KohyaSS/finetune_gui.py

455 lines
15 KiB
Python
Raw Normal View History

2022-12-13 14:20:25 +00:00
import gradio as gr
import json
import math
import os
import subprocess
import pathlib
import shutil
from glob import glob
from os.path import join
def save_variables(
file_path,
pretrained_model_name_or_path,
v2,
v_model,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
convert_to_safetensors,
convert_to_ckpt
):
# Return the values of the variables as a dictionary
variables = {
"pretrained_model_name_or_path": pretrained_model_name_or_path,
"v2": v2,
"v_model": v_model,
# "model_list": model_list,
"logging_dir": logging_dir,
"train_data_dir": train_data_dir,
"reg_data_dir": reg_data_dir,
"output_dir": output_dir,
"max_resolution": max_resolution,
"learning_rate": learning_rate,
"lr_scheduler": lr_scheduler,
"lr_warmup": lr_warmup,
"train_batch_size": train_batch_size,
"epoch": epoch,
"save_every_n_epochs": save_every_n_epochs,
"mixed_precision": mixed_precision,
"save_precision": save_precision,
"seed": seed,
"num_cpu_threads_per_process": num_cpu_threads_per_process,
"convert_to_safetensors": convert_to_safetensors,
"convert_to_ckpt": convert_to_ckpt
}
# Save the data to the selected file
with open(file_path, "w") as file:
json.dump(variables, file)
def load_variables(file_path):
# load variables from JSON file
with open(file_path, "r") as f:
my_data = json.load(f)
# Return the values of the variables as a dictionary
return (
my_data.get("pretrained_model_name_or_path", None),
my_data.get("v2", None),
my_data.get("v_model", None),
my_data.get("logging_dir", None),
# my_data.get("model_list", None),
my_data.get("train_data_dir", None),
my_data.get("reg_data_dir", None),
my_data.get("output_dir", None),
my_data.get("max_resolution", None),
my_data.get("learning_rate", None),
my_data.get("lr_scheduler", None),
my_data.get("lr_warmup", None),
my_data.get("train_batch_size", None),
my_data.get("epoch", None),
my_data.get("save_every_n_epochs", None),
my_data.get("mixed_precision", None),
my_data.get("save_precision", None),
my_data.get("seed", None),
my_data.get("num_cpu_threads_per_process", None),
my_data.get("convert_to_safetensors", None),
my_data.get("convert_to_ckpt", None)
)
def train_model(
pretrained_model_name_or_path,
v2,
v_model,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
convert_to_safetensors,
convert_to_ckpt,
cache_latent_input
):
def save_inference_file(output_dir, v2, v_model):
# Copy inference model for v2 if required
if v2 and v_model:
print(f"Saving v2-inference-v.yaml as {output_dir}/last.yaml")
shutil.copy(
f"./v2_inference/v2-inference-v.yaml",
f"{output_dir}/last.yaml",
)
elif v2:
print(f"Saving v2-inference.yaml as {output_dir}/last.yaml")
shutil.copy(
f"./v2_inference/v2-inference.yaml",
f"{output_dir}/last.yaml",
)
# Get a list of all subfolders in train_data_dir
subfolders = [f for f in os.listdir(train_data_dir) if os.path.isdir(
os.path.join(train_data_dir, f))]
total_steps = 0
# Loop through each subfolder and extract the number of repeats
for folder in subfolders:
# Extract the number of repeats from the folder name
repeats = int(folder.split("_")[0])
# Count the number of images in the folder
num_images = len([f for f in os.listdir(os.path.join(train_data_dir, folder)) if f.endswith(
".jpg") or f.endswith(".jpeg") or f.endswith(".png") or f.endswith(".webp")])
# Calculate the total number of steps for this folder
steps = repeats * num_images
total_steps += steps
# Print the result
print(f"Folder {folder}: {steps} steps")
# Print the result
# print(f"{total_steps} total steps")
# calculate max_train_steps
max_train_steps = int(
math.ceil(float(total_steps) / int(train_batch_size) * int(epoch))
)
print(f"max_train_steps = {max_train_steps}")
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
print(f"lr_warmup_steps = {lr_warmup_steps}")
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_db_fixed.py"'
if v2:
run_cmd += " --v2"
if v_model:
run_cmd += " --v_parameterization"
if cache_latent_input:
run_cmd += " --cache_latents"
run_cmd += f" --pretrained_model_name_or_path={pretrained_model_name_or_path}"
run_cmd += f" --train_data_dir={train_data_dir}"
run_cmd += f" --reg_data_dir={reg_data_dir}"
run_cmd += f" --resolution={max_resolution}"
run_cmd += f" --output_dir={output_dir}"
run_cmd += f" --train_batch_size={train_batch_size}"
run_cmd += f" --learning_rate={learning_rate}"
run_cmd += f" --lr_scheduler={lr_scheduler}"
run_cmd += f" --lr_warmup_steps={lr_warmup_steps}"
run_cmd += f" --max_train_steps={max_train_steps}"
run_cmd += f" --use_8bit_adam"
run_cmd += f" --xformers"
run_cmd += f" --mixed_precision={mixed_precision}"
run_cmd += f" --save_every_n_epochs={save_every_n_epochs}"
run_cmd += f" --seed={seed}"
run_cmd += f" --save_precision={save_precision}"
run_cmd += f" --logging_dir={logging_dir}"
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# check if output_dir/last is a directory... therefore it is a diffuser model
last_dir = pathlib.Path(f"{output_dir}/last")
print(last_dir)
if last_dir.is_dir():
if convert_to_ckpt:
print(f"Converting diffuser model {last_dir} to {last_dir}.ckpt")
os.system(
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.ckpt --{save_precision}"
)
save_inference_file(output_dir, v2, v_model)
if convert_to_safetensors:
print(f"Converting diffuser model {last_dir} to {last_dir}.safetensors")
os.system(
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.safetensors --{save_precision}"
)
save_inference_file(output_dir, v2, v_model)
else:
# Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_model)
# Return the values of the variables as a dictionary
# return
def set_pretrained_model_name_or_path_input(value, v2, v_model):
# define a list of substrings to search for
substrings_v2 = ["stable-diffusion-2-1-base", "stable-diffusion-2-base"]
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print("SD v2 model detected. Setting --v2 parameter")
v2 = True
v_model = False
value = "stabilityai/{}".format(value)
return value, v2, v_model
# define a list of substrings to search for v-objective
substrings_v_model = ["stable-diffusion-2-1", "stable-diffusion-2"]
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_model list
if str(value) in substrings_v_model:
print("SD v2 v_model detected. Setting --v2 parameter and --v_parameterization")
v2 = True
v_model = True
value = "stabilityai/{}".format(value)
return value, v2, v_model
if value == "custom":
value = ""
v2 = False
v_model = False
return value, v2, v_model
# Define the output element
output = gr.outputs.Textbox(label="Values of variables")
interface = gr.Blocks()
with interface:
gr.Markdown("Enter kohya finetuner parameter using this interface.")
with gr.Accordion("Configuration File Load/Save", open=False):
with gr.Row():
config_file_name = gr.inputs.Textbox(label="Config file name", default="")
b1 = gr.Button("Load config")
b2 = gr.Button("Save config")
with gr.Tab("model"):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path_input = gr.inputs.Textbox(
label="Pretrained model name or path",
placeholder="enter the path to custom model or name of pretrained model",
)
model_list = gr.Dropdown(
label="Model Quick Pick",
choices=[
"custom",
"stable-diffusion-2-1-base",
"stable-diffusion-2-base",
"stable-diffusion-2-1",
"stable-diffusion-2",
],
value="custom",
)
with gr.Row():
v2_input = gr.inputs.Checkbox(label="v2", default=True)
v_model_input = gr.inputs.Checkbox(label="v_model", default=False)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2_input, v_model_input],
outputs=[pretrained_model_name_or_path_input, v2_input, v_model_input],
)
with gr.Tab("training dataset and output directory"):
train_data_dir_input = gr.inputs.Textbox(
label="Image folder", placeholder="directory where the training folders containing the images are located"
)
reg_data_dir_input = gr.inputs.Textbox(
label="Regularisation folder", placeholder="directory where where the regularization folders containing the images are located"
)
output_dir_input = gr.inputs.Textbox(
label="Output directory",
placeholder="directory to output trained model",
)
logging_dir_input = gr.inputs.Textbox(
label="Logging directory", placeholder="Optional: enable logging and output TensorBoard log to this directory"
)
max_resolution_input = gr.inputs.Textbox(
label="Max resolution", default="512,512"
)
with gr.Tab("training parameters"):
with gr.Row():
learning_rate_input = gr.inputs.Textbox(label="Learning rate", default=1e-6)
lr_scheduler_input = gr.Dropdown(
label="LR Scheduler",
choices=[
"constant",
"constant_with_warmup",
"cosine",
"cosine_with_restarts",
"linear",
"polynomial",
],
value="constant",
)
lr_warmup_input = gr.inputs.Textbox(label="LR warmup", default=0)
with gr.Row():
train_batch_size_input = gr.inputs.Textbox(
label="Train batch size", default=1
)
epoch_input = gr.inputs.Textbox(label="Epoch", default=1)
with gr.Row():
save_every_n_epochs_input = gr.inputs.Textbox(
label="Save every N epochs", default=1
)
mixed_precision_input = gr.Dropdown(
label="Mixed precision",
choices=[
"no",
"fp16",
"bf16",
],
value="fp16",
)
save_precision_input = gr.Dropdown(
label="Save precision",
choices=[
"float",
"fp16",
"bf16",
],
value="fp16",
)
with gr.Row():
seed_input = gr.inputs.Textbox(label="Seed", default=1234)
num_cpu_threads_per_process_input = gr.inputs.Textbox(
label="Number of CPU threads per process", default=4
)
cache_latent_input = gr.inputs.Checkbox(
label="Cache latent", default=True
)
with gr.Tab("model conveersion"):
convert_to_safetensors_input = gr.inputs.Checkbox(
label="Convert to SafeTensors", default=False
)
convert_to_ckpt_input = gr.inputs.Checkbox(
label="Convert to CKPT", default=False
)
b3 = gr.Button("Run")
b1.click(
load_variables,
inputs=[config_file_name],
outputs=[
pretrained_model_name_or_path_input,
v2_input,
v_model_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
convert_to_safetensors_input,
convert_to_ckpt_input
]
)
b2.click(
save_variables,
inputs=[
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_model_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
convert_to_safetensors_input,
convert_to_ckpt_input
]
)
b3.click(
train_model,
inputs=[
pretrained_model_name_or_path_input,
v2_input,
v_model_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
convert_to_safetensors_input,
convert_to_ckpt_input,
cache_latent_input
]
)
# Show the interface
interface.launch()