This step is optional but can improve the learning speed for NVidia 4090 owners...
Due to the filesize I can't host the DLLs needed for CUDNN 8.6 on Github, I strongly advise you download them for a speed boost in sample generation (almost 50% on 4090) you can download them from here: https://b1.thefileditch.ch/mwxKTEtelILoIbMbruuM.zip
To install simply unzip the directory and place the cudnn_windows folder in the root of the kohya_diffusers_fine_tuning repo.
Run the following command to install:
```
python .\tools\cudann_1.8_install.py
```
## Upgrade
When a new release comes out you can upgrade your repo with the following command:
```powershell
cd kohya_ss
git pull
.\venv\Scripts\activate
pip install --upgrade -r requirements.txt
```
Once the commands have completed successfully you should be ready to use the new version.
## Folders configuration
Simply put all the images you will want to train on in a single directory. It does not matter what size or aspect ratio they have. It is your choice.
## Captions
Each file need to be accompanied by a caption file describing what the image is about. For example, if you want to train on cute dog pictures you can put `cute dog` as the caption in every file. You can use the `tools\caption.ps1` sample code to help out with that:
Drop by the discord server for support: https://discord.com/channels/1041518562487058594/1041518563242020906
## Change history
* 12/20 (v9.6) update:
- fix issue with config file save and opening
* 12/19 (v9.5) update:
- Fix file/folder dialog opening behind the browser window
- Update GUI layout to be more logical
* 12/18 (v9.4) update:
- Add WD14 tagging to utilities
* 12/18 (v9.3) update:
- Add logging option
* 12/18 (v9.2) update:
- Add BLIP Captioning utility
* 12/18 (v9.1) update:
- Add Stable Diffusion model conversion utility. Make sure to run `pip upgrade -U -r requirements.txt` after updating to this release as this introduce new pip requirements.
* 12/17 (v9) update:
- Save model as option added to fine_tune.py
- Save model as option added to GUI
- Retirement of cli based documentation. Will focus attention to GUI based training
* 12/13 (v8):
- WD14Tagger now works on its own.
- Added support for learning to fp16 up to the gradient. Go to "Building the environment and preparing scripts for Diffusers for more info".
* 12/10 (v7):
- We have added support for Diffusers 0.10.2.
- In addition, we have made other fixes.
- For more information, please see the section on "Building the environment and preparing scripts for Diffusers" in our documentation.
* 12/6 (v6): We have responded to reports that some models experience an error when saving in SafeTensors format.
* 12/5 (v5):
- .safetensors format is now supported. Install SafeTensors as "pip install safetensors". When loading, it is automatically determined by extension. Specify use_safetensors options when saving.
- Added an option to add any string before the date and time log directory name log_prefix.
- Cleaning scripts now work without either captions or tags.
* 11/29 (v4):
- DiffUsers 0.9.0 is required. Update as "pip install -U diffusers[torch]==0.9.0" in the virtual environment, and update the dependent libraries as "pip install --upgrade -r requirements.txt" if other errors occur.
- Compatible with Stable Diffusion v2.0. Add the --v2 option when training (and pre-fetching latents). If you are using 768-v-ema.ckpt or stable-diffusion-2 instead of stable-diffusion-v2-base, add --v_parameterization as well when learning. Learn more about other options.
- The minimum resolution and maximum resolution of the bucket can be specified when pre-fetching latents.
- Corrected the calculation formula for loss (fixed that it was increasing according to the batch size).
- Added options related to the learning rate scheduler.
- So that you can download and learn DiffUsers models directly from Hugging Face. In addition, DiffUsers models can be saved during training.
- Available even if the clean_captions_and_tags.py is only a caption or a tag.
- Other minor fixes such as changing the arguments of the noise scheduler during training.
* 11/23 (v3):
- Added WD14Tagger tagging script.
- A log output function has been added to the fine_tune.py. Also, fixed the double shuffling of data.
- Fixed misspelling of options for each script (caption_extention→caption_extension will work for the time being, even if it remains outdated).