KohyaSS/dreambooth_gui.py

896 lines
30 KiB
Python
Raw Normal View History

# v1: initial release
2022-12-14 14:40:24 -05:00
# v2: add open and save folder icons
2022-12-15 18:19:35 -05:00
# v3: Add new Utilities tab for Dreambooth folder preparation
2022-12-16 11:04:06 -05:00
# v3.1: Adding captionning of images to utilities
2022-12-13 09:20:25 -05:00
import gradio as gr
import json
import math
import os
import subprocess
import pathlib
import shutil
2022-12-18 13:11:10 -05:00
from library.dreambooth_folder_creation_gui import gradio_dreambooth_folder_creation_tab
from library.basic_caption_gui import gradio_basic_caption_gui_tab
from library.convert_model_gui import gradio_convert_model_tab
from library.blip_caption_gui import gradio_blip_caption_gui_tab
from library.wd14_caption_gui import gradio_wd14_caption_gui_tab
2022-12-18 13:11:10 -05:00
from library.dataset_balancing_gui import gradio_dataset_balancing_tab
from library.common_gui import (
2022-12-16 20:26:26 -05:00
get_folder_path,
remove_doublequote,
get_file_path,
get_saveasfile_path
2022-12-16 20:26:26 -05:00
)
from easygui import msgbox
2022-12-13 09:20:25 -05:00
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
2022-12-13 09:20:25 -05:00
2022-12-15 07:48:29 -05:00
def save_configuration(
save_as,
2022-12-13 09:20:25 -05:00
file_path,
pretrained_model_name_or_path,
v2,
2022-12-13 14:59:33 -05:00
v_parameterization,
2022-12-13 09:20:25 -05:00
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
2022-12-13 13:49:14 -05:00
enable_bucket,
gradient_checkpointing,
2022-12-13 21:21:59 -05:00
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
2022-12-17 20:36:31 -05:00
save_model_as
2022-12-13 09:20:25 -05:00
):
2022-12-14 14:40:24 -05:00
original_file_path = file_path
2022-12-16 20:26:26 -05:00
save_as_bool = True if save_as.get('label') == 'True' else False
2022-12-15 07:48:29 -05:00
if save_as_bool:
2022-12-16 20:26:26 -05:00
print('Save as...')
# file_path = filesavebox(
# 'Select the config file to save',
# default='finetune.json',
# filetypes='*.json',
# )
file_path = get_saveasfile_path(file_path)
2022-12-15 07:48:29 -05:00
else:
2022-12-16 20:26:26 -05:00
print('Save...')
if file_path == None or file_path == '':
# file_path = filesavebox(
# 'Select the config file to save',
# default='finetune.json',
# filetypes='*.json',
# )
file_path = get_saveasfile_path(file_path)
2022-12-14 14:40:24 -05:00
2022-12-19 09:47:35 -05:00
if file_path == None or file_path == '':
2022-12-15 07:48:29 -05:00
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
2022-12-14 14:40:24 -05:00
2022-12-13 09:20:25 -05:00
# Return the values of the variables as a dictionary
variables = {
2022-12-16 20:26:26 -05:00
'pretrained_model_name_or_path': pretrained_model_name_or_path,
'v2': v2,
'v_parameterization': v_parameterization,
'logging_dir': logging_dir,
'train_data_dir': train_data_dir,
'reg_data_dir': reg_data_dir,
'output_dir': output_dir,
'max_resolution': max_resolution,
'learning_rate': learning_rate,
'lr_scheduler': lr_scheduler,
'lr_warmup': lr_warmup,
'train_batch_size': train_batch_size,
'epoch': epoch,
'save_every_n_epochs': save_every_n_epochs,
'mixed_precision': mixed_precision,
'save_precision': save_precision,
'seed': seed,
'num_cpu_threads_per_process': num_cpu_threads_per_process,
'cache_latent': cache_latent,
'caption_extention': caption_extention,
'enable_bucket': enable_bucket,
'gradient_checkpointing': gradient_checkpointing,
'full_fp16': full_fp16,
'no_token_padding': no_token_padding,
'stop_text_encoder_training': stop_text_encoder_training,
'use_8bit_adam': use_8bit_adam,
'xformers': xformers,
2022-12-17 20:36:31 -05:00
'save_model_as': save_model_as
2022-12-13 09:20:25 -05:00
}
# Save the data to the selected file
2022-12-16 20:26:26 -05:00
with open(file_path, 'w') as file:
2022-12-13 09:20:25 -05:00
json.dump(variables, file)
2022-12-14 14:40:24 -05:00
return file_path
2022-12-15 07:48:29 -05:00
def open_configuration(
2022-12-14 14:40:24 -05:00
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
2022-12-17 20:36:31 -05:00
save_model_as
2022-12-14 14:40:24 -05:00
):
original_file_path = file_path
file_path = get_file_path(file_path)
2022-12-13 09:20:25 -05:00
2022-12-16 20:26:26 -05:00
if file_path != '' and file_path != None:
2022-12-14 14:40:24 -05:00
print(file_path)
# load variables from JSON file
2022-12-16 20:26:26 -05:00
with open(file_path, 'r') as f:
2022-12-14 14:40:24 -05:00
my_data = json.load(f)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
2022-12-13 09:20:25 -05:00
# Return the values of the variables as a dictionary
return (
2022-12-14 14:40:24 -05:00
file_path,
2022-12-16 20:26:26 -05:00
my_data.get(
'pretrained_model_name_or_path', pretrained_model_name_or_path
),
my_data.get('v2', v2),
my_data.get('v_parameterization', v_parameterization),
my_data.get('logging_dir', logging_dir),
my_data.get('train_data_dir', train_data_dir),
my_data.get('reg_data_dir', reg_data_dir),
my_data.get('output_dir', output_dir),
my_data.get('max_resolution', max_resolution),
my_data.get('learning_rate', learning_rate),
my_data.get('lr_scheduler', lr_scheduler),
my_data.get('lr_warmup', lr_warmup),
my_data.get('train_batch_size', train_batch_size),
my_data.get('epoch', epoch),
my_data.get('save_every_n_epochs', save_every_n_epochs),
my_data.get('mixed_precision', mixed_precision),
my_data.get('save_precision', save_precision),
my_data.get('seed', seed),
my_data.get(
'num_cpu_threads_per_process', num_cpu_threads_per_process
),
my_data.get('cache_latent', cache_latent),
my_data.get('caption_extention', caption_extention),
my_data.get('enable_bucket', enable_bucket),
my_data.get('gradient_checkpointing', gradient_checkpointing),
my_data.get('full_fp16', full_fp16),
my_data.get('no_token_padding', no_token_padding),
my_data.get('stop_text_encoder_training', stop_text_encoder_training),
my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers),
2022-12-17 20:36:31 -05:00
my_data.get('save_model_as', save_model_as)
2022-12-13 09:20:25 -05:00
)
def train_model(
pretrained_model_name_or_path,
v2,
2022-12-13 14:59:33 -05:00
v_parameterization,
2022-12-13 09:20:25 -05:00
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
2022-12-13 13:49:14 -05:00
enable_bucket,
gradient_checkpointing,
2022-12-13 21:21:59 -05:00
full_fp16,
no_token_padding,
stop_text_encoder_training_pct,
use_8bit_adam,
xformers,
2022-12-17 20:36:31 -05:00
save_model_as
2022-12-13 09:20:25 -05:00
):
2022-12-13 14:59:33 -05:00
def save_inference_file(output_dir, v2, v_parameterization):
2022-12-13 09:20:25 -05:00
# Copy inference model for v2 if required
2022-12-13 14:59:33 -05:00
if v2 and v_parameterization:
2022-12-16 20:26:26 -05:00
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
2022-12-13 09:20:25 -05:00
shutil.copy(
2022-12-16 20:26:26 -05:00
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/last.yaml',
2022-12-13 09:20:25 -05:00
)
elif v2:
2022-12-16 20:26:26 -05:00
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
2022-12-13 09:20:25 -05:00
shutil.copy(
2022-12-16 20:26:26 -05:00
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/last.yaml',
2022-12-13 09:20:25 -05:00
)
2022-12-16 20:26:26 -05:00
if pretrained_model_name_or_path == '':
msgbox('Source model information is missing')
2022-12-15 19:04:26 -05:00
return
2022-12-16 20:26:26 -05:00
if train_data_dir == '':
msgbox('Image folder path is missing')
2022-12-15 19:04:26 -05:00
return
if not os.path.exists(train_data_dir):
2022-12-16 20:26:26 -05:00
msgbox('Image folder does not exist')
2022-12-15 19:04:26 -05:00
return
2022-12-16 20:26:26 -05:00
if reg_data_dir != '':
2022-12-15 19:04:26 -05:00
if not os.path.exists(reg_data_dir):
2022-12-16 20:26:26 -05:00
msgbox('Regularisation folder does not exist')
2022-12-15 19:04:26 -05:00
return
2022-12-16 20:26:26 -05:00
if output_dir == '':
msgbox('Output folder path is missing')
2022-12-15 19:04:26 -05:00
return
2022-12-13 09:20:25 -05:00
# Get a list of all subfolders in train_data_dir
2022-12-13 21:21:59 -05:00
subfolders = [
2022-12-16 20:26:26 -05:00
f
for f in os.listdir(train_data_dir)
2022-12-13 21:21:59 -05:00
if os.path.isdir(os.path.join(train_data_dir, f))
]
2022-12-13 09:20:25 -05:00
total_steps = 0
# Loop through each subfolder and extract the number of repeats
for folder in subfolders:
# Extract the number of repeats from the folder name
2022-12-16 20:26:26 -05:00
repeats = int(folder.split('_')[0])
2022-12-13 09:20:25 -05:00
# Count the number of images in the folder
2022-12-16 20:26:26 -05:00
num_images = len(
[
f
for f in os.listdir(os.path.join(train_data_dir, folder))
if f.endswith('.jpg')
or f.endswith('.jpeg')
or f.endswith('.png')
or f.endswith('.webp')
]
)
2022-12-13 09:20:25 -05:00
# Calculate the total number of steps for this folder
steps = repeats * num_images
total_steps += steps
# Print the result
2022-12-16 20:26:26 -05:00
print(f'Folder {folder}: {steps} steps')
2022-12-13 09:20:25 -05:00
# Print the result
# print(f"{total_steps} total steps")
2022-12-16 20:26:26 -05:00
if reg_data_dir == '':
reg_factor = 1
else:
2022-12-13 21:21:59 -05:00
print(
2022-12-16 20:26:26 -05:00
'Regularisation images are used... Will double the number of steps required...'
2022-12-13 21:21:59 -05:00
)
reg_factor = 2
2022-12-13 09:20:25 -05:00
# calculate max_train_steps
max_train_steps = int(
2022-12-13 21:21:59 -05:00
math.ceil(
2022-12-16 20:26:26 -05:00
float(total_steps)
/ int(train_batch_size)
* int(epoch)
* int(reg_factor)
)
)
print(f'max_train_steps = {max_train_steps}')
2022-12-13 09:20:25 -05:00
2022-12-13 21:21:59 -05:00
# calculate stop encoder training
if stop_text_encoder_training_pct == None:
stop_text_encoder_training = 0
else:
stop_text_encoder_training = math.ceil(
2022-12-16 20:26:26 -05:00
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
)
print(f'stop_text_encoder_training = {stop_text_encoder_training}')
2022-12-13 21:21:59 -05:00
2022-12-13 09:20:25 -05:00
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
2022-12-16 20:26:26 -05:00
print(f'lr_warmup_steps = {lr_warmup_steps}')
2022-12-13 09:20:25 -05:00
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_db_fixed.py"'
if v2:
2022-12-16 20:26:26 -05:00
run_cmd += ' --v2'
2022-12-13 14:59:33 -05:00
if v_parameterization:
2022-12-16 20:26:26 -05:00
run_cmd += ' --v_parameterization'
if cache_latent:
2022-12-16 20:26:26 -05:00
run_cmd += ' --cache_latents'
if enable_bucket:
2022-12-16 20:26:26 -05:00
run_cmd += ' --enable_bucket'
2022-12-13 13:49:14 -05:00
if gradient_checkpointing:
2022-12-16 20:26:26 -05:00
run_cmd += ' --gradient_checkpointing'
2022-12-13 13:49:14 -05:00
if full_fp16:
2022-12-16 20:26:26 -05:00
run_cmd += ' --full_fp16'
2022-12-13 21:21:59 -05:00
if no_token_padding:
2022-12-16 20:26:26 -05:00
run_cmd += ' --no_token_padding'
2022-12-13 21:21:59 -05:00
if use_8bit_adam:
2022-12-16 20:26:26 -05:00
run_cmd += ' --use_8bit_adam'
2022-12-13 21:21:59 -05:00
if xformers:
2022-12-16 20:26:26 -05:00
run_cmd += ' --xformers'
run_cmd += (
f' --pretrained_model_name_or_path={pretrained_model_name_or_path}'
)
2022-12-15 18:19:35 -05:00
run_cmd += f' --train_data_dir="{train_data_dir}"'
if len(reg_data_dir):
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
2022-12-16 20:26:26 -05:00
run_cmd += f' --resolution={max_resolution}'
run_cmd += f' --output_dir={output_dir}'
run_cmd += f' --train_batch_size={train_batch_size}'
run_cmd += f' --learning_rate={learning_rate}'
run_cmd += f' --lr_scheduler={lr_scheduler}'
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
run_cmd += f' --max_train_steps={max_train_steps}'
run_cmd += f' --use_8bit_adam'
run_cmd += f' --xformers'
run_cmd += f' --mixed_precision={mixed_precision}'
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
run_cmd += f' --seed={seed}'
run_cmd += f' --save_precision={save_precision}'
run_cmd += f' --logging_dir={logging_dir}'
run_cmd += f' --caption_extention={caption_extention}'
2022-12-19 10:39:04 -05:00
if not stop_text_encoder_training == 0:
run_cmd += f' --stop_text_encoder_training={stop_text_encoder_training}'
2022-12-17 20:36:31 -05:00
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
2022-12-13 09:20:25 -05:00
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
2022-12-17 20:36:31 -05:00
# check if output_dir/last is a folder... therefore it is a diffuser model
2022-12-16 20:26:26 -05:00
last_dir = pathlib.Path(f'{output_dir}/last')
2022-12-17 20:36:31 -05:00
if not last_dir.is_dir():
2022-12-13 09:20:25 -05:00
# Copy inference model for v2 if required
2022-12-13 14:59:33 -05:00
save_inference_file(output_dir, v2, v_parameterization)
2022-12-13 09:20:25 -05:00
2022-12-13 14:59:33 -05:00
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
2022-12-13 09:20:25 -05:00
# define a list of substrings to search for
2022-12-13 21:21:59 -05:00
substrings_v2 = [
2022-12-16 20:26:26 -05:00
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
2022-12-13 21:21:59 -05:00
]
2022-12-13 09:20:25 -05:00
2022-12-13 14:59:33 -05:00
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
2022-12-13 09:20:25 -05:00
if str(value) in substrings_v2:
2022-12-16 20:26:26 -05:00
print('SD v2 model detected. Setting --v2 parameter')
2022-12-13 09:20:25 -05:00
v2 = True
2022-12-13 14:59:33 -05:00
v_parameterization = False
2022-12-13 09:20:25 -05:00
2022-12-13 14:59:33 -05:00
return value, v2, v_parameterization
2022-12-13 09:20:25 -05:00
# define a list of substrings to search for v-objective
2022-12-13 21:21:59 -05:00
substrings_v_parameterization = [
2022-12-16 20:26:26 -05:00
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
2022-12-13 21:21:59 -05:00
]
2022-12-13 09:20:25 -05:00
2022-12-13 14:59:33 -05:00
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
2022-12-13 21:21:59 -05:00
print(
2022-12-16 20:26:26 -05:00
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
2022-12-13 21:21:59 -05:00
)
2022-12-13 09:20:25 -05:00
v2 = True
2022-12-13 14:59:33 -05:00
v_parameterization = True
2022-12-13 14:59:33 -05:00
return value, v2, v_parameterization
# define a list of substrings to v1.x
2022-12-13 21:21:59 -05:00
substrings_v1_model = [
2022-12-16 20:26:26 -05:00
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
2022-12-13 21:21:59 -05:00
]
if str(value) in substrings_v1_model:
v2 = False
2022-12-13 14:59:33 -05:00
v_parameterization = False
2022-12-13 09:20:25 -05:00
2022-12-13 14:59:33 -05:00
return value, v2, v_parameterization
2022-12-13 09:20:25 -05:00
2022-12-16 20:26:26 -05:00
if value == 'custom':
value = ''
2022-12-13 09:20:25 -05:00
v2 = False
2022-12-13 14:59:33 -05:00
v_parameterization = False
2022-12-13 09:20:25 -05:00
2022-12-13 14:59:33 -05:00
return value, v2, v_parameterization
2022-12-13 09:20:25 -05:00
2022-12-14 14:40:24 -05:00
2022-12-16 20:26:26 -05:00
css = ''
2022-12-14 14:40:24 -05:00
2022-12-16 20:26:26 -05:00
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
print('Load CSS...')
css += file.read() + '\n'
2022-12-14 14:40:24 -05:00
interface = gr.Blocks(css=css)
2022-12-13 09:20:25 -05:00
with interface:
2022-12-15 07:48:29 -05:00
dummy_true = gr.Label(value=True, visible=False)
dummy_false = gr.Label(value=False, visible=False)
with gr.Tab('Dreambooth'):
gr.Markdown('Enter kohya finetuner parameter using this interface.')
2022-12-19 10:39:04 -05:00
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
2022-12-19 10:39:04 -05:00
config_file_name = gr.Textbox(
label='',
# placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=False
)
# config_file_name.change(
# remove_doublequote,
# inputs=[config_file_name],
# outputs=[config_file_name],
# )
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path_input = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_fille = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_fille.click(
get_file_path, inputs=[pretrained_model_name_or_path_input], outputs=pretrained_model_name_or_path_input
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path, outputs=pretrained_model_name_or_path_input
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as_dropdown = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
"diffusers_safetensors",
'safetensors',
],
value='same as source model'
)
with gr.Row():
v2_input = gr.Checkbox(label='v2', value=True)
v_parameterization_input = gr.Checkbox(
label='v_parameterization', value=False
)
pretrained_model_name_or_path_input.change(
remove_doublequote,
inputs=[pretrained_model_name_or_path_input],
outputs=[pretrained_model_name_or_path_input],
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2_input, v_parameterization_input],
outputs=[
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
2022-12-17 20:36:31 -05:00
],
)
2022-12-14 14:40:24 -05:00
with gr.Tab('Directories'):
with gr.Row():
train_data_dir_input = gr.Textbox(
label='Image folder',
placeholder='Folder where the training folders containing the images are located',
)
train_data_dir_input_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
train_data_dir_input_folder.click(
get_folder_path, outputs=train_data_dir_input
)
reg_data_dir_input = gr.Textbox(
label='Regularisation folder',
placeholder='(Optional) Folder where where the regularization folders containing the images are located',
)
reg_data_dir_input_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
reg_data_dir_input_folder.click(
get_folder_path, outputs=reg_data_dir_input
)
with gr.Row():
output_dir_input = gr.Textbox(
label='Output folder',
placeholder='Folder to output trained model',
)
output_dir_input_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
output_dir_input_folder.click(
get_folder_path, outputs=output_dir_input
)
logging_dir_input = gr.Textbox(
label='Logging folder',
placeholder='Optional: enable logging and output TensorBoard log to this folder',
)
logging_dir_input_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input
)
train_data_dir_input.change(
remove_doublequote,
inputs=[train_data_dir_input],
outputs=[train_data_dir_input],
)
reg_data_dir_input.change(
remove_doublequote,
inputs=[reg_data_dir_input],
outputs=[reg_data_dir_input],
)
output_dir_input.change(
remove_doublequote,
inputs=[output_dir_input],
outputs=[output_dir_input],
)
logging_dir_input.change(
remove_doublequote,
inputs=[logging_dir_input],
outputs=[logging_dir_input],
)
with gr.Tab('Training parameters'):
with gr.Row():
learning_rate_input = gr.Textbox(label='Learning rate', value=1e-6)
lr_scheduler_input = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value='constant',
)
lr_warmup_input = gr.Textbox(label='LR warmup', value=0)
with gr.Row():
train_batch_size_input = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch_input = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs_input = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision_input = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision_input = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process_input = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per process',
value=os.cpu_count(),
)
with gr.Row():
seed_input = gr.Textbox(label='Seed', value=1234)
max_resolution_input = gr.Textbox(
label='Max resolution', value='512,512', placeholder='512,512'
)
with gr.Row():
caption_extention_input = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
stop_text_encoder_training_input = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=1,
label='Stop text encoder training',
)
with gr.Row():
full_fp16_input = gr.Checkbox(
label='Full fp16 training (experimental)', value=False
)
no_token_padding_input = gr.Checkbox(
label='No token padding', value=False
)
gradient_checkpointing_input = gr.Checkbox(
label='Gradient checkpointing', value=False
)
with gr.Row():
enable_bucket_input = gr.Checkbox(
label='Enable buckets', value=True
)
cache_latent_input = gr.Checkbox(label='Cache latent', value=True)
use_8bit_adam_input = gr.Checkbox(
label='Use 8bit adam', value=True
)
xformers_input = gr.Checkbox(label='Use xformers', value=True)
button_run = gr.Button('Train model')
2022-12-16 20:26:26 -05:00
with gr.Tab('Utilities'):
with gr.Tab('Captioning'):
gradio_basic_caption_gui_tab()
gradio_blip_caption_gui_tab()
gradio_wd14_caption_gui_tab()
2022-12-16 20:26:26 -05:00
gradio_dreambooth_folder_creation_tab(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
)
gradio_dataset_balancing_tab()
2022-12-18 13:11:10 -05:00
gradio_convert_model_tab()
2022-12-14 14:40:24 -05:00
button_open_config.click(
2022-12-15 07:48:29 -05:00
open_configuration,
2022-12-14 14:40:24 -05:00
inputs=[
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
2022-12-17 20:36:31 -05:00
save_model_as_dropdown
2022-12-14 14:40:24 -05:00
],
2022-12-13 09:20:25 -05:00
outputs=[
2022-12-14 14:40:24 -05:00
config_file_name,
2022-12-13 09:20:25 -05:00
pretrained_model_name_or_path_input,
v2_input,
2022-12-13 14:59:33 -05:00
v_parameterization_input,
2022-12-13 09:20:25 -05:00
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
2022-12-13 13:49:14 -05:00
enable_bucket_input,
gradient_checkpointing_input,
2022-12-13 21:21:59 -05:00
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
2022-12-17 20:36:31 -05:00
save_model_as_dropdown
2022-12-13 21:21:59 -05:00
],
2022-12-13 09:20:25 -05:00
)
2022-12-15 07:48:29 -05:00
save_as = True
not_save_as = False
2022-12-13 13:49:14 -05:00
button_save_config.click(
2022-12-15 07:48:29 -05:00
save_configuration,
2022-12-13 09:20:25 -05:00
inputs=[
2022-12-15 07:48:29 -05:00
dummy_false,
2022-12-13 09:20:25 -05:00
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
2022-12-13 14:59:33 -05:00
v_parameterization_input,
2022-12-13 09:20:25 -05:00
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
2022-12-13 13:49:14 -05:00
enable_bucket_input,
gradient_checkpointing_input,
2022-12-13 21:21:59 -05:00
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
2022-12-17 20:36:31 -05:00
save_model_as_dropdown
2022-12-13 21:21:59 -05:00
],
2022-12-14 14:40:24 -05:00
outputs=[config_file_name],
)
button_save_as_config.click(
2022-12-15 07:48:29 -05:00
save_configuration,
2022-12-14 14:40:24 -05:00
inputs=[
2022-12-15 07:48:29 -05:00
dummy_true,
2022-12-14 14:40:24 -05:00
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
2022-12-17 20:36:31 -05:00
save_model_as_dropdown
2022-12-14 14:40:24 -05:00
],
outputs=[config_file_name],
2022-12-13 09:20:25 -05:00
)
2022-12-14 14:40:24 -05:00
2022-12-13 13:49:14 -05:00
button_run.click(
2022-12-13 09:20:25 -05:00
train_model,
inputs=[
pretrained_model_name_or_path_input,
v2_input,
2022-12-13 14:59:33 -05:00
v_parameterization_input,
2022-12-13 09:20:25 -05:00
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
2022-12-13 13:49:14 -05:00
enable_bucket_input,
gradient_checkpointing_input,
2022-12-13 21:21:59 -05:00
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
2022-12-17 20:36:31 -05:00
save_model_as_dropdown
2022-12-13 21:21:59 -05:00
],
2022-12-13 09:20:25 -05:00
)
# Show the interface
interface.launch()