KohyaSS/train_network.py

712 lines
32 KiB
Python
Raw Normal View History

2023-02-14 18:52:08 -05:00
from torch.nn.parallel import DistributedDataParallel as DDP
2022-12-26 08:47:33 -05:00
import importlib
import argparse
import gc
2022-12-26 08:47:33 -05:00
import math
import os
import random
import time
import json
2023-03-20 08:47:00 -04:00
import toml
2023-03-28 11:54:42 -04:00
from multiprocessing import Value
2022-12-26 08:47:33 -05:00
from tqdm import tqdm
import torch
from accelerate.utils import set_seed
from diffusers import DDPMScheduler
2022-12-26 08:47:33 -05:00
import library.train_util as train_util
from library.train_util import (
DreamBoothDataset,
)
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
2023-03-28 11:54:42 -04:00
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import apply_snr_weight
2022-12-26 08:47:33 -05:00
# TODO 他のスクリプトと共通化する
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
2023-03-20 08:47:00 -04:00
logs = {"loss/current": current_loss, "loss/average": avr_loss}
2023-03-20 08:47:00 -04:00
if args.network_train_unet_only:
logs["lr/unet"] = float(lr_scheduler.get_last_lr()[0])
elif args.network_train_text_encoder_only:
logs["lr/textencoder"] = float(lr_scheduler.get_last_lr()[0])
else:
logs["lr/textencoder"] = float(lr_scheduler.get_last_lr()[0])
logs["lr/unet"] = float(lr_scheduler.get_last_lr()[-1]) # may be same to textencoder
2023-03-20 08:47:00 -04:00
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value of unet.
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"]
2023-03-20 08:47:00 -04:00
return logs
2023-01-29 11:10:06 -05:00
2022-12-26 08:47:33 -05:00
def train(args):
2023-03-20 08:47:00 -04:00
session_id = random.randint(0, 2**32)
training_started_at = time.time()
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
cache_latents = args.cache_latents
use_dreambooth_method = args.in_json is None
use_user_config = args.dataset_config is not None
if args.seed is not None:
set_seed(args.seed)
tokenizer = train_util.load_tokenizer(args)
# データセットを準備する
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, True))
if use_user_config:
print(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
print(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
2023-03-20 08:47:00 -04:00
if use_dreambooth_method:
print("Use DreamBooth method.")
user_config = {
"datasets": [
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
]
}
else:
2023-03-20 08:47:00 -04:00
print("Train with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
2023-03-28 11:54:42 -04:00
current_epoch = Value('i',0)
current_step = Value('i',0)
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collater = train_util.collater_class(current_epoch,current_step, ds_for_collater)
2023-03-20 08:47:00 -04:00
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group)
return
if len(train_dataset_group) == 0:
print(
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してくださいtrain_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
# acceleratorを準備する
print("prepare accelerator")
accelerator, unwrap_model = train_util.prepare_accelerator(args)
is_main_process = accelerator.is_main_process
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
# work on low-ram device
if args.lowram:
text_encoder.to("cuda")
unet.to("cuda")
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
2022-12-26 08:47:33 -05:00
with torch.no_grad():
2023-03-21 20:20:57 -04:00
train_dataset_group.cache_latents(vae, args.vae_batch_size)
2023-03-20 08:47:00 -04:00
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# prepare network
import sys
sys.path.append(os.path.dirname(__file__))
print("import network module:", args.network_module)
network_module = importlib.import_module(args.network_module)
net_kwargs = {}
if args.network_args is not None:
for net_arg in args.network_args:
key, value = net_arg.split("=")
net_kwargs[key] = value
# if a new network is added in future, add if ~ then blocks for each network (;'∀')
network = network_module.create_network(1.0, args.network_dim, args.network_alpha, vae, text_encoder, unet, **net_kwargs)
if network is None:
return
if args.network_weights is not None:
print("load network weights from:", args.network_weights)
network.load_weights(args.network_weights)
train_unet = not args.network_train_text_encoder_only
train_text_encoder = not args.network_train_unet_only
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
network.enable_gradient_checkpointing() # may have no effect
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr)
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
2023-03-28 11:54:42 -04:00
2023-03-20 08:47:00 -04:00
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
2023-03-28 11:54:42 -04:00
collate_fn=collater,
2023-03-20 08:47:00 -04:00
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
2023-03-21 20:20:57 -04:00
args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps)
2023-03-20 08:47:00 -04:00
if is_main_process:
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
2023-03-28 11:54:42 -04:00
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
2023-03-20 08:47:00 -04:00
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print("enable full fp16 training.")
network.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
if train_unet and train_text_encoder:
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler
)
elif train_unet:
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, network, optimizer, train_dataloader, lr_scheduler
)
elif train_text_encoder:
text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, network, optimizer, train_dataloader, lr_scheduler
)
else:
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(network, optimizer, train_dataloader, lr_scheduler)
unet.requires_grad_(False)
unet.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False)
text_encoder.to(accelerator.device)
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
unet.train()
text_encoder.train()
# set top parameter requires_grad = True for gradient checkpointing works
if type(text_encoder) == DDP:
text_encoder.module.text_model.embeddings.requires_grad_(True)
2022-12-26 08:47:33 -05:00
else:
2023-03-20 08:47:00 -04:00
text_encoder.text_model.embeddings.requires_grad_(True)
else:
unet.eval()
text_encoder.eval()
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
# support DistributedDataParallel
if type(text_encoder) == DDP:
text_encoder = text_encoder.module
unet = unet.module
network = network.module
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
network.prepare_grad_etc(text_encoder, unet)
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
# resumeする
if args.resume is not None:
print(f"resume training from state: {args.resume}")
accelerator.load_state(args.resume)
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
# 学習する
# TODO: find a way to handle total batch size when there are multiple datasets
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
2023-03-20 08:47:00 -04:00
if is_main_process:
print("running training / 学習開始")
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}")
# print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
# TODO refactor metadata creation and move to util
metadata = {
"ss_session_id": session_id, # random integer indicating which group of epochs the model came from
"ss_training_started_at": training_started_at, # unix timestamp
"ss_output_name": args.output_name,
"ss_learning_rate": args.learning_rate,
"ss_text_encoder_lr": args.text_encoder_lr,
"ss_unet_lr": args.unet_lr,
"ss_num_train_images": train_dataset_group.num_train_images,
"ss_num_reg_images": train_dataset_group.num_reg_images,
"ss_num_batches_per_epoch": len(train_dataloader),
"ss_num_epochs": num_train_epochs,
"ss_gradient_checkpointing": args.gradient_checkpointing,
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
"ss_max_train_steps": args.max_train_steps,
"ss_lr_warmup_steps": args.lr_warmup_steps,
"ss_lr_scheduler": args.lr_scheduler,
"ss_network_module": args.network_module,
"ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
"ss_network_alpha": args.network_alpha, # some networks may not use this value
"ss_mixed_precision": args.mixed_precision,
"ss_full_fp16": bool(args.full_fp16),
"ss_v2": bool(args.v2),
"ss_clip_skip": args.clip_skip,
"ss_max_token_length": args.max_token_length,
"ss_cache_latents": bool(args.cache_latents),
"ss_seed": args.seed,
"ss_lowram": args.lowram,
"ss_noise_offset": args.noise_offset,
"ss_training_comment": args.training_comment, # will not be updated after training
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
"ss_max_grad_norm": args.max_grad_norm,
"ss_caption_dropout_rate": args.caption_dropout_rate,
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs,
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate,
"ss_face_crop_aug_range": args.face_crop_aug_range,
"ss_prior_loss_weight": args.prior_loss_weight,
}
if use_user_config:
# save metadata of multiple datasets
# NOTE: pack "ss_datasets" value as json one time
# or should also pack nested collections as json?
datasets_metadata = []
tag_frequency = {} # merge tag frequency for metadata editor
dataset_dirs_info = {} # merge subset dirs for metadata editor
for dataset in train_dataset_group.datasets:
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset)
dataset_metadata = {
"is_dreambooth": is_dreambooth_dataset,
"batch_size_per_device": dataset.batch_size,
"num_train_images": dataset.num_train_images, # includes repeating
"num_reg_images": dataset.num_reg_images,
"resolution": (dataset.width, dataset.height),
"enable_bucket": bool(dataset.enable_bucket),
"min_bucket_reso": dataset.min_bucket_reso,
"max_bucket_reso": dataset.max_bucket_reso,
"tag_frequency": dataset.tag_frequency,
"bucket_info": dataset.bucket_info,
}
subsets_metadata = []
for subset in dataset.subsets:
subset_metadata = {
"img_count": subset.img_count,
"num_repeats": subset.num_repeats,
"color_aug": bool(subset.color_aug),
"flip_aug": bool(subset.flip_aug),
"random_crop": bool(subset.random_crop),
"shuffle_caption": bool(subset.shuffle_caption),
"keep_tokens": subset.keep_tokens,
}
image_dir_or_metadata_file = None
if subset.image_dir:
image_dir = os.path.basename(subset.image_dir)
subset_metadata["image_dir"] = image_dir
image_dir_or_metadata_file = image_dir
if is_dreambooth_dataset:
subset_metadata["class_tokens"] = subset.class_tokens
subset_metadata["is_reg"] = subset.is_reg
if subset.is_reg:
image_dir_or_metadata_file = None # not merging reg dataset
else:
metadata_file = os.path.basename(subset.metadata_file)
subset_metadata["metadata_file"] = metadata_file
image_dir_or_metadata_file = metadata_file # may overwrite
subsets_metadata.append(subset_metadata)
# merge dataset dir: not reg subset only
# TODO update additional-network extension to show detailed dataset config from metadata
if image_dir_or_metadata_file is not None:
# datasets may have a certain dir multiple times
v = image_dir_or_metadata_file
i = 2
while v in dataset_dirs_info:
v = image_dir_or_metadata_file + f" ({i})"
i += 1
image_dir_or_metadata_file = v
dataset_dirs_info[image_dir_or_metadata_file] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
dataset_metadata["subsets"] = subsets_metadata
datasets_metadata.append(dataset_metadata)
# merge tag frequency:
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items():
# あるディレクトリが複数のdatasetで使用されている場合、一度だけ数える
# もともと繰り返し回数を指定しているので、キャプション内でのタグの出現回数と、それが学習で何度使われるかは一致しない
# なので、ここで複数datasetの回数を合算してもあまり意味はない
if ds_dir_name in tag_frequency:
continue
tag_frequency[ds_dir_name] = ds_freq_for_dir
metadata["ss_datasets"] = json.dumps(datasets_metadata)
metadata["ss_tag_frequency"] = json.dumps(tag_frequency)
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info)
else:
# conserving backward compatibility when using train_dataset_dir and reg_dataset_dir
assert (
len(train_dataset_group.datasets) == 1
), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。"
dataset = train_dataset_group.datasets[0]
dataset_dirs_info = {}
reg_dataset_dirs_info = {}
if use_dreambooth_method:
for subset in dataset.subsets:
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info
info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
else:
for subset in dataset.subsets:
dataset_dirs_info[os.path.basename(subset.metadata_file)] = {
"n_repeats": subset.num_repeats,
"img_count": subset.img_count,
}
metadata.update(
{
"ss_batch_size_per_device": args.train_batch_size,
"ss_total_batch_size": total_batch_size,
"ss_resolution": args.resolution,
"ss_color_aug": bool(args.color_aug),
"ss_flip_aug": bool(args.flip_aug),
"ss_random_crop": bool(args.random_crop),
"ss_shuffle_caption": bool(args.shuffle_caption),
"ss_enable_bucket": bool(dataset.enable_bucket),
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale),
"ss_min_bucket_reso": dataset.min_bucket_reso,
"ss_max_bucket_reso": dataset.max_bucket_reso,
"ss_keep_tokens": args.keep_tokens,
"ss_dataset_dirs": json.dumps(dataset_dirs_info),
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info),
"ss_tag_frequency": json.dumps(dataset.tag_frequency),
"ss_bucket_info": json.dumps(dataset.bucket_info),
}
)
# add extra args
if args.network_args:
metadata["ss_network_args"] = json.dumps(net_kwargs)
# for key, value in net_kwargs.items():
# metadata["ss_arg_" + key] = value
# model name and hash
if args.pretrained_model_name_or_path is not None:
sd_model_name = args.pretrained_model_name_or_path
if os.path.exists(sd_model_name):
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name)
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name)
sd_model_name = os.path.basename(sd_model_name)
metadata["ss_sd_model_name"] = sd_model_name
if args.vae is not None:
vae_name = args.vae
if os.path.exists(vae_name):
metadata["ss_vae_hash"] = train_util.model_hash(vae_name)
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name)
vae_name = os.path.basename(vae_name)
metadata["ss_vae_name"] = vae_name
metadata = {k: str(v) for k, v in metadata.items()}
# make minimum metadata for filtering
minimum_keys = ["ss_network_module", "ss_network_dim", "ss_network_alpha", "ss_network_args"]
minimum_metadata = {}
for key in minimum_keys:
if key in metadata:
minimum_metadata[key] = metadata[key]
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
if accelerator.is_main_process:
accelerator.init_trackers("network_train")
loss_list = []
loss_total = 0.0
2023-03-28 11:54:42 -04:00
del train_dataset_group
2023-03-20 08:47:00 -04:00
for epoch in range(num_train_epochs):
if is_main_process:
print(f"epoch {epoch+1}/{num_train_epochs}")
2023-03-28 11:54:42 -04:00
current_epoch.value = epoch+1
2023-03-20 08:47:00 -04:00
metadata["ss_epoch"] = str(epoch + 1)
network.on_epoch_start(text_encoder, unet)
for step, batch in enumerate(train_dataloader):
2023-03-28 11:54:42 -04:00
current_step.value = global_step
2023-03-20 08:47:00 -04:00
with accelerator.accumulate(network):
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.set_grad_enabled(train_text_encoder):
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
with accelerator.autocast():
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
2023-03-28 11:54:42 -04:00
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
2023-03-20 08:47:00 -04:00
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = network.get_trainable_params()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
train_util.sample_images(
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
)
current_loss = loss.detach().item()
if epoch == 0:
loss_list.append(current_loss)
else:
loss_total -= loss_list[step]
loss_list[step] = current_loss
loss_total += current_loss
avr_loss = loss_total / len(loss_list)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if args.logging_dir is not None:
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_total / len(loss_list)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
def save_func():
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + "." + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
metadata["ss_training_finished_at"] = str(time.time())
print(f"saving checkpoint: {ckpt_file}")
unwrap_model(network).save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata)
def remove_old_func(old_epoch_no):
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + "." + args.save_model_as
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
if is_main_process:
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
if saving and args.save_state:
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1)
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
# end of epoch
metadata["ss_epoch"] = str(num_train_epochs)
metadata["ss_training_finished_at"] = str(time.time())
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
if is_main_process:
network = unwrap_model(network)
2023-03-20 08:47:00 -04:00
accelerator.end_training()
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
if args.save_state:
train_util.save_state_on_train_end(args, accelerator)
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
del accelerator # この後メモリを使うのでこれは消す
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
if is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
2023-03-20 08:47:00 -04:00
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
ckpt_name = model_name + "." + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
2022-12-26 08:47:33 -05:00
2023-03-20 08:47:00 -04:00
print(f"save trained model to {ckpt_file}")
network.save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata)
print("model saved.")
2023-03-21 20:20:57 -04:00
def setup_parser() -> argparse.ArgumentParser:
2023-03-20 08:47:00 -04:00
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, True, True)
train_util.add_training_arguments(parser, True)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
2023-03-28 11:54:42 -04:00
custom_train_functions.add_custom_train_arguments(parser)
2023-03-20 08:47:00 -04:00
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
parser.add_argument(
"--save_model_as",
type=str,
default="safetensors",
choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .safetensors) / モデル保存時の形式デフォルトはsafetensors",
)
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率")
parser.add_argument("--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み")
parser.add_argument("--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール")
parser.add_argument(
"--network_dim", type=int, default=None, help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)"
)
parser.add_argument(
"--network_alpha",
type=float,
default=1,
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定",
)
parser.add_argument(
"--network_args", type=str, default=None, nargs="*", help="additional argmuments for network (key=value) / ネットワークへの追加の引数"
)
parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する")
parser.add_argument(
"--network_train_text_encoder_only", action="store_true", help="only training Text Encoder part / Text Encoder関連部分のみ学習する"
)
parser.add_argument(
"--training_comment", type=str, default=None, help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列"
)
2023-03-21 20:20:57 -04:00
return parser
if __name__ == "__main__":
parser = setup_parser()
2023-03-20 08:47:00 -04:00
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
train(args)