feat(numeric): add basic, exponential, power and nearest integer math functions

This commit is contained in:
Redstone1024 2024-12-02 19:22:31 +08:00
parent f5c47fe677
commit bd68754903

View File

@ -3,9 +3,12 @@
#include "CoreTypes.h" #include "CoreTypes.h"
#include "Numeric/Bit.h" #include "Numeric/Bit.h"
#include "Numeric/Limits.h" #include "Numeric/Limits.h"
#include "Templates/Tuple.h"
#include "TypeTraits/TypeTraits.h" #include "TypeTraits/TypeTraits.h"
#include "Miscellaneous/AssertionMacros.h" #include "Miscellaneous/AssertionMacros.h"
#include <cmath>
NAMESPACE_REDCRAFT_BEGIN NAMESPACE_REDCRAFT_BEGIN
NAMESPACE_MODULE_BEGIN(Redcraft) NAMESPACE_MODULE_BEGIN(Redcraft)
NAMESPACE_MODULE_BEGIN(Utility) NAMESPACE_MODULE_BEGIN(Utility)
@ -86,6 +89,170 @@ NAMESPACE_PRIVATE_END
return Math::Func<TCommonType<T, U, V>>(A, B, C); \ return Math::Func<TCommonType<T, U, V>>(A, B, C); \
} }
template <CArithmetic T>
FORCEINLINE constexpr T IsWithin(T A, T MinValue, T MaxValue)
{
return A >= MinValue && A < MaxValue;
}
RESOLVE_ARITHMETIC_AMBIGUITY_3_ARGS(CArithmetic, IsWithin)
template <CArithmetic T>
FORCEINLINE constexpr T IsWithinInclusive(T A, T MinValue, T MaxValue)
{
return A >= MinValue && A <= MaxValue;
}
RESOLVE_ARITHMETIC_AMBIGUITY_3_ARGS(CArithmetic, IsWithinInclusive)
template <CArithmetic T>
FORCEINLINE constexpr T Trunc(T A)
{
if constexpr (CIntegral<T>) return A;
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::trunc(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T, CArithmetic U>
FORCEINLINE constexpr T TruncTo(U A)
{
if constexpr (CIntegral<T> && CIntegral<U>) return A;
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::trunc(static_cast<float>(A));
}
else if constexpr (CIntegral<T>)
{
return static_cast<T>(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T>
FORCEINLINE constexpr T Ceil(T A)
{
if constexpr (CIntegral<T>) return A;
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::ceil(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T, CArithmetic U>
FORCEINLINE constexpr T CeilTo(U A)
{
if constexpr (CIntegral<T> && CIntegral<U>) return A;
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::ceil(static_cast<float>(A));
}
else if constexpr (CIntegral<T>)
{
T I = Math::TruncTo<T>(A);
I += static_cast<U>(I) < A;
return I;
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T>
FORCEINLINE constexpr T Floor(T A)
{
if constexpr (CIntegral<T>) return A;
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::floor(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T, CArithmetic U>
FORCEINLINE constexpr T FloorTo(U A)
{
if constexpr (CIntegral<T> && CIntegral<U>) return A;
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::floor(static_cast<float>(A));
}
else if constexpr (CIntegral<T>)
{
T I = Math::TruncTo<T>(A);
I -= static_cast<U>(I) > A;
return I;
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T>
FORCEINLINE constexpr T Round(T A)
{
if constexpr (CIntegral<T>) return A;
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::round(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T, CArithmetic U>
FORCEINLINE constexpr T RoundTo(U A)
{
if constexpr (CIntegral<T> && CIntegral<U>) return A;
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::round(static_cast<float>(A));
}
else if constexpr (CIntegral<T>)
{
return Math::FloorTo<T>(A + static_cast<U>(0.5));
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CSigned T> template <CSigned T>
FORCEINLINE constexpr T Abs(T A) FORCEINLINE constexpr T Abs(T A)
{ {
@ -138,25 +305,79 @@ FORCEINLINE constexpr auto Max(T A, Ts... InOther)
} }
template <CIntegral T> template <CArithmetic T, CArithmetic... Ts> requires (CCommonType<T, Ts...>)
FORCEINLINE constexpr auto Div(T LHS, T RHS) FORCEINLINE constexpr size_t MinIndex(T A, Ts... InOther)
{ {
checkf(RHS != 0, TEXT("Illegal divisor. It must not be zero.")); if constexpr (sizeof...(Ts) == 0) return 0;
else
{
size_t Index = Math::MinIndex(InOther...);
bool bFlag;
ForwardAsTuple(InOther...).Visit([&bFlag, A](auto B) { bFlag = A < B; }, Index);
return bFlag ? 0 : Index + 1;
}
}
template <CArithmetic T, CArithmetic... Ts> requires (CCommonType<T, Ts...>)
FORCEINLINE constexpr size_t MaxIndex(T A, Ts... InOther)
{
if constexpr (sizeof...(Ts) == 0) return 0;
else
{
size_t Index = Math::MaxIndex(InOther...);
bool bFlag;
ForwardAsTuple(InOther...).Visit([&bFlag, A](auto B) { bFlag = A > B; }, Index);
return bFlag ? 0 : Index + 1;
}
}
template <CIntegral T>
FORCEINLINE constexpr auto Div(T A, T B)
{
checkf(B != 0, TEXT("Illegal divisor. It must not be zero."));
struct { T Quotient; T Remainder; } Result; struct { T Quotient; T Remainder; } Result;
Result.Quotient = LHS / RHS; Result.Quotient = A / B;
Result.Remainder = LHS % RHS; Result.Remainder = A % B;
return Result; return Result;
} }
template <CIntegral T>
FORCEINLINE constexpr T DivAndCeil(T A, T B)
{
return (A + B - 1) / B;
}
template <CIntegral T>
FORCEINLINE constexpr T DivAndFloor(T A, T B)
{
return A / B;
}
template <CIntegral T>
FORCEINLINE constexpr T DivAndRound(T A, T B)
{
return A >= 0
? (A + B / 2 ) / B
: (A - B / 2 + 1) / B;
}
RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS(CIntegral, Div) RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS(CIntegral, Div)
template <CArithmetic T> template <CArithmetic T>
FORCEINLINE constexpr bool IsNearlyEqual(T LHS, T RHS, T Epsilon = TNumericLimits<T>::Epsilon()) FORCEINLINE constexpr bool IsNearlyEqual(T A, T B, T Epsilon = TNumericLimits<T>::Epsilon())
{ {
return Math::Abs<T>(LHS - RHS) <= Epsilon; return Math::Abs<T>(A - B) <= Epsilon;
} }
RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS(CArithmetic, IsNearlyEqual) RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS(CArithmetic, IsNearlyEqual)
@ -270,6 +491,430 @@ FORCEINLINE constexpr auto NaNPayload(U A)
return static_cast<T>(Math::NaNPayload(A)); return static_cast<T>(Math::NaNPayload(A));
} }
template <CFloatingPoint T>
FORCEINLINE constexpr T FMod(T A, T B)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::fmod(A, B);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS(CFloatingPoint, FMod)
template <CFloatingPoint T>
FORCEINLINE constexpr T Remainder(T A, T B)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::remainder(A, B);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS(CFloatingPoint, Remainder)
template <CFloatingPoint T>
FORCEINLINE constexpr auto RemQuo(T A, T B)
{
struct { int Quotient; T Remainder; } Result;
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
Result.Remainder = NAMESPACE_STD::remquo(A, B, &Result.Quotient);
return Result;
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return Result;
}
RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS(CFloatingPoint, RemQuo)
template <CFloatingPoint T>
FORCEINLINE constexpr auto ModF(T A)
{
struct { T IntegralPart; T FractionalPart; } Result;
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
Result.FractionalPart = NAMESPACE_STD::modf(A, &Result.IntegralPart);
return Result;
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return Result;
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Exp(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::exp(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Exp2(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::exp2(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CFloatingPoint T>
FORCEINLINE constexpr T ExpMinus1(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::expm1(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Log(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::log(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Log2(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::log2(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Log10(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::log10(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Log1Plus(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::log1p(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T>
FORCEINLINE constexpr T Square(T A)
{
return A * A;
}
template <CArithmetic T>
FORCEINLINE constexpr T Cube(T A)
{
return A * A * A;
}
template <CIntegral T>
FORCEINLINE constexpr T Pow(T A, T B)
{
if (B < 0)
{
checkf(false, TEXT("Illegal exponent. It must be greater than or equal to zero for integral."));
return TNumericLimits<T>::QuietNaN();
}
T Result = 1;
while (B != 0)
{
if (B & 1) Result *= A;
A *= A;
B >>= 1;
}
return Result;
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Pow(T A, T B)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::pow(A, B);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS(CFloatingPoint, Pow)
template <CIntegral T>
FORCEINLINE constexpr T Sqrt(T A)
{
if (A < 0)
{
checkf(false, TEXT("Illegal argument. It must be greater than or equal to zero."));
return TNumericLimits<T>::QuietNaN();
}
T X = A;
while (true)
{
T Y = (X + A / X) / 2;
if (Y >= X) return X;
X = Y;
}
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Sqrt(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::sqrt(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CIntegral T>
FORCEINLINE constexpr T Cbrt(T A)
{
if (A < 0) return -Math::Cbrt(-A);
T X = A;
while (true)
{
T Y = (X + A / (X * X)) / 2;
if (Y >= X) return X;
X = Y;
}
}
template <CFloatingPoint T>
FORCEINLINE constexpr T Cbrt(T A)
{
if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
return NAMESPACE_STD::cbrt(A);
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
template <CArithmetic T, CArithmetic... Ts> requires (CCommonType<T, Ts...>)
FORCEINLINE constexpr auto Sum(T A, Ts... InOther)
{
if constexpr (sizeof...(Ts) == 0) return A;
else
{
using FCommonT = TCommonType<T, Ts...>;
FCommonT Sum = A + Math::Sum(InOther...);
return Sum;
}
}
template <CArithmetic T, CArithmetic... Ts> requires (CCommonType<T, Ts...>)
FORCEINLINE constexpr auto SquaredSum(T A, Ts... InOther)
{
if constexpr (sizeof...(Ts) == 0) return Math::Square(A);
else
{
using FCommonT = TCommonType<T, Ts...>;
FCommonT Sum = A + Math::SquaredSum(InOther...);
return Sum;
}
}
template <CArithmetic T, CArithmetic... Ts> requires (CCommonType<T, Ts...>)
FORCEINLINE constexpr auto Avg(T A, Ts... InOther)
{
if constexpr (sizeof...(Ts) == 0) return A;
else
{
using FCommonT = TCommonType<T, Ts...>;
FCommonT Sum = A + Math::Sum(InOther...);
return Sum / (sizeof...(Ts) + 1);
}
}
template <CArithmetic T>
FORCEINLINE constexpr T Hypot(T A)
{
return Math::Abs(A);
}
template <CArithmetic T, CArithmetic U>
FORCEINLINE constexpr auto Hypot(T A, U B)
{
using FCommonT = TCommonType<T, U>;
if constexpr (CIntegral<FCommonT>) return static_cast<FCommonT>(Math::Sqrt(Math::Square(A) + Math::Square(B)));
else if constexpr (CSameAs<FCommonT, float> || CSameAs<FCommonT, double>)
{
return NAMESPACE_STD::hypot(static_cast<FCommonT>(A), static_cast<FCommonT>(B));
}
else static_assert(sizeof(FCommonT) == -1, "Unsupported floating point type.");
return TNumericLimits<FCommonT>::QuietNaN();
}
template <CArithmetic T, CArithmetic U, CArithmetic V>
FORCEINLINE constexpr auto Hypot(T A, U B, V C)
{
using FCommonT = TCommonType<T, U, V>;
if constexpr (CIntegral<FCommonT>) return static_cast<FCommonT>(Math::Sqrt(Math::SquaredSum(A, B, C)));
else if constexpr (CSameAs<FCommonT, float> || CSameAs<FCommonT, double>)
{
return NAMESPACE_STD::hypot(static_cast<FCommonT>(A), static_cast<FCommonT>(B), static_cast<FCommonT>(C));
}
else static_assert(sizeof(FCommonT) == -1, "Unsupported floating point type.");
return TNumericLimits<FCommonT>::QuietNaN();
}
template <CArithmetic... Ts> requires (CCommonType<Ts...>)
FORCEINLINE constexpr auto Hypot(Ts... InOther)
{
return Math::Sqrt(Math::SquaredSum(InOther...));
}
template <CArithmetic T>
FORCEINLINE constexpr T Clamp(T A, T MinValue, T MaxValue)
{
return Math::Min(Math::Max(A, MinValue), MaxValue);
}
RESOLVE_ARITHMETIC_AMBIGUITY_3_ARGS(CArithmetic, Clamp)
template <CArithmetic T>
FORCEINLINE constexpr T WrappingClamp(T A, T MinValue, T MaxValue)
{
if (MinValue > MaxValue)
{
checkf(false, TEXT("Illegal range. MinValue must be less than or equal to MaxValue."));
return TNumericLimits<T>::QuietNaN();
}
if (MinValue == MaxValue) return MinValue;
if constexpr (CSameAs<T, bool>) return A;
else if constexpr (CIntegral<T>)
{
using FUnsignedT = TMakeUnsigned<T>;
FUnsignedT Range = MaxValue - MinValue;
if (A < MinValue)
{
FUnsignedT Modulo = static_cast<FUnsignedT>(MinValue - A) % Range;
return Modulo != 0 ? MaxValue - Modulo : MinValue;
}
if (A > MaxValue)
{
FUnsignedT Modulo = static_cast<FUnsignedT>(A - MaxValue) % Range;
return Modulo != 0 ? MinValue + Modulo : MaxValue;
}
return A;
}
else if constexpr (CSameAs<T, float> || CSameAs<T, double>)
{
T Range = MaxValue - MinValue;
if (A < MinValue) return MaxValue - Math::FMod(MinValue - A, Range);
if (A > MaxValue) return MinValue + Math::FMod(A - MaxValue, Range);
return A;
}
else static_assert(sizeof(T) == -1, "Unsupported floating point type.");
return TNumericLimits<T>::QuietNaN();
}
RESOLVE_ARITHMETIC_AMBIGUITY_3_ARGS(CArithmetic, WrappingClamp)
#undef RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS #undef RESOLVE_ARITHMETIC_AMBIGUITY_2_ARGS
#undef RESOLVE_ARITHMETIC_AMBIGUITY_3_ARGS #undef RESOLVE_ARITHMETIC_AMBIGUITY_3_ARGS