return -EBUSY;
}
iput(old);
}
}
EXPORT_SYMBOL(insert_inode_locked);
int insert_inode_locked4(struct inode *inode, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct inode *old;
inode->i_state |= I_CREATING;
old = inode_insert5(inode, hashval, test, NULL, data);
if (old != inode) {
iput(old);
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL(insert_inode_locked4);
int generic_delete_inode(struct inode *inode)
{
return 1;
}
EXPORT_SYMBOL(generic_delete_inode);
/*
* Called when we're dropping the last reference
* to an inode.
*
* Call the FS "drop_inode()" function, defaulting to
* the legacy UNIX filesystem behaviour. If it tells
* us to evict inode, do so. Otherwise, retain inode
* in cache if fs is alive, sync and evict if fs is
* shutting down.
*/
static void iput_final(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
const struct super_operations *op = inode->i_sb->s_op;
unsigned long state;
int drop;
WARN_ON(inode->i_state & I_NEW);
if (op->drop_inode)
drop = op->drop_inode(inode);
else
drop = generic_drop_inode(inode);
if (!drop &&
!(inode->i_state & I_DONTCACHE) &&
(sb->s_flags & SB_ACTIVE)) {
__inode_add_lru(inode, true);
spin_unlock(&inode->i_lock);
return;
}
state = inode->i_state;
if (!drop) {
WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
spin_unlock(&inode->i_lock);
write_inode_now(inode, 1);
spin_lock(&inode->i_lock);
state = inode->i_state;
WARN_ON(state & I_NEW);
state &= ~I_WILL_FREE;
}
WRITE_ONCE(inode->i_state, state | I_FREEING);
if (!list_empty(&inode->i_lru))
inode_lru_list_del(inode);
spin_unlock(&inode->i_lock);
evict(inode);
}
/**
* iput - put an inode
* @inode: inode to put
*
* Puts an inode, dropping its usage count. If the inode use count hits
* zero, the inode is then freed and may also be destroyed.
*
* Consequently, iput() can sleep.
*/
void iput(struct inode *inode)
{
if (!inode)
return;
BUG_ON(inode->i_state & I_CLEAR);
retry:
if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
atomic_inc(&inode->i_count);
spin_unlock(&inode->i_lock);
trace_writeback_lazytime_iput(inode);
mark_inode_dirty_sync(inode);
goto retry;
}
iput_final(inode);
}
}
EXPORT_SYMBOL(iput);
#ifdef CONFIG_BLOCK
/**
* bmap - find a block number in a file
* @inode: inode owning the block number being requested
* @block: pointer containing the block to find
*
* Replaces the value in ``*block`` with the block number on the device holding
* corresponding to the requested block number in the file.
* That is, asked for block 4 of inode 1 the function will replace the
* 4 in ``*block``, with disk block relative to the disk start that holds that
* block of the file.
*
* Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
* hole, returns 0 and ``*block`` is also set to 0.
*/
int bmap(struct inode *inode, sector_t *block)
{
if (!inode->i_mapping->a_ops->bmap)
return -EINVAL;
*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
return 0;
}
EXPORT_SYMBOL(bmap);
#endif
/*
* With relative atime, only update atime if the previous atime is
* earlier than or equal to either the ctime or mtime,
* or if at least a day has passed since the last atime update.
*/
static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
struct timespec64 now)
{
struct timespec64 atime, mtime, ctime;
if (!(mnt->mnt_flags & MNT_RELATIME))
return true;
/*
* Is mtime younger than or equal to atime? If yes, update atime:
*/
atime = inode_get_atime(inode);
mtime = inode_get_mtime(inode);
if (timespec64_compare(&mtime, &atime) >= 0)
return true;
/*
* Is ctime younger than or equal to atime? If yes, update atime:
*/
ctime = inode_get_ctime(inode);
if (timespec64_compare(&ctime, &atime) >= 0)
return true;
/*
* Is the previous atime value older than a day? If yes,
* update atime:
*/
if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
return true;
/*
* Good, we can skip the atime update:
*/
return false;
}
/**
* inode_update_timestamps - update the timestamps on the inode
* @inode: inode to be updated
* @flags: S_* flags that needed to be updated
*
* The update_time function is called when an inode's timestamps need to be
* updated for a read or write operation. This function handles updating the
* actual timestamps. It's up to the caller to ensure that the inode is marked
* dirty appropriately.
*
* In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
* attempt to update all three of them. S_ATIME updates can be handled
* independently of the rest.
*
* Returns a set of S_* flags indicating which values changed.
*/
int inode_update_timestamps(struct inode *inode, int flags)
{
int updated = 0;
struct timespec64 now;
if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
struct timespec64 ctime = inode_get_ctime(inode);
struct timespec64 mtime = inode_get_mtime(inode);
now = inode_set_ctime_current(inode);
if (!timespec64_equal(&now, &ctime))
updated |= S_CTIME;
if (!timespec64_equal(&now, &mtime)) {
inode_set_mtime_to_ts(inode, now);
updated |= S_MTIME;
}
if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
updated |= S_VERSION;
} else {
now = current_time(inode);
}
if (flags & S_ATIME) {
struct timespec64 atime = inode_get_atime(inode);
if (!timespec64_equal(&now, &atime)) {
inode_set_atime_to_ts(inode, now);
updated |= S_ATIME;
}
}
return updated;
}
EXPORT_SYMBOL(inode_update_timestamps);
/**
* generic_update_time - update the timestamps on the inode
* @inode: inode to be updated
* @flags: S_* flags that needed to be updated
*
* The update_time function is called when an inode's timestamps need to be
* updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
* or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
* updates can be handled done independently of the rest.
*
* Returns a S_* mask indicating which fields were updated.
*/
int generic_update_time(struct inode *inode, int flags)
{
int updated = inode_update_timestamps(inode, flags);
int dirty_flags = 0;
if (updated & (S_ATIME|S_MTIME|S_CTIME))
dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
if (updated & S_VERSION)
dirty_flags |= I_DIRTY_SYNC;
__mark_inode_dirty(inode, dirty_flags);
return updated;
}
EXPORT_SYMBOL(generic_update_time);
/*
* This does the actual work of updating an inodes time or version. Must have
* had called mnt_want_write() before calling this.
*/
int inode_update_time(struct inode *inode, int flags)
{
if (inode->i_op->update_time)
return inode->i_op->update_time(inode, flags);
generic_update_time(inode, flags);
return 0;
}
EXPORT_SYMBOL(inode_update_time);
/**
* atime_needs_update - update the access time
* @path: the &struct path to update
* @inode: inode to update
*
* Update the accessed time on an inode and mark it for writeback.
* This function automatically handles read only file systems and media,
* as well as the "noatime" flag and inode specific "noatime" markers.
*/
bool atime_needs_update(const struct path *path, struct inode *inode)
{
struct vfsmount *mnt = path->mnt;
struct timespec64 now, atime;
if (inode->i_flags & S_NOATIME)
return false;
/* Atime updates will likely cause i_uid and i_gid to be written
* back improprely if their true value is unknown to the vfs.
*/
if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
return false;
if (IS_NOATIME(inode))
return false;
if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
return false;
if (mnt->mnt_flags & MNT_NOATIME)
return false;
if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
return false;
now = current_time(inode);
if (!relatime_need_update(mnt, inode, now))
return false;
atime = inode_get_atime(inode);
if (timespec64_equal(&atime, &now))
return false;
return true;
}
void touch_atime(const struct path *path)
{
struct vfsmount *mnt = path->mnt;
struct inode *inode = d_inode(path->dentry);
if (!atime_needs_update(path, inode))
return;
if (!sb_start_write_trylock(inode->i_sb))
return;
if (mnt_get_write_access(mnt) != 0)
goto skip_update;
/*
* File systems can error out when updating inodes if they need to
* allocate new space to modify an inode (such is the case for
* Btrfs), but since we touch atime while walking down the path we
* really don't care if we failed to update the atime of the file,
* so just ignore the return value.
* We may also fail on filesystems that have the ability to make parts
* of the fs read only, e.g. subvolumes in Btrfs.
*/
inode_update_time(inode, S_ATIME);
mnt_put_write_access(mnt);
skip_update:
sb_end_write(inode->i_sb);
}
EXPORT_SYMBOL(touch_atime);
/*
* Return mask of changes for notify_change() that need to be done as a
* response to write or truncate. Return 0 if nothing has to be changed.
* Negative value on error (change should be denied).
*/
int dentry_needs_remove_privs(struct mnt_idmap *idmap,
struct dentry *dentry)
{
struct inode *inode = d_inode(dentry);
int mask = 0;
int ret;
if (IS_NOSEC(inode))
return 0;
mask = setattr_should_drop_suidgid(idmap, inode);
ret = security_inode_need_killpriv(dentry);
if (ret < 0)
return ret;
if (ret)
mask |= ATTR_KILL_PRIV;
return mask;
}
static int __remove_privs(struct mnt_idmap *idmap,
struct dentry *dentry, int kill)
{
struct iattr newattrs;
newattrs.ia_valid = ATTR_FORCE | kill;
/*
* Note we call this on write, so notify_change will not
* encounter any conflicting delegations:
*/
return notify_change(idmap, dentry, &newattrs, NULL);
}
int file_remove_privs_flags(struct file *file, unsigned int flags)
{
struct dentry *dentry = file_dentry(file);
struct inode *inode = file_inode(file);
int error = 0;
int kill;
if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
return 0;
kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
if (kill < 0)
return kill;
if (kill) {
if (flags & IOCB_NOWAIT)
return -EAGAIN;
error = __remove_privs(file_mnt_idmap(file), dentry, kill);
}
if (!error)
inode_has_no_xattr(inode);
return error;
}
EXPORT_SYMBOL_GPL(file_remove_privs_flags);
/**
* file_remove_privs - remove special file privileges (suid, capabilities)
* @file: file to remove privileges from
*
* When file is modified by a write or truncation ensure that special
* file privileges are removed.
*
* Return: 0 on success, negative errno on failure.
*/
int file_remove_privs(struct file *file)
{
return file_remove_privs_flags(file, 0);
}
EXPORT_SYMBOL(file_remove_privs);
static int inode_needs_update_time(struct inode *inode)
{
int sync_it = 0;
struct timespec64 now = current_time(inode);
struct timespec64 ts;
/* First try to exhaust all avenues to not sync */
if (IS_NOCMTIME(inode))
return 0;
ts = inode_get_mtime(inode);
if (!timespec64_equal(&ts, &now))
sync_it = S_MTIME;
ts = inode_get_ctime(inode);
if (!timespec64_equal(&ts, &now))
sync_it |= S_CTIME;
if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
sync_it |= S_VERSION;
return sync_it;
}
static int __file_update_time(struct file *file, int sync_mode)
{
int ret = 0;
struct inode *inode = file_inode(file);
/* try to update time settings */
if (!mnt_get_write_access_file(file)) {
ret = inode_update_time(inode, sync_mode);
mnt_put_write_access_file(file);
}
return ret;
}
/**
* file_update_time - update mtime and ctime time
* @file: file accessed
*
* Update the mtime and ctime members of an inode and mark the inode for
* writeback. Note that this function is meant exclusively for usage in
* the file write path of filesystems, and filesystems may choose to
* explicitly ignore updates via this function with the _NOCMTIME inode
* flag, e.g. for network filesystem where these imestamps are handled
* by the server. This can return an error for file systems who need to
* allocate space in order to update an inode.
*
* Return: 0 on success, negative errno on failure.
*/
int file_update_time(struct file *file)
{
int ret;
struct inode *inode = file_inode(file);
ret = inode_needs_update_time(inode);
if (ret <= 0)
return ret;
return __file_update_time(file, ret);
}
EXPORT_SYMBOL(file_update_time);
/**
* file_modified_flags - handle mandated vfs changes when modifying a file
* @file: file that was modified
* @flags: kiocb flags
*
* When file has been modified ensure that special
* file privileges are removed and time settings are updated.
*
* If IOCB_NOWAIT is set, special file privileges will not be removed and
* time settings will not be updated. It will return -EAGAIN.
*
* Context: Caller must hold the file's inode lock.
*
* Return: 0 on success, negative errno on failure.
*/
static int file_modified_flags(struct file *file, int flags)
{
int ret;
struct inode *inode = file_inode(file);
/*
* Clear the security bits if the process is not being run by root.
* This keeps people from modifying setuid and setgid binaries.
*/
ret = file_remove_privs_flags(file, flags);
if (ret)
return ret;
if (unlikely(file->f_mode & FMODE_NOCMTIME))
return 0;
ret = inode_needs_update_time(inode);
if (ret <= 0)
return ret;
if (flags & IOCB_NOWAIT)
return -EAGAIN;
return __file_update_time(file, ret);
}
/**
* file_modified - handle mandated vfs changes when modifying a file
* @file: file that was modified
*
* When file has been modified ensure that special
* file privileges are removed and time settings are updated.
*
* Context: Caller must hold the file's inode lock.
*
* Return: 0 on success, negative errno on failure.
*/
int file_modified(struct file *file)
{
return file_modified_flags(file, 0);
}
EXPORT_SYMBOL(file_modified);
/**
* kiocb_modified - handle mandated vfs changes when modifying a file
* @iocb: iocb that was modified
*
* When file has been modified ensure that special
* file privileges are removed and time settings are updated.
*
* Context: Caller must hold the file's inode lock.
*
* Return: 0 on success, negative errno on failure.
*/
int kiocb_modified(struct kiocb *iocb)
{
return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
}
EXPORT_SYMBOL_GPL(kiocb_modified);
int inode_needs_sync(struct inode *inode)
{
if (IS_SYNC(inode))
return 1;
if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
return 1;
return 0;
}
EXPORT_SYMBOL(inode_needs_sync);
/*
* If we try to find an inode in the inode hash while it is being
* deleted, we have to wait until the filesystem completes its
* deletion before reporting that it isn't found. This function waits
* until the deletion _might_ have completed. Callers are responsible
* to recheck inode state.
*
* It doesn't matter if I_NEW is not set initially, a call to
* wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
* will DTRT.
*/
static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
{
struct wait_bit_queue_entry wqe;
struct wait_queue_head *wq_head;
/*
* Handle racing against evict(), see that routine for more details.
*/
if (unlikely(inode_unhashed(inode))) {
WARN_ON(is_inode_hash_locked);
spin_unlock(&inode->i_lock);
return;
}
wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
spin_unlock(&inode->i_lock);
rcu_read_unlock();
if (is_inode_hash_locked)
spin_unlock(&inode_hash_lock);
schedule();
finish_wait(wq_head, &wqe.wq_entry);
if (is_inode_hash_locked)
spin_lock(&inode_hash_lock);
rcu_read_lock();
}
static __initdata unsigned long ihash_entries;
static int __init set_ihash_entries(char *str)
{
if (!str)
return 0;
ihash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("ihash_entries=", set_ihash_entries);
/*
* Initialize the waitqueues and inode hash table.
*/
void __init inode_init_early(void)
{
/* If hashes are distributed across NUMA nodes, defer
* hash allocation until vmalloc space is available.
*/
if (hashdist)
return;
inode_hashtable =
alloc_large_system_hash("Inode-cache",
sizeof(struct hlist_head),
ihash_entries,
14,
HASH_EARLY | HASH_ZERO,
&i_hash_shift,
&i_hash_mask,
0,
0);
}
void __init inode_init(void)
{
/* inode slab cache */
inode_cachep = kmem_cache_create("inode_cache",
sizeof(struct inode),
0,
(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
SLAB_ACCOUNT),
init_once);
/* Hash may have been set up in inode_init_early */
if (!hashdist)
return;
inode_hashtable =
alloc_large_system_hash("Inode-cache",
sizeof(struct hlist_head),
ihash_entries,
14,
HASH_ZERO,
&i_hash_shift,
&i_hash_mask,
0,
0);
}
void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
{
inode->i_mode = mode;
if (S_ISCHR(mode)) {
inode->i_fop = &def_chr_fops;
inode->i_rdev = rdev;
} else if (S_ISBLK(mode)) {
if (IS_ENABLED(CONFIG_BLOCK))
inode->i_fop = &def_blk_fops;
inode->i_rdev = rdev;
} else if (S_ISFIFO(mode))
inode->i_fop = &pipefifo_fops;
else if (S_ISSOCK(mode))
; /* leave it no_open_fops */
else
printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
" inode %s:%lu\n", mode, inode->i_sb->s_id,
inode->i_ino);
}
EXPORT_SYMBOL(init_special_inode);
/**
* inode_init_owner - Init uid,gid,mode for new inode according to posix standards
* @idmap: idmap of the mount the inode was created from
* @inode: New inode
* @dir: Directory inode
* @mode: mode of the new inode
*
* If the inode has been created through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then take
* care to map the inode according to @idmap before checking permissions
* and initializing i_uid and i_gid. On non-idmapped mounts or if permission
* checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
*/
void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
const struct inode *dir, umode_t mode)
{
inode_fsuid_set(inode, idmap);
if (dir && dir->i_mode & S_ISGID) {
inode->i_gid = dir->i_gid;
/* Directories are special, and always inherit S_ISGID */
if (S_ISDIR(mode))
mode |= S_ISGID;
} else
inode_fsgid_set(inode, idmap);
inode->i_mode = mode;
}
EXPORT_SYMBOL(inode_init_owner);
/**
* inode_owner_or_capable - check current task permissions to inode
* @idmap: idmap of the mount the inode was found from
* @inode: inode being checked
*
* Return true if current either has CAP_FOWNER in a namespace with the
* inode owner uid mapped, or owns the file.
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then take
* care to map the inode according to @idmap before checking permissions.
* On non-idmapped mounts or if permission checking is to be performed on the
* raw inode simply pass @nop_mnt_idmap.
*/
bool inode_owner_or_capable(struct mnt_idmap *idmap,
const struct inode *inode)
{
vfsuid_t vfsuid;
struct user_namespace *ns;
vfsuid = i_uid_into_vfsuid(idmap, inode);
if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
return true;
ns = current_user_ns();
if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
return true;
return false;
}
EXPORT_SYMBOL(inode_owner_or_capable);
/*
* Direct i/o helper functions
*/
bool inode_dio_finished(const struct inode *inode)
{
return atomic_read(&inode->i_dio_count) == 0;
}
EXPORT_SYMBOL(inode_dio_finished);
/**
* inode_dio_wait - wait for outstanding DIO requests to finish
* @inode: inode to wait for
*
* Waits for all pending direct I/O requests to finish so that we can
* proceed with a truncate or equivalent operation.
*
* Must be called under a lock that serializes taking new references
* to i_dio_count, usually by inode->i_mutex.
*/
void inode_dio_wait(struct inode *inode)
{
wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
}
EXPORT_SYMBOL(inode_dio_wait);
void inode_dio_wait_interruptible(struct inode *inode)
{
wait_var_event_interruptible(&inode->i_dio_count,
inode_dio_finished(inode));
}
EXPORT_SYMBOL(inode_dio_wait_interruptible);
/*
* inode_set_flags - atomically set some inode flags
*
* Note: the caller should be holding i_mutex, or else be sure that
* they have exclusive access to the inode structure (i.e., while the
* inode is being instantiated). The reason for the cmpxchg() loop
* --- which wouldn't be necessary if all code paths which modify
* i_flags actually followed this rule, is that there is at least one
* code path which doesn't today so we use cmpxchg() out of an abundance
* of caution.
*
* In the long run, i_mutex is overkill, and we should probably look
* at using the i_lock spinlock to protect i_flags, and then make sure
* it is so documented in include/linux/fs.h and that all code follows
* the locking convention!!
*/
void inode_set_flags(struct inode *inode, unsigned int flags,
unsigned int mask)
{
WARN_ON_ONCE(flags & ~mask);
set_mask_bits(&inode->i_flags, mask, flags);
}
EXPORT_SYMBOL(inode_set_flags);
void inode_nohighmem(struct inode *inode)
{
mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
}
EXPORT_SYMBOL(inode_nohighmem);
/**
* timestamp_truncate - Truncate timespec to a granularity
* @t: Timespec
* @inode: inode being updated
*
* Truncate a timespec to the granularity supported by the fs
* containing the inode. Always rounds down. gran must
* not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
*/
struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
{
struct super_block *sb = inode->i_sb;
unsigned int gran = sb->s_time_gran;
t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
t.tv_nsec = 0;
/* Avoid division in the common cases 1 ns and 1 s. */
if (gran == 1)
; /* nothing */
else if (gran == NSEC_PER_SEC)
t.tv_nsec = 0;
else if (gran > 1 && gran < NSEC_PER_SEC)
t.tv_nsec -= t.tv_nsec % gran;
else
WARN(1, "invalid file time granularity: %u", gran);
return t;
}
EXPORT_SYMBOL(timestamp_truncate);
/**
* current_time - Return FS time
* @inode: inode.
*
* Return the current time truncated to the time granularity supported by
* the fs.
*
* Note that inode and inode->sb cannot be NULL.
* Otherwise, the function warns and returns time without truncation.
*/
struct timespec64 current_time(struct inode *inode)
{
struct timespec64 now;
ktime_get_coarse_real_ts64(&now);
return timestamp_truncate(now, inode);
}
EXPORT_SYMBOL(current_time);
/**
* inode_set_ctime_current - set the ctime to current_time
* @inode: inode
*
* Set the inode->i_ctime to the current value for the inode. Returns
* the current value that was assigned to i_ctime.
*/
struct timespec64 inode_set_ctime_current(struct inode *inode)
{
struct timespec64 now = current_time(inode);
inode_set_ctime_to_ts(inode, now);
return now;
}
EXPORT_SYMBOL(inode_set_ctime_current);
/**
* in_group_or_capable - check whether caller is CAP_FSETID privileged
* @idmap: idmap of the mount @inode was found from
* @inode: inode to check
* @vfsgid: the new/current vfsgid of @inode
*
* Check wether @vfsgid is in the caller's group list or if the caller is
* privileged with CAP_FSETID over @inode. This can be used to determine
* whether the setgid bit can be kept or must be dropped.
*
* Return: true if the caller is sufficiently privileged, false if not.
*/
bool in_group_or_capable(struct mnt_idmap *idmap,
const struct inode *inode, vfsgid_t vfsgid)
{
if (vfsgid_in_group_p(vfsgid))
return true;
if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
return true;
return false;
}
EXPORT_SYMBOL(in_group_or_capable);
/**
* mode_strip_sgid - handle the sgid bit for non-directories
* @idmap: idmap of the mount the inode was created from
* @dir: parent directory inode
* @mode: mode of the file to be created in @dir
*
* If the @mode of the new file has both the S_ISGID and S_IXGRP bit
* raised and @dir has the S_ISGID bit raised ensure that the caller is
* either in the group of the parent directory or they have CAP_FSETID
* in their user namespace and are privileged over the parent directory.
* In all other cases, strip the S_ISGID bit from @mode.
*
* Return: the new mode to use for the file
*/
umode_t mode_strip_sgid(struct mnt_idmap *idmap,
const struct inode *dir, umode_t mode)
{
if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
return mode;
if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
return mode;
if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
return mode;
return mode & ~S_ISGID;
}
EXPORT_SYMBOL(mode_strip_sgid);