diff --git a/README.md b/README.md index 8bec9b9..08a706f 100644 --- a/README.md +++ b/README.md @@ -176,6 +176,8 @@ This will store your a backup file with your current locally installed pip packa ## Change History +* 2023/03/05 (v21.1.4): + - Removing legacy and confusing use 8bit adam chackbox. It is now configured using the Optimiser drop down list. It will be set properly based on legacy config files. * 2023/03/04 (v21.1.3): - Fix progress bar being displayed when not required. - Add support for linux, thank you @devNegative-asm diff --git a/dreambooth_gui.py b/dreambooth_gui.py index 48bc2cf..55eec52 100644 --- a/dreambooth_gui.py +++ b/dreambooth_gui.py @@ -24,7 +24,7 @@ from library.common_gui import ( gradio_training, gradio_config, gradio_source_model, - set_legacy_8bitadam, + # set_legacy_8bitadam, update_my_data, ) from library.tensorboard_gui import ( @@ -72,7 +72,7 @@ def save_configuration( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -173,7 +173,7 @@ def open_configuration( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -253,7 +253,7 @@ def train_model( full_fp16, no_token_padding, stop_text_encoder_training_pct, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -443,7 +443,7 @@ def train_model( gradient_checkpointing=gradient_checkpointing, full_fp16=full_fp16, xformers=xformers, - use_8bit_adam=use_8bit_adam, + # use_8bit_adam=use_8bit_adam, keep_tokens=keep_tokens, persistent_data_loader_workers=persistent_data_loader_workers, bucket_no_upscale=bucket_no_upscale, @@ -622,7 +622,7 @@ def dreambooth_tab( show_progress=False, ) ( - use_8bit_adam, + # use_8bit_adam, xformers, full_fp16, gradient_checkpointing, @@ -650,11 +650,11 @@ def dreambooth_tab( inputs=[color_aug], outputs=[cache_latents], ) - optimizer.change( - set_legacy_8bitadam, - inputs=[optimizer, use_8bit_adam], - outputs=[optimizer, use_8bit_adam], - ) + # optimizer.change( + # set_legacy_8bitadam, + # inputs=[optimizer, use_8bit_adam], + # outputs=[optimizer, use_8bit_adam], + # ) with gr.Tab('Tools'): gr.Markdown( 'This section provide Dreambooth tools to help setup your dataset...' @@ -708,7 +708,7 @@ def dreambooth_tab( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, diff --git a/finetune_gui.py b/finetune_gui.py index f9a831b..737f64c 100644 --- a/finetune_gui.py +++ b/finetune_gui.py @@ -18,7 +18,7 @@ from library.common_gui import ( gradio_source_model, color_aug_changed, run_cmd_training, - set_legacy_8bitadam, + # set_legacy_8bitadam, update_my_data, ) from library.tensorboard_gui import ( @@ -70,7 +70,7 @@ def save_configuration( create_buckets, save_model_as, caption_extension, - use_8bit_adam, + # use_8bit_adam, xformers, clip_skip, save_state, @@ -177,7 +177,7 @@ def open_config_file( create_buckets, save_model_as, caption_extension, - use_8bit_adam, + # use_8bit_adam, xformers, clip_skip, save_state, @@ -263,7 +263,7 @@ def train_model( generate_image_buckets, save_model_as, caption_extension, - use_8bit_adam, + # use_8bit_adam, xformers, clip_skip, save_state, @@ -429,7 +429,7 @@ def train_model( gradient_checkpointing=gradient_checkpointing, full_fp16=full_fp16, xformers=xformers, - use_8bit_adam=use_8bit_adam, + # use_8bit_adam=use_8bit_adam, keep_tokens=keep_tokens, persistent_data_loader_workers=persistent_data_loader_workers, bucket_no_upscale=bucket_no_upscale, @@ -618,7 +618,7 @@ def finetune_tab(): label='Gradient accumulate steps', value='1' ) ( - use_8bit_adam, + # use_8bit_adam, xformers, full_fp16, gradient_checkpointing, @@ -646,11 +646,11 @@ def finetune_tab(): inputs=[color_aug], outputs=[cache_latents], # Not applicable to fine_tune.py ) - optimizer.change( - set_legacy_8bitadam, - inputs=[optimizer, use_8bit_adam], - outputs=[optimizer, use_8bit_adam], - ) + # optimizer.change( + # set_legacy_8bitadam, + # inputs=[optimizer, use_8bit_adam], + # outputs=[optimizer, use_8bit_adam], + # ) button_run = gr.Button('Train model', variant='primary') @@ -699,7 +699,7 @@ def finetune_tab(): create_buckets, save_model_as, caption_extension, - use_8bit_adam, + # use_8bit_adam, xformers, clip_skip, save_state, diff --git a/library/common_gui.py b/library/common_gui.py index 90fac72..f792ffc 100644 --- a/library/common_gui.py +++ b/library/common_gui.py @@ -11,9 +11,12 @@ document_symbol = '\U0001F4C4' # 📄 def update_my_data(my_data): - if my_data.get('use_8bit_adam', False): + if my_data.get('use_8bit_adam', False) == True: my_data['optimizer'] = 'AdamW8bit' - my_data['use_8bit_adam'] = False + # my_data['use_8bit_adam'] = False + + if my_data.get('optimizer', 'missing') == 'missing' and my_data.get('use_8bit_adam', False) == False: + my_data['optimizer'] = 'AdamW' if my_data.get('model_list', 'custom') == []: print('Old config with empty model list. Setting to custom...') @@ -92,17 +95,17 @@ def remove_doublequote(file_path): return file_path -def set_legacy_8bitadam(optimizer, use_8bit_adam): - if optimizer == 'AdamW8bit': - # use_8bit_adam = True - return gr.Dropdown.update(value=optimizer), gr.Checkbox.update( - value=True, interactive=False, visible=True - ) - else: - # use_8bit_adam = False - return gr.Dropdown.update(value=optimizer), gr.Checkbox.update( - value=False, interactive=False, visible=True - ) +# def set_legacy_8bitadam(optimizer, use_8bit_adam): +# if optimizer == 'AdamW8bit': +# # use_8bit_adam = True +# return gr.Dropdown.update(value=optimizer), gr.Checkbox.update( +# value=True, interactive=False, visible=True +# ) +# else: +# # use_8bit_adam = False +# return gr.Dropdown.update(value=optimizer), gr.Checkbox.update( +# value=False, interactive=False, visible=True +# ) def get_folder_path(folder_path=''): @@ -584,30 +587,6 @@ def run_cmd_training(**kwargs): return run_cmd -# # This function takes a dictionary of keyword arguments and returns a string that can be used to run a command-line training script -# def run_cmd_training(**kwargs): -# arg_map = { -# 'learning_rate': ' --learning_rate="{}"', -# 'lr_scheduler': ' --lr_scheduler="{}"', -# 'lr_warmup_steps': ' --lr_warmup_steps="{}"', -# 'train_batch_size': ' --train_batch_size="{}"', -# 'max_train_steps': ' --max_train_steps="{}"', -# 'save_every_n_epochs': ' --save_every_n_epochs="{}"', -# 'mixed_precision': ' --mixed_precision="{}"', -# 'save_precision': ' --save_precision="{}"', -# 'seed': ' --seed="{}"', -# 'caption_extension': ' --caption_extension="{}"', -# 'cache_latents': ' --cache_latents', -# 'optimizer': ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '', -# } - -# options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value] - -# cmd = ''.join(options) - -# return cmd - - def gradio_advanced_training(): with gr.Row(): keep_tokens = gr.Slider( @@ -641,9 +620,9 @@ def gradio_advanced_training(): ) with gr.Row(): # This use_8bit_adam element should be removed in a future release as it is no longer used - use_8bit_adam = gr.Checkbox( - label='Use 8bit adam', value=False, visible=False - ) + # use_8bit_adam = gr.Checkbox( + # label='Use 8bit adam', value=False, visible=False + # ) xformers = gr.Checkbox(label='Use xformers', value=True) color_aug = gr.Checkbox(label='Color augmentation', value=False) flip_aug = gr.Checkbox(label='Flip augmentation', value=False) @@ -689,7 +668,7 @@ def gradio_advanced_training(): placeholder='(Optional) Override number of epoch. Default: 8', ) return ( - use_8bit_adam, + # use_8bit_adam, xformers, full_fp16, gradient_checkpointing, @@ -753,7 +732,7 @@ def run_cmd_advanced_training(**kwargs): else '', ' --full_fp16' if kwargs.get('full_fp16') else '', ' --xformers' if kwargs.get('xformers') else '', - ' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '', + # ' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '', ' --persistent_data_loader_workers' if kwargs.get('persistent_data_loader_workers') else '', @@ -765,35 +744,3 @@ def run_cmd_advanced_training(**kwargs): ] run_cmd = ''.join(options) return run_cmd - - -# def run_cmd_advanced_training(**kwargs): -# arg_map = { -# 'max_train_epochs': ' --max_train_epochs="{}"', -# 'max_data_loader_n_workers': ' --max_data_loader_n_workers="{}"', -# 'max_token_length': ' --max_token_length={}' if int(kwargs.get('max_token_length', 75)) > 75 else '', -# 'clip_skip': ' --clip_skip={}' if int(kwargs.get('clip_skip', 1)) > 1 else '', -# 'resume': ' --resume="{}"', -# 'keep_tokens': ' --keep_tokens="{}"' if int(kwargs.get('keep_tokens', 0)) > 0 else '', -# 'caption_dropout_every_n_epochs': ' --caption_dropout_every_n_epochs="{}"' if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0 else '', -# 'caption_dropout_rate': ' --caption_dropout_rate="{}"' if float(kwargs.get('caption_dropout_rate', 0)) > 0 else '', -# 'bucket_reso_steps': ' --bucket_reso_steps={:d}' if int(kwargs.get('bucket_reso_steps', 64)) >= 1 else '', -# 'save_state': ' --save_state', -# 'mem_eff_attn': ' --mem_eff_attn', -# 'color_aug': ' --color_aug', -# 'flip_aug': ' --flip_aug', -# 'shuffle_caption': ' --shuffle_caption', -# 'gradient_checkpointing': ' --gradient_checkpointing', -# 'full_fp16': ' --full_fp16', -# 'xformers': ' --xformers', -# 'use_8bit_adam': ' --use_8bit_adam', -# 'persistent_data_loader_workers': ' --persistent_data_loader_workers', -# 'bucket_no_upscale': ' --bucket_no_upscale', -# 'random_crop': ' --random_crop', -# } - -# options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value] - -# cmd = ''.join(options) - -# return cmd diff --git a/lora_gui.py b/lora_gui.py index c6c31ef..0da962b 100644 --- a/lora_gui.py +++ b/lora_gui.py @@ -24,7 +24,7 @@ from library.common_gui import ( gradio_config, gradio_source_model, run_cmd_training, - set_legacy_8bitadam, + # set_legacy_8bitadam, update_my_data, ) from library.dreambooth_folder_creation_gui import ( @@ -77,7 +77,7 @@ def save_configuration( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -188,7 +188,7 @@ def open_configuration( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -285,7 +285,7 @@ def train_model( full_fp16, no_token_padding, stop_text_encoder_training_pct, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -533,7 +533,7 @@ def train_model( gradient_checkpointing=gradient_checkpointing, full_fp16=full_fp16, xformers=xformers, - use_8bit_adam=use_8bit_adam, + # use_8bit_adam=use_8bit_adam, keep_tokens=keep_tokens, persistent_data_loader_workers=persistent_data_loader_workers, bucket_no_upscale=bucket_no_upscale, @@ -793,7 +793,7 @@ def lora_tab( placeholder='(Optional) For Cosine with restart and polynomial only', ) ( - use_8bit_adam, + # use_8bit_adam, xformers, full_fp16, gradient_checkpointing, @@ -822,11 +822,11 @@ def lora_tab( outputs=[cache_latents], ) - optimizer.change( - set_legacy_8bitadam, - inputs=[optimizer, use_8bit_adam], - outputs=[optimizer, use_8bit_adam], - ) + # optimizer.change( + # set_legacy_8bitadam, + # inputs=[optimizer, use_8bit_adam], + # outputs=[optimizer, use_8bit_adam], + # ) with gr.Tab('Tools'): gr.Markdown( @@ -885,7 +885,7 @@ def lora_tab( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, diff --git a/textual_inversion_gui.py b/textual_inversion_gui.py index b8715a4..9bfadf5 100644 --- a/textual_inversion_gui.py +++ b/textual_inversion_gui.py @@ -24,7 +24,7 @@ from library.common_gui import ( gradio_training, gradio_config, gradio_source_model, - set_legacy_8bitadam, + # set_legacy_8bitadam, update_my_data, ) from library.tensorboard_gui import ( @@ -72,7 +72,7 @@ def save_configuration( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -179,7 +179,7 @@ def open_configuration( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -265,7 +265,7 @@ def train_model( full_fp16, no_token_padding, stop_text_encoder_training_pct, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption, @@ -476,7 +476,7 @@ def train_model( gradient_checkpointing=gradient_checkpointing, full_fp16=full_fp16, xformers=xformers, - use_8bit_adam=use_8bit_adam, + # use_8bit_adam=use_8bit_adam, keep_tokens=keep_tokens, persistent_data_loader_workers=persistent_data_loader_workers, bucket_no_upscale=bucket_no_upscale, @@ -708,7 +708,7 @@ def ti_tab( show_progress=False, ) ( - use_8bit_adam, + # use_8bit_adam, xformers, full_fp16, gradient_checkpointing, @@ -736,11 +736,11 @@ def ti_tab( inputs=[color_aug], outputs=[cache_latents], ) - optimizer.change( - set_legacy_8bitadam, - inputs=[optimizer, use_8bit_adam], - outputs=[optimizer, use_8bit_adam], - ) + # optimizer.change( + # set_legacy_8bitadam, + # inputs=[optimizer, use_8bit_adam], + # outputs=[optimizer, use_8bit_adam], + # ) with gr.Tab('Tools'): gr.Markdown( 'This section provide Dreambooth tools to help setup your dataset...' @@ -794,7 +794,7 @@ def ti_tab( full_fp16, no_token_padding, stop_text_encoder_training, - use_8bit_adam, + # use_8bit_adam, xformers, save_model_as, shuffle_caption,