KohyaSS/finetune_gui.py

686 lines
19 KiB
Python
Raw Normal View History

import gradio as gr
import json
import math
import os
import subprocess
import pathlib
2022-12-21 09:05:06 -05:00
import argparse
from library.common_gui import (
get_folder_path,
get_file_path,
get_saveasfile_path,
save_inference_file,
2023-01-15 19:59:40 -05:00
gradio_advanced_training,
run_cmd_advanced_training,
gradio_training,
run_cmd_advanced_training,
gradio_config,
gradio_source_model,
color_aug_changed,
2023-01-15 19:59:40 -05:00
run_cmd_training,
)
2022-12-22 11:51:34 -05:00
from library.utilities import utilities_tab
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
def save_configuration(
save_as,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
create_caption,
create_buckets,
save_model_as,
caption_extension,
use_8bit_adam,
xformers,
clip_skip,
save_state,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
mem_eff_attn,
shuffle_caption,
output_name,
2023-01-10 09:38:32 -05:00
max_token_length,
max_train_epochs,
2023-01-15 19:59:40 -05:00
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
2023-01-27 07:33:44 -05:00
use_latent_files, keep_tokens,
):
# Get list of function parameters and values
parameters = list(locals().items())
2023-01-15 19:59:40 -05:00
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
if save_as_bool:
print('Save as...')
file_path = get_saveasfile_path(file_path)
else:
print('Save...')
if file_path == None or file_path == '':
file_path = get_saveasfile_path(file_path)
# print(file_path)
if file_path == None:
return original_file_path
# Return the values of the variables as a dictionary
variables = {
name: value
for name, value in parameters # locals().items()
if name
not in [
'file_path',
'save_as',
]
}
# Save the data to the selected file
2022-12-21 09:05:06 -05:00
with open(file_path, 'w') as file:
json.dump(variables, file, indent=2)
return file_path
def open_config_file(
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
create_caption,
create_buckets,
save_model_as,
caption_extension,
use_8bit_adam,
xformers,
clip_skip,
save_state,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
mem_eff_attn,
shuffle_caption,
output_name,
2023-01-10 09:38:32 -05:00
max_token_length,
max_train_epochs,
2023-01-15 19:59:40 -05:00
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
2023-01-27 07:33:44 -05:00
use_latent_files, keep_tokens,
):
# Get list of function parameters and values
parameters = list(locals().items())
2023-01-15 19:59:40 -05:00
original_file_path = file_path
file_path = get_file_path(file_path)
if file_path != '' and file_path != None:
print(f'Loading config file {file_path}')
# load variables from JSON file
with open(file_path, 'r') as f:
my_data_ft = json.load(f)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data_ft = {}
2023-01-15 19:59:40 -05:00
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data_ft`, or the default value if not found
if not key in ['file_path']:
values.append(my_data_ft.get(key, value))
# print(values)
return tuple(values)
def train_model(
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
generate_caption_database,
generate_image_buckets,
save_model_as,
caption_extension,
use_8bit_adam,
xformers,
clip_skip,
save_state,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
mem_eff_attn,
shuffle_caption,
output_name,
2023-01-10 09:38:32 -05:00
max_token_length,
max_train_epochs,
2023-01-15 19:59:40 -05:00
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list, # Keep this. Yes, it is unused here but required given the common list used
cache_latents,
2023-01-27 07:33:44 -05:00
use_latent_files, keep_tokens,
):
# create caption json file
if generate_caption_database:
if not os.path.exists(train_dir):
os.mkdir(train_dir)
run_cmd = (
f'./venv/Scripts/python.exe finetune/merge_captions_to_metadata.py'
)
if caption_extension == '':
2023-01-15 19:59:40 -05:00
run_cmd += f' --caption_extension=".caption"'
else:
run_cmd += f' --caption_extension={caption_extension}'
run_cmd += f' "{image_folder}"'
run_cmd += f' "{train_dir}/{caption_metadata_filename}"'
if full_path:
run_cmd += f' --full_path'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# create images buckets
if generate_image_buckets:
run_cmd = (
f'./venv/Scripts/python.exe finetune/prepare_buckets_latents.py'
)
run_cmd += f' "{image_folder}"'
run_cmd += f' "{train_dir}/{caption_metadata_filename}"'
run_cmd += f' "{train_dir}/{latent_metadata_filename}"'
run_cmd += f' "{pretrained_model_name_or_path}"'
run_cmd += f' --batch_size={batch_size}'
run_cmd += f' --max_resolution={max_resolution}'
run_cmd += f' --min_bucket_reso={min_bucket_reso}'
run_cmd += f' --max_bucket_reso={max_bucket_reso}'
run_cmd += f' --mixed_precision={mixed_precision}'
# if flip_aug:
# run_cmd += f' --flip_aug'
if full_path:
run_cmd += f' --full_path'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
2022-12-22 13:14:46 -05:00
image_num = len(
[f for f in os.listdir(image_folder) if f.endswith('.jpg') or f.endswith('.png') or f.endswith('.webp')]
2022-12-22 13:14:46 -05:00
)
print(f'image_num = {image_num}')
2022-12-22 13:14:46 -05:00
repeats = int(image_num) * int(dataset_repeats)
print(f'repeats = {str(repeats)}')
2022-12-22 13:14:46 -05:00
# calculate max_train_steps
max_train_steps = int(
math.ceil(float(repeats) / int(train_batch_size) * int(epoch))
)
# Divide by two because flip augmentation create two copied of the source images
if flip_aug:
max_train_steps = int(math.ceil(float(max_train_steps) / 2))
2022-12-22 13:14:46 -05:00
print(f'max_train_steps = {max_train_steps}')
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
2022-12-22 13:14:46 -05:00
print(f'lr_warmup_steps = {lr_warmup_steps}')
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "./fine_tune.py"'
if v2:
run_cmd += ' --v2'
if v_parameterization:
run_cmd += ' --v_parameterization'
if train_text_encoder:
run_cmd += ' --train_text_encoder'
run_cmd += (
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
2022-12-22 13:14:46 -05:00
)
2023-01-15 19:59:40 -05:00
if use_latent_files == 'Yes':
run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"'
else:
run_cmd += f' --in_json="{train_dir}/{caption_metadata_filename}"'
run_cmd += f' --train_data_dir="{image_folder}"'
run_cmd += f' --output_dir="{output_dir}"'
2022-12-22 13:14:46 -05:00
if not logging_dir == '':
run_cmd += f' --logging_dir="{logging_dir}"'
2022-12-22 13:14:46 -05:00
run_cmd += f' --dataset_repeats={dataset_repeats}'
run_cmd += f' --learning_rate={learning_rate}'
2023-01-15 19:59:40 -05:00
run_cmd += ' --enable_bucket'
run_cmd += f' --resolution={max_resolution}'
run_cmd += f' --min_bucket_reso={min_bucket_reso}'
run_cmd += f' --max_bucket_reso={max_bucket_reso}'
2022-12-22 13:14:46 -05:00
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
if int(gradient_accumulation_steps) > 1:
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
# if save_state:
# run_cmd += ' --save_state'
# if not resume == '':
# run_cmd += f' --resume={resume}'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
2023-01-15 19:59:40 -05:00
if int(max_token_length) > 75:
2023-01-10 09:38:32 -05:00
run_cmd += f' --max_token_length={max_token_length}'
2023-01-15 19:59:40 -05:00
run_cmd += run_cmd_training(
learning_rate=learning_rate,
lr_scheduler=lr_scheduler,
lr_warmup_steps=lr_warmup_steps,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
save_every_n_epochs=save_every_n_epochs,
mixed_precision=mixed_precision,
save_precision=save_precision,
seed=seed,
caption_extension=caption_extension,
cache_latents=cache_latents,
)
run_cmd += run_cmd_advanced_training(
max_train_epochs=max_train_epochs,
max_data_loader_n_workers=max_data_loader_n_workers,
max_token_length=max_token_length,
resume=resume,
save_state=save_state,
mem_eff_attn=mem_eff_attn,
clip_skip=clip_skip,
flip_aug=flip_aug,
color_aug=color_aug,
shuffle_caption=shuffle_caption,
gradient_checkpointing=gradient_checkpointing,
full_fp16=full_fp16,
xformers=xformers,
use_8bit_adam=use_8bit_adam,
2023-01-27 07:33:44 -05:00
keep_tokens=keep_tokens,
)
2022-12-22 13:14:46 -05:00
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/{output_name}')
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization, output_name)
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
return file_path
2022-12-22 11:51:34 -05:00
2022-12-21 09:05:06 -05:00
def UI(username, password):
css = ''
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
print('Load CSS...')
css += file.read() + '\n'
interface = gr.Blocks(css=css)
with interface:
with gr.Tab('Finetune'):
2022-12-22 11:51:34 -05:00
finetune_tab()
with gr.Tab('Utilities'):
2022-12-22 11:51:34 -05:00
utilities_tab(enable_dreambooth_tab=False)
2022-12-22 11:51:34 -05:00
# Show the interface
if not username == '':
interface.launch(auth=(username, password))
else:
interface.launch()
2022-12-22 11:51:34 -05:00
def finetune_tab():
dummy_ft_true = gr.Label(value=True, visible=False)
dummy_ft_false = gr.Label(value=False, visible=False)
gr.Markdown('Train a custom model using kohya finetune python code...')
2023-01-15 19:59:40 -05:00
(
button_open_config,
button_save_config,
button_save_as_config,
config_file_name,
) = gradio_config()
(
pretrained_model_name_or_path,
v2,
v_parameterization,
save_model_as,
model_list,
) = gradio_source_model()
2022-12-22 20:18:51 -05:00
with gr.Tab('Folders'):
2022-12-22 11:51:34 -05:00
with gr.Row():
2023-01-15 19:59:40 -05:00
train_dir = gr.Textbox(
2022-12-22 11:51:34 -05:00
label='Training config folder',
placeholder='folder where the training configuration files will be saved',
)
train_dir_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
2023-01-15 19:59:40 -05:00
train_dir_folder.click(get_folder_path, outputs=train_dir)
2022-12-22 11:51:34 -05:00
2023-01-15 19:59:40 -05:00
image_folder = gr.Textbox(
2022-12-22 11:51:34 -05:00
label='Training Image folder',
placeholder='folder where the training images are located',
)
image_folder_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
image_folder_input_folder.click(
2023-01-15 19:59:40 -05:00
get_folder_path, outputs=image_folder
2022-12-22 11:51:34 -05:00
)
with gr.Row():
2023-01-15 19:59:40 -05:00
output_dir = gr.Textbox(
label='Model output folder',
2022-12-22 11:51:34 -05:00
placeholder='folder where the model will be saved',
)
output_dir_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
2023-01-15 19:59:40 -05:00
output_dir_input_folder.click(get_folder_path, outputs=output_dir)
2022-12-22 11:51:34 -05:00
2023-01-15 19:59:40 -05:00
logging_dir = gr.Textbox(
2022-12-22 11:51:34 -05:00
label='Logging folder',
placeholder='Optional: enable logging and output TensorBoard log to this folder',
)
logging_dir_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
logging_dir_input_folder.click(
2023-01-15 19:59:40 -05:00
get_folder_path, outputs=logging_dir
2022-12-22 11:51:34 -05:00
)
with gr.Row():
output_name = gr.Textbox(
label='Model output name',
placeholder='Name of the model to output',
value='last',
interactive=True,
)
2023-01-15 19:59:40 -05:00
train_dir.change(
2022-12-22 11:51:34 -05:00
remove_doublequote,
2023-01-15 19:59:40 -05:00
inputs=[train_dir],
outputs=[train_dir],
2022-12-22 11:51:34 -05:00
)
2023-01-15 19:59:40 -05:00
image_folder.change(
2022-12-22 11:51:34 -05:00
remove_doublequote,
2023-01-15 19:59:40 -05:00
inputs=[image_folder],
outputs=[image_folder],
2022-12-22 11:51:34 -05:00
)
2023-01-15 19:59:40 -05:00
output_dir.change(
2022-12-22 11:51:34 -05:00
remove_doublequote,
2023-01-15 19:59:40 -05:00
inputs=[output_dir],
outputs=[output_dir],
2022-12-22 11:51:34 -05:00
)
with gr.Tab('Dataset preparation'):
with gr.Row():
2023-01-15 19:59:40 -05:00
max_resolution = gr.Textbox(
label='Resolution (width,height)', value='512,512'
)
min_bucket_reso = gr.Textbox(
label='Min bucket resolution', value='256'
)
max_bucket_reso = gr.Textbox(
label='Max bucket resolution', value='1024'
)
batch_size = gr.Textbox(label='Batch size', value='1')
2023-01-15 19:59:40 -05:00
with gr.Row():
create_caption = gr.Checkbox(
label='Generate caption metadata', value=True
)
create_buckets = gr.Checkbox(
label='Generate image buckets metadata', value=True
)
use_latent_files = gr.Dropdown(
label='Use latent files',
choices=[
'No',
'Yes',
],
value='Yes',
)
with gr.Accordion('Advanced parameters', open=False):
with gr.Row():
caption_metadata_filename = gr.Textbox(
label='Caption metadata filename', value='meta_cap.json'
)
latent_metadata_filename = gr.Textbox(
label='Latent metadata filename', value='meta_lat.json'
)
full_path = gr.Checkbox(label='Use full path', value=True)
2022-12-22 11:51:34 -05:00
with gr.Tab('Training parameters'):
2023-01-15 19:59:40 -05:00
(
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
) = gradio_training(learning_rate_value='1e-5')
2022-12-22 11:51:34 -05:00
with gr.Row():
2023-01-15 19:59:40 -05:00
dataset_repeats = gr.Textbox(label='Dataset repeats', value=40)
train_text_encoder = gr.Checkbox(
2022-12-22 11:51:34 -05:00
label='Train text encoder', value=True
)
with gr.Accordion('Advanced parameters', open=False):
with gr.Row():
gradient_accumulation_steps = gr.Number(
label='Gradient accumulate steps', value='1'
)
(
use_8bit_adam,
xformers,
full_fp16,
gradient_checkpointing,
shuffle_caption,
color_aug,
flip_aug,
clip_skip,
mem_eff_attn,
save_state,
resume,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
2023-01-27 07:33:44 -05:00
keep_tokens,
) = gradio_advanced_training()
2023-01-15 19:59:40 -05:00
color_aug.change(
color_aug_changed,
inputs=[color_aug],
outputs=[cache_latents], # Not applicable to fine_tune.py
2022-12-22 11:51:34 -05:00
)
2022-12-22 13:14:46 -05:00
button_run = gr.Button('Train model')
2022-12-22 11:51:34 -05:00
settings_list = [
2023-01-15 19:59:40 -05:00
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
caption_metadata_filename,
latent_metadata_filename,
full_path,
2023-01-15 19:59:40 -05:00
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
create_caption,
create_buckets,
2023-01-15 19:59:40 -05:00
save_model_as,
caption_extension,
use_8bit_adam,
xformers,
clip_skip,
save_state,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
mem_eff_attn,
shuffle_caption,
output_name,
2023-01-10 09:38:32 -05:00
max_token_length,
max_train_epochs,
2023-01-15 19:59:40 -05:00
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
use_latent_files,
2023-01-27 07:33:44 -05:00
keep_tokens,
]
button_run.click(train_model, inputs=settings_list)
2022-12-22 11:51:34 -05:00
button_open_config.click(
open_config_file,
inputs=[config_file_name] + settings_list,
outputs=[config_file_name] + settings_list,
2022-12-22 11:51:34 -05:00
)
2022-12-22 11:51:34 -05:00
button_save_config.click(
save_configuration,
inputs=[dummy_ft_false, config_file_name] + settings_list,
2022-12-22 11:51:34 -05:00
outputs=[config_file_name],
)
2022-12-22 11:51:34 -05:00
button_save_as_config.click(
save_configuration,
inputs=[dummy_ft_true, config_file_name] + settings_list,
2022-12-22 11:51:34 -05:00
outputs=[config_file_name],
)
2022-12-21 09:05:06 -05:00
if __name__ == '__main__':
2022-12-22 11:51:34 -05:00
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
args = parser.parse_args()
UI(username=args.username, password=args.password)