mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2024-12-29 09:13:38 +00:00
edc19bd0e5
When the timer supports complementary output, the CCxNE bit must be set
additionally to the CCxE bit. So to not overwrite the latter use |=
instead of = to set the former.
Fixes: deaba9cff8
("pwm: stm32: Implementation of the waveform callbacks")
Signed-off-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com>
Link: https://lore.kernel.org/r/20241217150021.2030213-1-fabrice.gasnier@foss.st.com
[ukleinek: Slightly improve commit log]
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
931 lines
24 KiB
C
931 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) STMicroelectronics 2016
|
|
*
|
|
* Author: Gerald Baeza <gerald.baeza@st.com>
|
|
*
|
|
* Inspired by timer-stm32.c from Maxime Coquelin
|
|
* pwm-atmel.c from Bo Shen
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/mfd/stm32-timers.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pwm.h>
|
|
|
|
#define CCMR_CHANNEL_SHIFT 8
|
|
#define CCMR_CHANNEL_MASK 0xFF
|
|
#define MAX_BREAKINPUT 2
|
|
|
|
struct stm32_breakinput {
|
|
u32 index;
|
|
u32 level;
|
|
u32 filter;
|
|
};
|
|
|
|
struct stm32_pwm {
|
|
struct mutex lock; /* protect pwm config/enable */
|
|
struct clk *clk;
|
|
struct regmap *regmap;
|
|
u32 max_arr;
|
|
bool have_complementary_output;
|
|
struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
|
|
unsigned int num_breakinputs;
|
|
u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
|
|
};
|
|
|
|
static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
|
|
{
|
|
return pwmchip_get_drvdata(chip);
|
|
}
|
|
|
|
static u32 active_channels(struct stm32_pwm *dev)
|
|
{
|
|
u32 ccer;
|
|
|
|
regmap_read(dev->regmap, TIM_CCER, &ccer);
|
|
|
|
return ccer & TIM_CCER_CCXE;
|
|
}
|
|
|
|
struct stm32_pwm_waveform {
|
|
u32 ccer;
|
|
u32 psc;
|
|
u32 arr;
|
|
u32 ccr;
|
|
};
|
|
|
|
static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip,
|
|
struct pwm_device *pwm,
|
|
const struct pwm_waveform *wf,
|
|
void *_wfhw)
|
|
{
|
|
struct stm32_pwm_waveform *wfhw = _wfhw;
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
unsigned int ch = pwm->hwpwm;
|
|
unsigned long rate;
|
|
u64 ccr, duty;
|
|
int ret;
|
|
|
|
if (wf->period_length_ns == 0) {
|
|
*wfhw = (struct stm32_pwm_waveform){
|
|
.ccer = 0,
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
ret = clk_enable(priv->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
wfhw->ccer = TIM_CCER_CCxE(ch + 1);
|
|
if (priv->have_complementary_output)
|
|
wfhw->ccer |= TIM_CCER_CCxNE(ch + 1);
|
|
|
|
rate = clk_get_rate(priv->clk);
|
|
|
|
if (active_channels(priv) & ~(1 << ch * 4)) {
|
|
u64 arr;
|
|
|
|
/*
|
|
* Other channels are already enabled, so the configured PSC and
|
|
* ARR must be used for this channel, too.
|
|
*/
|
|
ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* calculate the best value for ARR for the given PSC, refuse if
|
|
* the resulting period gets bigger than the requested one.
|
|
*/
|
|
arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
|
|
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
|
|
if (arr <= wfhw->arr) {
|
|
/*
|
|
* requested period is small than the currently
|
|
* configured and unchangable period, report back the smallest
|
|
* possible period, i.e. the current state; Initialize
|
|
* ccr to anything valid.
|
|
*/
|
|
wfhw->ccr = 0;
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
} else {
|
|
/*
|
|
* .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
|
|
* the calculations here won't overflow.
|
|
* First we need to find the minimal value for prescaler such that
|
|
*
|
|
* period_ns * clkrate
|
|
* ------------------------------ < max_arr + 1
|
|
* NSEC_PER_SEC * (prescaler + 1)
|
|
*
|
|
* This equation is equivalent to
|
|
*
|
|
* period_ns * clkrate
|
|
* ---------------------------- < prescaler + 1
|
|
* NSEC_PER_SEC * (max_arr + 1)
|
|
*
|
|
* Using integer division and knowing that the right hand side is
|
|
* integer, this is further equivalent to
|
|
*
|
|
* (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler
|
|
*/
|
|
u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate,
|
|
(u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1));
|
|
u64 arr;
|
|
|
|
wfhw->psc = min_t(u64, psc, MAX_TIM_PSC);
|
|
|
|
arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
|
|
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
|
|
if (!arr) {
|
|
/*
|
|
* requested period is too small, report back the smallest
|
|
* possible period, i.e. ARR = 0. The only valid CCR
|
|
* value is then zero, too.
|
|
*/
|
|
wfhw->arr = 0;
|
|
wfhw->ccr = 0;
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* ARR is limited intentionally to values less than
|
|
* priv->max_arr to allow 100% duty cycle.
|
|
*/
|
|
wfhw->arr = min_t(u64, arr, priv->max_arr) - 1;
|
|
}
|
|
|
|
duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate,
|
|
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
|
|
duty = min_t(u64, duty, wfhw->arr + 1);
|
|
|
|
if (wf->duty_length_ns && wf->duty_offset_ns &&
|
|
wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) {
|
|
wfhw->ccer |= TIM_CCER_CCxP(ch + 1);
|
|
if (priv->have_complementary_output)
|
|
wfhw->ccer |= TIM_CCER_CCxNP(ch + 1);
|
|
|
|
ccr = wfhw->arr + 1 - duty;
|
|
} else {
|
|
ccr = duty;
|
|
}
|
|
|
|
wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1);
|
|
|
|
dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n",
|
|
pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
|
|
rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr);
|
|
|
|
out:
|
|
clk_disable(priv->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This should be moved to lib/math/div64.c. Currently there are some changes
|
|
* pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles.
|
|
*/
|
|
static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c)
|
|
{
|
|
u64 res = mul_u64_u64_div_u64(a, b, c);
|
|
/* Those multiplications might overflow but it doesn't matter */
|
|
u64 rem = a * b - c * res;
|
|
|
|
if (rem)
|
|
res += 1;
|
|
|
|
return res;
|
|
}
|
|
|
|
static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip,
|
|
struct pwm_device *pwm,
|
|
const void *_wfhw,
|
|
struct pwm_waveform *wf)
|
|
{
|
|
const struct stm32_pwm_waveform *wfhw = _wfhw;
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
unsigned int ch = pwm->hwpwm;
|
|
|
|
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
|
|
unsigned long rate = clk_get_rate(priv->clk);
|
|
u64 ccr_ns;
|
|
|
|
/* The result doesn't overflow for rate >= 15259 */
|
|
wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1),
|
|
NSEC_PER_SEC, rate);
|
|
|
|
ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr,
|
|
NSEC_PER_SEC, rate);
|
|
|
|
if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) {
|
|
wf->duty_length_ns =
|
|
stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr),
|
|
NSEC_PER_SEC, rate);
|
|
|
|
wf->duty_offset_ns = ccr_ns;
|
|
} else {
|
|
wf->duty_length_ns = ccr_ns;
|
|
wf->duty_offset_ns = 0;
|
|
}
|
|
|
|
dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n",
|
|
pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate,
|
|
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
|
|
|
|
} else {
|
|
*wf = (struct pwm_waveform){
|
|
.period_length_ns = 0,
|
|
};
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_pwm_read_waveform(struct pwm_chip *chip,
|
|
struct pwm_device *pwm,
|
|
void *_wfhw)
|
|
{
|
|
struct stm32_pwm_waveform *wfhw = _wfhw;
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
unsigned int ch = pwm->hwpwm;
|
|
int ret;
|
|
|
|
ret = clk_enable(priv->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
|
|
ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (wfhw->arr == U32_MAX)
|
|
wfhw->arr -= 1;
|
|
|
|
ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (wfhw->ccr > wfhw->arr + 1)
|
|
wfhw->ccr = wfhw->arr + 1;
|
|
}
|
|
|
|
out:
|
|
clk_disable(priv->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int stm32_pwm_write_waveform(struct pwm_chip *chip,
|
|
struct pwm_device *pwm,
|
|
const void *_wfhw)
|
|
{
|
|
const struct stm32_pwm_waveform *wfhw = _wfhw;
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
unsigned int ch = pwm->hwpwm;
|
|
int ret;
|
|
|
|
ret = clk_enable(priv->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
|
|
u32 ccer, mask;
|
|
unsigned int shift;
|
|
u32 ccmr;
|
|
|
|
ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* If there are other channels enabled, don't update PSC and ARR */
|
|
if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) {
|
|
u32 psc, arr;
|
|
|
|
ret = regmap_read(priv->regmap, TIM_PSC, &psc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (psc != wfhw->psc) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
ret = regmap_read(priv->regmap, TIM_ARR, &arr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (arr != wfhw->arr) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
} else {
|
|
ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
|
|
if (ret)
|
|
goto out;
|
|
|
|
}
|
|
|
|
/* set polarity */
|
|
mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1);
|
|
ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Configure output mode */
|
|
shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
|
|
ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
|
|
mask = CCMR_CHANNEL_MASK << shift;
|
|
|
|
if (ch < 2)
|
|
ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
|
|
else
|
|
ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!(ccer & TIM_CCER_CCxE(ch + 1))) {
|
|
mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1);
|
|
|
|
ret = clk_enable(priv->clk);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ccer = (ccer & ~mask) | (wfhw->ccer & mask);
|
|
regmap_write(priv->regmap, TIM_CCER, ccer);
|
|
|
|
/* Make sure that registers are updated */
|
|
regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
|
|
|
|
/* Enable controller */
|
|
regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
|
|
}
|
|
|
|
} else {
|
|
/* disable channel */
|
|
u32 mask, ccer;
|
|
|
|
mask = TIM_CCER_CCxE(ch + 1);
|
|
if (priv->have_complementary_output)
|
|
mask |= TIM_CCER_CCxNE(ch + 1);
|
|
|
|
ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (ccer & mask) {
|
|
ccer = ccer & ~mask;
|
|
|
|
ret = regmap_write(priv->regmap, TIM_CCER, ccer);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!(ccer & TIM_CCER_CCXE)) {
|
|
/* When all channels are disabled, we can disable the controller */
|
|
ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
clk_disable(priv->clk);
|
|
}
|
|
}
|
|
|
|
out:
|
|
clk_disable(priv->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
|
|
#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
|
|
#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
|
|
#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
|
|
|
|
/*
|
|
* Capture using PWM input mode:
|
|
* ___ ___
|
|
* TI[1, 2, 3 or 4]: ........._| |________|
|
|
* ^0 ^1 ^2
|
|
* . . .
|
|
* . . XXXXX
|
|
* . . XXXXX |
|
|
* . XXXXX . |
|
|
* XXXXX . . |
|
|
* COUNTER: ______XXXXX . . . |_XXX
|
|
* start^ . . . ^stop
|
|
* . . . .
|
|
* v v . v
|
|
* v
|
|
* CCR1/CCR3: tx..........t0...........t2
|
|
* CCR2/CCR4: tx..............t1.........
|
|
*
|
|
* DMA burst transfer: | |
|
|
* v v
|
|
* DMA buffer: { t0, tx } { t2, t1 }
|
|
* DMA done: ^
|
|
*
|
|
* 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
|
|
* + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
|
|
* 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
|
|
* 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
|
|
* + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
|
|
*
|
|
* DMA done, compute:
|
|
* - Period = t2 - t0
|
|
* - Duty cycle = t1 - t0
|
|
*/
|
|
static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm,
|
|
unsigned long tmo_ms, u32 *raw_prd,
|
|
u32 *raw_dty)
|
|
{
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
struct device *parent = pwmchip_parent(chip)->parent;
|
|
enum stm32_timers_dmas dma_id;
|
|
u32 ccen, ccr;
|
|
int ret;
|
|
|
|
/* Ensure registers have been updated, enable counter and capture */
|
|
regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
|
|
regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
|
|
|
|
/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
|
|
dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
|
|
ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
|
|
ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
|
|
regmap_set_bits(priv->regmap, TIM_CCER, ccen);
|
|
|
|
/*
|
|
* Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
|
|
* CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
|
|
* We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
|
|
* or { CCR3, CCR4 }, { CCR3, CCR4 }
|
|
*/
|
|
ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
|
|
2, tmo_ms);
|
|
if (ret)
|
|
goto stop;
|
|
|
|
/* Period: t2 - t0 (take care of counter overflow) */
|
|
if (priv->capture[0] <= priv->capture[2])
|
|
*raw_prd = priv->capture[2] - priv->capture[0];
|
|
else
|
|
*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
|
|
|
|
/* Duty cycle capture requires at least two capture units */
|
|
if (pwm->chip->npwm < 2)
|
|
*raw_dty = 0;
|
|
else if (priv->capture[0] <= priv->capture[3])
|
|
*raw_dty = priv->capture[3] - priv->capture[0];
|
|
else
|
|
*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
|
|
|
|
if (*raw_dty > *raw_prd) {
|
|
/*
|
|
* Race beetween PWM input and DMA: it may happen
|
|
* falling edge triggers new capture on TI2/4 before DMA
|
|
* had a chance to read CCR2/4. It means capture[1]
|
|
* contains period + duty_cycle. So, subtract period.
|
|
*/
|
|
*raw_dty -= *raw_prd;
|
|
}
|
|
|
|
stop:
|
|
regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
|
|
regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
|
|
struct pwm_capture *result, unsigned long tmo_ms)
|
|
{
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
unsigned long long prd, div, dty;
|
|
unsigned long rate;
|
|
unsigned int psc = 0, icpsc, scale;
|
|
u32 raw_prd = 0, raw_dty = 0;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&priv->lock);
|
|
|
|
if (active_channels(priv)) {
|
|
ret = -EBUSY;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = clk_enable(priv->clk);
|
|
if (ret) {
|
|
dev_err(pwmchip_parent(chip), "failed to enable counter clock\n");
|
|
goto unlock;
|
|
}
|
|
|
|
rate = clk_get_rate(priv->clk);
|
|
if (!rate) {
|
|
ret = -EINVAL;
|
|
goto clk_dis;
|
|
}
|
|
|
|
/* prescaler: fit timeout window provided by upper layer */
|
|
div = (unsigned long long)rate * (unsigned long long)tmo_ms;
|
|
do_div(div, MSEC_PER_SEC);
|
|
prd = div;
|
|
while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
|
|
psc++;
|
|
div = prd;
|
|
do_div(div, psc + 1);
|
|
}
|
|
regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
|
|
regmap_write(priv->regmap, TIM_PSC, psc);
|
|
|
|
/* Reset input selector to its default input and disable slave mode */
|
|
regmap_write(priv->regmap, TIM_TISEL, 0x0);
|
|
regmap_write(priv->regmap, TIM_SMCR, 0x0);
|
|
|
|
/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
|
|
regmap_update_bits(priv->regmap,
|
|
pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
|
|
TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
|
|
TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
|
|
TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
|
|
|
|
/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
|
|
regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
|
|
TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
|
|
TIM_CCER_CC2P : TIM_CCER_CC4P);
|
|
|
|
ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
|
|
if (ret)
|
|
goto stop;
|
|
|
|
/*
|
|
* Got a capture. Try to improve accuracy at high rates:
|
|
* - decrease counter clock prescaler, scale up to max rate.
|
|
* - use input prescaler, capture once every /2 /4 or /8 edges.
|
|
*/
|
|
if (raw_prd) {
|
|
u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
|
|
|
|
scale = max_arr / min(max_arr, raw_prd);
|
|
} else {
|
|
scale = priv->max_arr; /* below resolution, use max scale */
|
|
}
|
|
|
|
if (psc && scale > 1) {
|
|
/* 2nd measure with new scale */
|
|
psc /= scale;
|
|
regmap_write(priv->regmap, TIM_PSC, psc);
|
|
ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd,
|
|
&raw_dty);
|
|
if (ret)
|
|
goto stop;
|
|
}
|
|
|
|
/* Compute intermediate period not to exceed timeout at low rates */
|
|
prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
|
|
do_div(prd, rate);
|
|
|
|
for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
|
|
/* input prescaler: also keep arbitrary margin */
|
|
if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
|
|
break;
|
|
if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
|
|
break;
|
|
}
|
|
|
|
if (!icpsc)
|
|
goto done;
|
|
|
|
/* Last chance to improve period accuracy, using input prescaler */
|
|
regmap_update_bits(priv->regmap,
|
|
pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
|
|
TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
|
|
FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
|
|
FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
|
|
|
|
ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
|
|
if (ret)
|
|
goto stop;
|
|
|
|
if (raw_dty >= (raw_prd >> icpsc)) {
|
|
/*
|
|
* We may fall here using input prescaler, when input
|
|
* capture starts on high side (before falling edge).
|
|
* Example with icpsc to capture on each 4 events:
|
|
*
|
|
* start 1st capture 2nd capture
|
|
* v v v
|
|
* ___ _____ _____ _____ _____ ____
|
|
* TI1..4 |__| |__| |__| |__| |__|
|
|
* v v . . . . . v v
|
|
* icpsc1/3: . 0 . 1 . 2 . 3 . 0
|
|
* icpsc2/4: 0 1 2 3 0
|
|
* v v v v
|
|
* CCR1/3 ......t0..............................t2
|
|
* CCR2/4 ..t1..............................t1'...
|
|
* . . .
|
|
* Capture0: .<----------------------------->.
|
|
* Capture1: .<-------------------------->. .
|
|
* . . .
|
|
* Period: .<------> . .
|
|
* Low side: .<>.
|
|
*
|
|
* Result:
|
|
* - Period = Capture0 / icpsc
|
|
* - Duty = Period - Low side = Period - (Capture0 - Capture1)
|
|
*/
|
|
raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
|
|
}
|
|
|
|
done:
|
|
prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
|
|
result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
|
|
dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
|
|
result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
|
|
stop:
|
|
regmap_write(priv->regmap, TIM_CCER, 0);
|
|
regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
|
|
regmap_write(priv->regmap, TIM_PSC, 0);
|
|
clk_dis:
|
|
clk_disable(priv->clk);
|
|
unlock:
|
|
mutex_unlock(&priv->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct pwm_ops stm32pwm_ops = {
|
|
.sizeof_wfhw = sizeof(struct stm32_pwm_waveform),
|
|
.round_waveform_tohw = stm32_pwm_round_waveform_tohw,
|
|
.round_waveform_fromhw = stm32_pwm_round_waveform_fromhw,
|
|
.read_waveform = stm32_pwm_read_waveform,
|
|
.write_waveform = stm32_pwm_write_waveform,
|
|
|
|
.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
|
|
};
|
|
|
|
static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
|
|
const struct stm32_breakinput *bi)
|
|
{
|
|
u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
|
|
u32 bke = TIM_BDTR_BKE(bi->index);
|
|
u32 bkp = TIM_BDTR_BKP(bi->index);
|
|
u32 bkf = TIM_BDTR_BKF(bi->index);
|
|
u32 mask = bkf | bkp | bke;
|
|
u32 bdtr;
|
|
|
|
bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
|
|
|
|
if (bi->level)
|
|
bdtr |= bkp;
|
|
|
|
regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
|
|
|
|
regmap_read(priv->regmap, TIM_BDTR, &bdtr);
|
|
|
|
return (bdtr & bke) ? 0 : -EINVAL;
|
|
}
|
|
|
|
static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < priv->num_breakinputs; i++) {
|
|
ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
|
|
struct device_node *np)
|
|
{
|
|
int nb, ret, array_size;
|
|
unsigned int i;
|
|
|
|
nb = of_property_count_elems_of_size(np, "st,breakinput",
|
|
sizeof(struct stm32_breakinput));
|
|
|
|
/*
|
|
* Because "st,breakinput" parameter is optional do not make probe
|
|
* failed if it doesn't exist.
|
|
*/
|
|
if (nb <= 0)
|
|
return 0;
|
|
|
|
if (nb > MAX_BREAKINPUT)
|
|
return -EINVAL;
|
|
|
|
priv->num_breakinputs = nb;
|
|
array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
|
|
ret = of_property_read_u32_array(np, "st,breakinput",
|
|
(u32 *)priv->breakinputs, array_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < priv->num_breakinputs; i++) {
|
|
if (priv->breakinputs[i].index > 1 ||
|
|
priv->breakinputs[i].level > 1 ||
|
|
priv->breakinputs[i].filter > 15)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return stm32_pwm_apply_breakinputs(priv);
|
|
}
|
|
|
|
static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
|
|
{
|
|
u32 ccer;
|
|
|
|
/*
|
|
* If complementary bit doesn't exist writing 1 will have no
|
|
* effect so we can detect it.
|
|
*/
|
|
regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
|
|
regmap_read(priv->regmap, TIM_CCER, &ccer);
|
|
regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
|
|
|
|
priv->have_complementary_output = (ccer != 0);
|
|
}
|
|
|
|
static unsigned int stm32_pwm_detect_channels(struct regmap *regmap,
|
|
unsigned int *num_enabled)
|
|
{
|
|
u32 ccer, ccer_backup;
|
|
|
|
/*
|
|
* If channels enable bits don't exist writing 1 will have no
|
|
* effect so we can detect and count them.
|
|
*/
|
|
regmap_read(regmap, TIM_CCER, &ccer_backup);
|
|
regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE);
|
|
regmap_read(regmap, TIM_CCER, &ccer);
|
|
regmap_write(regmap, TIM_CCER, ccer_backup);
|
|
|
|
*num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);
|
|
|
|
return hweight32(ccer & TIM_CCER_CCXE);
|
|
}
|
|
|
|
static int stm32_pwm_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
|
|
struct pwm_chip *chip;
|
|
struct stm32_pwm *priv;
|
|
unsigned int npwm, num_enabled;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled);
|
|
|
|
chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv));
|
|
if (IS_ERR(chip))
|
|
return PTR_ERR(chip);
|
|
priv = to_stm32_pwm_dev(chip);
|
|
|
|
mutex_init(&priv->lock);
|
|
priv->regmap = ddata->regmap;
|
|
priv->clk = ddata->clk;
|
|
priv->max_arr = ddata->max_arr;
|
|
|
|
if (!priv->regmap || !priv->clk)
|
|
return dev_err_probe(dev, -EINVAL, "Failed to get %s\n",
|
|
priv->regmap ? "clk" : "regmap");
|
|
|
|
ret = stm32_pwm_probe_breakinputs(priv, np);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret,
|
|
"Failed to configure breakinputs\n");
|
|
|
|
stm32_pwm_detect_complementary(priv);
|
|
|
|
ret = devm_clk_rate_exclusive_get(dev, priv->clk);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "Failed to lock clock\n");
|
|
|
|
/*
|
|
* With the clk running with not more than 1 GHz the calculations in
|
|
* .apply() won't overflow.
|
|
*/
|
|
if (clk_get_rate(priv->clk) > 1000000000)
|
|
return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n",
|
|
clk_get_rate(priv->clk));
|
|
|
|
chip->ops = &stm32pwm_ops;
|
|
|
|
/* Initialize clock refcount to number of enabled PWM channels. */
|
|
for (i = 0; i < num_enabled; i++)
|
|
clk_enable(priv->clk);
|
|
|
|
ret = devm_pwmchip_add(dev, chip);
|
|
if (ret < 0)
|
|
return dev_err_probe(dev, ret,
|
|
"Failed to register pwmchip\n");
|
|
|
|
platform_set_drvdata(pdev, chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_pwm_suspend(struct device *dev)
|
|
{
|
|
struct pwm_chip *chip = dev_get_drvdata(dev);
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
unsigned int i;
|
|
u32 ccer, mask;
|
|
|
|
/* Look for active channels */
|
|
ccer = active_channels(priv);
|
|
|
|
for (i = 0; i < chip->npwm; i++) {
|
|
mask = TIM_CCER_CCxE(i + 1);
|
|
if (ccer & mask) {
|
|
dev_err(dev, "PWM %u still in use by consumer %s\n",
|
|
i, chip->pwms[i].label);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
return pinctrl_pm_select_sleep_state(dev);
|
|
}
|
|
|
|
static int stm32_pwm_resume(struct device *dev)
|
|
{
|
|
struct pwm_chip *chip = dev_get_drvdata(dev);
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
int ret;
|
|
|
|
ret = pinctrl_pm_select_default_state(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* restore breakinput registers that may have been lost in low power */
|
|
return stm32_pwm_apply_breakinputs(priv);
|
|
}
|
|
|
|
static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
|
|
|
|
static const struct of_device_id stm32_pwm_of_match[] = {
|
|
{ .compatible = "st,stm32-pwm", },
|
|
{ /* end node */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
|
|
|
|
static struct platform_driver stm32_pwm_driver = {
|
|
.probe = stm32_pwm_probe,
|
|
.driver = {
|
|
.name = "stm32-pwm",
|
|
.of_match_table = stm32_pwm_of_match,
|
|
.pm = pm_ptr(&stm32_pwm_pm_ops),
|
|
},
|
|
};
|
|
module_platform_driver(stm32_pwm_driver);
|
|
|
|
MODULE_ALIAS("platform:stm32-pwm");
|
|
MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
|
|
MODULE_LICENSE("GPL v2");
|