Adding support for caption dropout
This commit is contained in:
parent
8d559ded18
commit
09d3a72cd8
@ -88,6 +88,7 @@ def save_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -177,6 +178,7 @@ def open_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -250,6 +252,7 @@ def train_model(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
msgbox('Source model information is missing')
|
||||
@ -416,6 +419,8 @@ def train_model(
|
||||
bucket_no_upscale=bucket_no_upscale,
|
||||
random_crop=random_crop,
|
||||
bucket_reso_steps=bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate=caption_dropout_rate,
|
||||
)
|
||||
|
||||
print(run_cmd)
|
||||
@ -627,6 +632,7 @@ def dreambooth_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -695,6 +701,7 @@ def dreambooth_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
|
@ -36,6 +36,10 @@ def train(args):
|
||||
args.bucket_reso_steps, args.bucket_no_upscale,
|
||||
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop,
|
||||
args.dataset_repeats, args.debug_dataset)
|
||||
|
||||
# 学習データのdropout率を設定する
|
||||
train_dataset.set_caption_dropout(args.caption_dropout_rate, args.caption_dropout_every_n_epochs)
|
||||
|
||||
train_dataset.make_buckets()
|
||||
|
||||
if args.debug_dataset:
|
||||
@ -226,6 +230,9 @@ def train(args):
|
||||
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
|
||||
train_dataset.epoch_current = epoch + 1
|
||||
|
||||
for m in training_models:
|
||||
m.train()
|
||||
|
||||
@ -332,7 +339,7 @@ if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, False, True)
|
||||
train_util.add_dataset_arguments(parser, False, True, True)
|
||||
train_util.add_training_arguments(parser, False)
|
||||
train_util.add_sd_saving_arguments(parser)
|
||||
|
||||
|
@ -84,6 +84,7 @@ def save_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -179,6 +180,7 @@ def open_config_file(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -259,6 +261,7 @@ def train_model(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# create caption json file
|
||||
if generate_caption_database:
|
||||
@ -405,6 +408,8 @@ def train_model(
|
||||
bucket_no_upscale=bucket_no_upscale,
|
||||
random_crop=random_crop,
|
||||
bucket_reso_steps=bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate=caption_dropout_rate,
|
||||
)
|
||||
|
||||
print(run_cmd)
|
||||
@ -614,6 +619,7 @@ def finetune_tab():
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -678,6 +684,7 @@ def finetune_tab():
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
]
|
||||
|
||||
button_run.click(train_model, inputs=settings_list)
|
||||
|
@ -563,6 +563,15 @@ def gradio_advanced_training():
|
||||
random_crop = gr.Checkbox(
|
||||
label='Random crop instead of center crop', value=False
|
||||
)
|
||||
with gr.Row():
|
||||
caption_dropout_every_n_epochs = gr.Number(
|
||||
label="Dropout caption every n epochs",
|
||||
value=0
|
||||
)
|
||||
caption_dropout_rate = gr.Number(
|
||||
label="Rate of caption dropout",
|
||||
value=0
|
||||
)
|
||||
with gr.Row():
|
||||
save_state = gr.Checkbox(label='Save training state', value=False)
|
||||
resume = gr.Textbox(
|
||||
@ -599,6 +608,7 @@ def gradio_advanced_training():
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
)
|
||||
|
||||
|
||||
@ -622,6 +632,12 @@ def run_cmd_advanced_training(**kwargs):
|
||||
f' --keep_tokens="{kwargs.get("keep_tokens", "")}"'
|
||||
if int(kwargs.get('keep_tokens', 0)) > 0
|
||||
else '',
|
||||
f' --caption_dropout_every_n_epochs="{kwargs.get("caption_dropout_every_n_epochs", "")}"'
|
||||
if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0
|
||||
else '',
|
||||
f' --caption_dropout_rate="{kwargs.get("caption_dropout_rate", "")}"'
|
||||
if float(kwargs.get('caption_dropout_rate', 0)) > 0
|
||||
else '',
|
||||
|
||||
f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}'
|
||||
if int(kwargs.get('bucket_reso_steps', 64)) >= 1
|
||||
|
@ -113,7 +113,7 @@ class BucketManager():
|
||||
# 規定サイズから選ぶ場合の解像度、aspect ratioの情報を格納しておく
|
||||
self.predefined_resos = resos.copy()
|
||||
self.predefined_resos_set = set(resos)
|
||||
self.predifined_aspect_ratios = np.array([w / h for w, h in resos])
|
||||
self.predefined_aspect_ratios = np.array([w / h for w, h in resos])
|
||||
|
||||
def add_if_new_reso(self, reso):
|
||||
if reso not in self.reso_to_id:
|
||||
@ -135,7 +135,7 @@ class BucketManager():
|
||||
if reso in self.predefined_resos_set:
|
||||
pass
|
||||
else:
|
||||
ar_errors = self.predifined_aspect_ratios - aspect_ratio
|
||||
ar_errors = self.predefined_aspect_ratios - aspect_ratio
|
||||
predefined_bucket_id = np.abs(ar_errors).argmin() # 当該解像度以外でaspect ratio errorが最も少ないもの
|
||||
reso = self.predefined_resos[predefined_bucket_id]
|
||||
|
||||
@ -223,6 +223,11 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
|
||||
self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2
|
||||
|
||||
# TODO 外から渡したほうが安心だが自動で計算したほうが呼ぶ側に余分なコードがいらないのでよさそう
|
||||
self.epoch_current: int = int(0)
|
||||
self.dropout_rate: float = 0
|
||||
self.dropout_every_n_epochs: int = None
|
||||
|
||||
# augmentation
|
||||
flip_p = 0.5 if flip_aug else 0.0
|
||||
if color_aug:
|
||||
@ -247,6 +252,12 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
|
||||
self.replacements = {}
|
||||
|
||||
def set_caption_dropout(self, dropout_rate, dropout_every_n_epochs):
|
||||
# 将来的にタグのドロップアウトも対応したいのでメソッドを生やしておく
|
||||
# コンストラクタで渡さないのはTextual Inversionで意識したくないから(ということにしておく)
|
||||
self.dropout_rate = dropout_rate
|
||||
self.dropout_every_n_epochs = dropout_every_n_epochs
|
||||
|
||||
def set_tag_frequency(self, dir_name, captions):
|
||||
frequency_for_dir = self.tag_frequency.get(dir_name, {})
|
||||
self.tag_frequency[dir_name] = frequency_for_dir
|
||||
@ -265,7 +276,7 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
|
||||
def process_caption(self, caption):
|
||||
if self.shuffle_caption:
|
||||
tokens = caption.strip().split(",")
|
||||
tokens = [t.strip() for t in caption.strip().split(",")]
|
||||
if self.shuffle_keep_tokens is None:
|
||||
random.shuffle(tokens)
|
||||
else:
|
||||
@ -274,7 +285,7 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
tokens = tokens[self.shuffle_keep_tokens:]
|
||||
random.shuffle(tokens)
|
||||
tokens = keep_tokens + tokens
|
||||
caption = ",".join(tokens).strip()
|
||||
caption = ", ".join(tokens)
|
||||
|
||||
for str_from, str_to in self.replacements.items():
|
||||
if str_from == "":
|
||||
@ -598,7 +609,18 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
images.append(image)
|
||||
latents_list.append(latents)
|
||||
|
||||
caption = self.process_caption(image_info.caption)
|
||||
# dropoutの決定
|
||||
is_drop_out = False
|
||||
if self.dropout_rate > 0 and random.random() < self.dropout_rate:
|
||||
is_drop_out = True
|
||||
if self.dropout_every_n_epochs and self.epoch_current % self.dropout_every_n_epochs == 0:
|
||||
is_drop_out = True
|
||||
|
||||
if is_drop_out:
|
||||
caption = ""
|
||||
print(f"Drop caption out: {self.process_caption(image_info.caption)}")
|
||||
else:
|
||||
caption = self.process_caption(image_info.caption)
|
||||
captions.append(caption)
|
||||
if not self.token_padding_disabled: # this option might be omitted in future
|
||||
input_ids_list.append(self.get_input_ids(caption))
|
||||
@ -1377,7 +1399,7 @@ def verify_training_args(args: argparse.Namespace):
|
||||
print("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません")
|
||||
|
||||
|
||||
def add_dataset_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool, support_caption: bool):
|
||||
def add_dataset_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool, support_caption: bool, support_caption_dropout: bool):
|
||||
# dataset common
|
||||
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("--shuffle_caption", action="store_true",
|
||||
@ -1408,6 +1430,14 @@ def add_dataset_arguments(parser: argparse.ArgumentParser, support_dreambooth: b
|
||||
parser.add_argument("--bucket_no_upscale", action="store_true",
|
||||
help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します")
|
||||
|
||||
if support_caption_dropout:
|
||||
# Textual Inversion はcaptionのdropoutをsupportしない
|
||||
# いわゆるtensorのDropoutと紛らわしいのでprefixにcaptionを付けておく every_n_epochsは他と平仄を合わせてdefault Noneに
|
||||
parser.add_argument("--caption_dropout_rate", type=float, default=0,
|
||||
help="Rate out dropout caption(0.0~1.0) / captionをdropoutする割合")
|
||||
parser.add_argument("--caption_dropout_every_n_epochs", type=int, default=None,
|
||||
help="Dropout all captions every N epochs / captionを指定エポックごとにdropoutする")
|
||||
|
||||
if support_dreambooth:
|
||||
# DreamBooth dataset
|
||||
parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ")
|
||||
@ -1718,4 +1748,4 @@ class ImageLoadingDataset(torch.utils.data.Dataset):
|
||||
return (tensor_pil, img_path)
|
||||
|
||||
|
||||
# endregion
|
||||
# endregion
|
||||
|
13
lora_gui.py
13
lora_gui.py
@ -99,6 +99,7 @@ def save_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -195,6 +196,7 @@ def open_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -275,7 +277,8 @@ def train_model(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
):
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
msgbox('Source model information is missing')
|
||||
return
|
||||
@ -380,7 +383,7 @@ def train_model(
|
||||
|
||||
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_network.py"'
|
||||
|
||||
run_cmd += f' --bucket_reso_steps=1 --bucket_no_upscale' # --random_crop'
|
||||
# run_cmd += f' --caption_dropout_rate="0.1" --caption_dropout_every_n_epochs=1' # --random_crop'
|
||||
|
||||
if v2:
|
||||
run_cmd += ' --v2'
|
||||
@ -440,7 +443,7 @@ def train_model(
|
||||
else:
|
||||
run_cmd += f' --lr_scheduler_num_cycles="{epoch}"'
|
||||
if not lr_scheduler_power == '':
|
||||
run_cmd += f' --output_name="{lr_scheduler_power}"'
|
||||
run_cmd += f' --lr_scheduler_power="{lr_scheduler_power}"'
|
||||
|
||||
run_cmd += run_cmd_training(
|
||||
learning_rate=learning_rate,
|
||||
@ -476,6 +479,8 @@ def train_model(
|
||||
bucket_no_upscale=bucket_no_upscale,
|
||||
random_crop=random_crop,
|
||||
bucket_reso_steps=bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate=caption_dropout_rate,
|
||||
)
|
||||
|
||||
print(run_cmd)
|
||||
@ -725,6 +730,7 @@ def lora_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -805,6 +811,7 @@ def lora_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
|
@ -5,6 +5,7 @@
|
||||
|
||||
import math
|
||||
import os
|
||||
from typing import List
|
||||
import torch
|
||||
|
||||
from library import train_util
|
||||
@ -98,7 +99,7 @@ class LoRANetwork(torch.nn.Module):
|
||||
self.alpha = alpha
|
||||
|
||||
# create module instances
|
||||
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> list[LoRAModule]:
|
||||
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> List[LoRAModule]:
|
||||
loras = []
|
||||
for name, module in root_module.named_modules():
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
|
@ -94,6 +94,7 @@ def save_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -193,6 +194,7 @@ def open_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -272,6 +274,7 @@ def train_model(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
msgbox('Source model information is missing')
|
||||
@ -453,6 +456,8 @@ def train_model(
|
||||
bucket_no_upscale=bucket_no_upscale,
|
||||
random_crop=random_crop,
|
||||
bucket_reso_steps=bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate=caption_dropout_rate,
|
||||
)
|
||||
run_cmd += f' --token_string="{token_string}"'
|
||||
run_cmd += f' --init_word="{init_word}"'
|
||||
@ -709,6 +714,7 @@ def ti_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -783,6 +789,7 @@ def ti_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
|
@ -4,7 +4,7 @@ import argparse
|
||||
import shutil
|
||||
import math
|
||||
|
||||
def resize_images(src_img_folder, dst_img_folder, max_resolution="512x512", divisible_by=2):
|
||||
def resize_images(src_img_folder, dst_img_folder, max_resolution="512x512", divisible_by=1):
|
||||
# Split the max_resolution string by "," and strip any whitespaces
|
||||
max_resolutions = [res.strip() for res in max_resolution.split(',')]
|
||||
|
||||
@ -57,7 +57,11 @@ def resize_images(src_img_folder, dst_img_folder, max_resolution="512x512", divi
|
||||
# Split filename into base and extension
|
||||
base, ext = os.path.splitext(filename)
|
||||
new_filename = base + '+' + max_resolution + '.jpg'
|
||||
|
||||
|
||||
# copy caption file with right name if one exist
|
||||
if os.path.exists(os.path.join(src_img_folder, base + '.txt')):
|
||||
shutil.copy(os.path.join(src_img_folder, base + '.txt'), os.path.join(dst_img_folder, new_filename + '.txt'))
|
||||
|
||||
# Save resized image in dst_img_folder
|
||||
cv2.imwrite(os.path.join(dst_img_folder, new_filename), img, [cv2.IMWRITE_JPEG_QUALITY, 100])
|
||||
print(f"Resized image: {filename} with size {img.shape[0]}x{img.shape[1]} as {new_filename}")
|
||||
|
@ -38,8 +38,13 @@ def train(args):
|
||||
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
|
||||
args.bucket_reso_steps, args.bucket_no_upscale,
|
||||
args.prior_loss_weight, args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop, args.debug_dataset)
|
||||
|
||||
if args.no_token_padding:
|
||||
train_dataset.disable_token_padding()
|
||||
|
||||
# 学習データのdropout率を設定する
|
||||
train_dataset.set_caption_dropout(args.caption_dropout_rate, args.caption_dropout_every_n_epochs)
|
||||
|
||||
train_dataset.make_buckets()
|
||||
|
||||
if args.debug_dataset:
|
||||
@ -204,6 +209,8 @@ def train(args):
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
|
||||
train_dataset.epoch_current = epoch + 1
|
||||
|
||||
# 指定したステップ数までText Encoderを学習する:epoch最初の状態
|
||||
unet.train()
|
||||
# train==True is required to enable gradient_checkpointing
|
||||
@ -327,7 +334,7 @@ if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, True, False)
|
||||
train_util.add_dataset_arguments(parser, True, False, True)
|
||||
train_util.add_training_arguments(parser, True)
|
||||
train_util.add_sd_saving_arguments(parser)
|
||||
|
||||
|
@ -120,18 +120,22 @@ def train(args):
|
||||
print("Use DreamBooth method.")
|
||||
train_dataset = DreamBoothDataset(args.train_batch_size, args.train_data_dir, args.reg_data_dir,
|
||||
tokenizer, args.max_token_length, args.caption_extension, args.shuffle_caption, args.keep_tokens,
|
||||
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
|
||||
args.bucket_reso_steps, args.bucket_no_upscale,
|
||||
args.prior_loss_weight, args.flip_aug, args.color_aug, args.face_crop_aug_range,
|
||||
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
|
||||
args.bucket_reso_steps, args.bucket_no_upscale,
|
||||
args.prior_loss_weight, args.flip_aug, args.color_aug, args.face_crop_aug_range,
|
||||
args.random_crop, args.debug_dataset)
|
||||
else:
|
||||
print("Train with captions.")
|
||||
train_dataset = FineTuningDataset(args.in_json, args.train_batch_size, args.train_data_dir,
|
||||
tokenizer, args.max_token_length, args.shuffle_caption, args.keep_tokens,
|
||||
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
|
||||
args.bucket_reso_steps, args.bucket_no_upscale,
|
||||
args.bucket_reso_steps, args.bucket_no_upscale,
|
||||
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop,
|
||||
args.dataset_repeats, args.debug_dataset)
|
||||
|
||||
# 学習データのdropout率を設定する
|
||||
train_dataset.set_caption_dropout(args.caption_dropout_rate, args.caption_dropout_every_n_epochs)
|
||||
|
||||
train_dataset.make_buckets()
|
||||
|
||||
if args.debug_dataset:
|
||||
@ -376,6 +380,9 @@ def train(args):
|
||||
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
|
||||
train_dataset.epoch_current = epoch + 1
|
||||
|
||||
metadata["ss_epoch"] = str(epoch+1)
|
||||
|
||||
network.on_epoch_start(text_encoder, unet)
|
||||
@ -509,7 +516,7 @@ if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, True, True)
|
||||
train_util.add_dataset_arguments(parser, True, True, True)
|
||||
train_util.add_training_arguments(parser, True)
|
||||
|
||||
parser.add_argument("--no_metadata", action='store_true', help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
|
||||
|
@ -478,7 +478,7 @@ if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, True, True)
|
||||
train_util.add_dataset_arguments(parser, True, True, False)
|
||||
train_util.add_training_arguments(parser, True)
|
||||
|
||||
parser.add_argument("--save_model_as", type=str, default="pt", choices=[None, "ckpt", "pt", "safetensors"],
|
||||
|
Loading…
x
Reference in New Issue
Block a user