KohyaSS/train_textual_inversion_XTI.py

645 lines
26 KiB
Python
Raw Normal View History

2023-04-01 11:14:25 +00:00
import importlib
import argparse
import gc
import math
import os
import toml
from multiprocessing import Value
from tqdm import tqdm
import torch
from accelerate.utils import set_seed
import diffusers
from diffusers import DDPMScheduler
import library.train_util as train_util
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import apply_snr_weight
from XTI_hijack import unet_forward_XTI, downblock_forward_XTI, upblock_forward_XTI
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
def train(args):
if args.output_name is None:
args.output_name = args.token_string
use_template = args.use_object_template or args.use_style_template
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
if args.sample_every_n_steps is not None or args.sample_every_n_epochs is not None:
print(
"sample_every_n_steps and sample_every_n_epochs are not supported in this script currently / sample_every_n_stepsとsample_every_n_epochsは現在このスクリプトではサポートされていません"
)
cache_latents = args.cache_latents
if args.seed is not None:
set_seed(args.seed)
tokenizer = train_util.load_tokenizer(args)
# acceleratorを準備する
print("prepare accelerator")
accelerator, unwrap_model = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
# Convert the init_word to token_id
if args.init_word is not None:
init_token_ids = tokenizer.encode(args.init_word, add_special_tokens=False)
if len(init_token_ids) > 1 and len(init_token_ids) != args.num_vectors_per_token:
print(
f"token length for init words is not same to num_vectors_per_token, init words is repeated or truncated / 初期化単語のトークン長がnum_vectors_per_tokenと合わないため、繰り返しまたは切り捨てが発生します: length {len(init_token_ids)}"
)
else:
init_token_ids = None
# add new word to tokenizer, count is num_vectors_per_token
token_strings = [args.token_string] + [f"{args.token_string}{i+1}" for i in range(args.num_vectors_per_token - 1)]
num_added_tokens = tokenizer.add_tokens(token_strings)
assert (
num_added_tokens == args.num_vectors_per_token
), f"tokenizer has same word to token string. please use another one / 指定したargs.token_stringは既に存在します。別の単語を使ってください: {args.token_string}"
token_ids = tokenizer.convert_tokens_to_ids(token_strings)
print(f"tokens are added: {token_ids}")
assert min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1, f"token ids is not ordered"
assert len(tokenizer) - 1 == token_ids[-1], f"token ids is not end of tokenize: {len(tokenizer)}"
token_strings_XTI = []
XTI_layers = [
"IN01",
"IN02",
"IN04",
"IN05",
"IN07",
"IN08",
"MID",
"OUT03",
"OUT04",
"OUT05",
"OUT06",
"OUT07",
"OUT08",
"OUT09",
"OUT10",
"OUT11",
]
for layer_name in XTI_layers:
token_strings_XTI += [f"{t}_{layer_name}" for t in token_strings]
tokenizer.add_tokens(token_strings_XTI)
token_ids_XTI = tokenizer.convert_tokens_to_ids(token_strings_XTI)
print(f"tokens are added (XTI): {token_ids_XTI}")
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
if init_token_ids is not None:
for i, token_id in enumerate(token_ids_XTI):
token_embeds[token_id] = token_embeds[init_token_ids[(i // 16) % len(init_token_ids)]]
# print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
# load weights
if args.weights is not None:
embeddings = load_weights(args.weights)
assert len(token_ids) == len(
embeddings
), f"num_vectors_per_token is mismatch for weights / 指定した重みとnum_vectors_per_tokenの値が異なります: {len(embeddings)}"
# print(token_ids, embeddings.size())
for token_id, embedding in zip(token_ids_XTI, embeddings):
token_embeds[token_id] = embedding
# print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
print(f"weighs loaded")
print(f"create embeddings for {args.num_vectors_per_token} tokens, for {args.token_string}")
# データセットを準備する
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False))
if args.dataset_config is not None:
print(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
print(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
use_dreambooth_method = args.in_json is None
if use_dreambooth_method:
print("Use DreamBooth method.")
user_config = {
"datasets": [
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
]
}
else:
print("Train with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
train_dataset_group.enable_XTI(XTI_layers, token_strings=token_strings)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
# make captions: tokenstring tokenstring1 tokenstring2 ...tokenstringn という文字列に書き換える超乱暴な実装
if use_template:
print("use template for training captions. is object: {args.use_object_template}")
templates = imagenet_templates_small if args.use_object_template else imagenet_style_templates_small
replace_to = " ".join(token_strings)
captions = []
for tmpl in templates:
captions.append(tmpl.format(replace_to))
train_dataset_group.add_replacement("", captions)
if args.num_vectors_per_token > 1:
prompt_replacement = (args.token_string, replace_to)
else:
prompt_replacement = None
else:
if args.num_vectors_per_token > 1:
replace_to = " ".join(token_strings)
train_dataset_group.add_replacement(args.token_string, replace_to)
prompt_replacement = (args.token_string, replace_to)
else:
prompt_replacement = None
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group, show_input_ids=True)
return
if len(train_dataset_group) == 0:
print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください")
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
diffusers.models.UNet2DConditionModel.forward = unet_forward_XTI
diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D.forward = downblock_forward_XTI
diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D.forward = upblock_forward_XTI
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(vae, args.vae_batch_size)
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
trainable_params = text_encoder.get_input_embeddings().parameters()
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collater,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# acceleratorがなんかよろしくやってくれるらしい
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, lr_scheduler
)
index_no_updates = torch.arange(len(tokenizer)) < token_ids_XTI[0]
# print(len(index_no_updates), torch.sum(index_no_updates))
orig_embeds_params = unwrap_model(text_encoder).get_input_embeddings().weight.data.detach().clone()
# Freeze all parameters except for the token embeddings in text encoder
text_encoder.requires_grad_(True)
text_encoder.text_model.encoder.requires_grad_(False)
text_encoder.text_model.final_layer_norm.requires_grad_(False)
text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
# text_encoder.text_model.embeddings.token_embedding.requires_grad_(True)
unet.requires_grad_(False)
unet.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
unet.train()
else:
unet.eval()
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
text_encoder.to(weight_dtype)
# resumeする
if args.resume is not None:
print(f"resume training from state: {args.resume}")
accelerator.load_state(args.resume)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
if accelerator.is_main_process:
accelerator.init_trackers("textual_inversion")
for epoch in range(num_train_epochs):
print(f"epoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
text_encoder.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
with accelerator.accumulate(text_encoder):
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
# weight_dtype) use float instead of fp16/bf16 because text encoder is float
encoder_hidden_states = torch.stack(
[
train_util.get_hidden_states(args, s, tokenizer, text_encoder, weight_dtype)
for s in torch.split(input_ids, 1, dim=1)
]
)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = text_encoder.get_input_embeddings().parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Let's make sure we don't update any embedding weights besides the newly added token
with torch.no_grad():
unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = orig_embeds_params[
index_no_updates
]
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
# TODO: fix sample_images
# train_util.sample_images(
# accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, prompt_replacement
# )
current_loss = loss.detach().item()
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value
logs["lr/d*lr"] = (
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
)
accelerator.log(logs, step=global_step)
loss_total += current_loss
avr_loss = loss_total / (step + 1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_total / len(train_dataloader)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
updated_embs = unwrap_model(text_encoder).get_input_embeddings().weight[token_ids_XTI].data.detach().clone()
if args.save_every_n_epochs is not None:
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
def save_func():
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + "." + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"saving checkpoint: {ckpt_file}")
save_weights(ckpt_file, updated_embs, save_dtype)
def remove_old_func(old_epoch_no):
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + "." + args.save_model_as
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
if saving and args.save_state:
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1)
# TODO: fix sample_images
# train_util.sample_images(
# accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, prompt_replacement
# )
# end of epoch
is_main_process = accelerator.is_main_process
if is_main_process:
text_encoder = unwrap_model(text_encoder)
accelerator.end_training()
if args.save_state:
train_util.save_state_on_train_end(args, accelerator)
updated_embs = text_encoder.get_input_embeddings().weight[token_ids_XTI].data.detach().clone()
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
ckpt_name = model_name + "." + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"save trained model to {ckpt_file}")
save_weights(ckpt_file, updated_embs, save_dtype)
print("model saved.")
def save_weights(file, updated_embs, save_dtype):
updated_embs = updated_embs.reshape(16, -1, updated_embs.shape[-1])
updated_embs = updated_embs.chunk(16)
XTI_layers = [
"IN01",
"IN02",
"IN04",
"IN05",
"IN07",
"IN08",
"MID",
"OUT03",
"OUT04",
"OUT05",
"OUT06",
"OUT07",
"OUT08",
"OUT09",
"OUT10",
"OUT11",
]
state_dict = {}
for i, layer_name in enumerate(XTI_layers):
state_dict[layer_name] = updated_embs[i].squeeze(0).detach().clone().to("cpu").to(save_dtype)
# if save_dtype is not None:
# for key in list(state_dict.keys()):
# v = state_dict[key]
# v = v.detach().clone().to("cpu").to(save_dtype)
# state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
save_file(state_dict, file)
else:
torch.save(state_dict, file) # can be loaded in Web UI
def load_weights(file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
data = load_file(file)
else:
raise ValueError(f"NOT XTI: {file}")
if len(data.values()) != 16:
raise ValueError(f"NOT XTI: {file}")
emb = torch.concat([x for x in data.values()])
return emb
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, True, False)
train_util.add_training_arguments(parser, True)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
parser.add_argument(
"--save_model_as",
type=str,
default="pt",
choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .pt) / モデル保存時の形式デフォルトはpt",
)
parser.add_argument("--weights", type=str, default=None, help="embedding weights to initialize / 学習するネットワークの初期重み")
parser.add_argument(
"--num_vectors_per_token", type=int, default=1, help="number of vectors per token / トークンに割り当てるembeddingsの要素数"
)
parser.add_argument(
"--token_string",
type=str,
default=None,
help="token string used in training, must not exist in tokenizer / 学習時に使用されるトークン文字列、tokenizerに存在しない文字であること",
)
parser.add_argument("--init_word", type=str, default=None, help="words to initialize vector / ベクトルを初期化に使用する単語、複数可")
parser.add_argument(
"--use_object_template",
action="store_true",
help="ignore caption and use default templates for object / キャプションは使わずデフォルトの物体用テンプレートで学習する",
)
parser.add_argument(
"--use_style_template",
action="store_true",
help="ignore caption and use default templates for stype / キャプションは使わずデフォルトのスタイル用テンプレートで学習する",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
train(args)