Run blue
This commit is contained in:
parent
5498539fda
commit
182080bb78
@ -95,9 +95,11 @@ def save_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -194,9 +196,11 @@ def open_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -272,9 +276,11 @@ def train_model(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
msgbox('Source model information is missing')
|
||||
@ -566,7 +572,8 @@ def dreambooth_tab(
|
||||
seed,
|
||||
caption_extension,
|
||||
cache_latents,
|
||||
optimizer,optimizer_args,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
) = gradio_training(
|
||||
learning_rate_value='1e-5',
|
||||
lr_scheduler_value='cosine',
|
||||
@ -624,7 +631,9 @@ def dreambooth_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
noise_offset,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -710,8 +719,11 @@ def dreambooth_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
@ -773,16 +785,20 @@ def UI(**kwargs):
|
||||
)
|
||||
|
||||
# Show the interface
|
||||
launch_kwargs={}
|
||||
launch_kwargs = {}
|
||||
if not kwargs.get('username', None) == '':
|
||||
launch_kwargs["auth"] = (kwargs.get('username', None), kwargs.get('password', None))
|
||||
launch_kwargs['auth'] = (
|
||||
kwargs.get('username', None),
|
||||
kwargs.get('password', None),
|
||||
)
|
||||
if kwargs.get('server_port', 0) > 0:
|
||||
launch_kwargs["server_port"] = kwargs.get('server_port', 0)
|
||||
launch_kwargs['server_port'] = kwargs.get('server_port', 0)
|
||||
if kwargs.get('inbrowser', False):
|
||||
launch_kwargs["inbrowser"] = kwargs.get('inbrowser', False)
|
||||
launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False)
|
||||
print(launch_kwargs)
|
||||
interface.launch(**launch_kwargs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# torch.cuda.set_per_process_memory_fraction(0.48)
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -793,10 +809,20 @@ if __name__ == '__main__':
|
||||
'--password', type=str, default='', help='Password for authentication'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--server_port', type=int, default=0, help='Port to run the server listener on'
|
||||
'--server_port',
|
||||
type=int,
|
||||
default=0,
|
||||
help='Port to run the server listener on',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--inbrowser', action='store_true', help='Open in browser'
|
||||
)
|
||||
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
UI(username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port)
|
||||
UI(
|
||||
username=args.username,
|
||||
password=args.password,
|
||||
inbrowser=args.inbrowser,
|
||||
server_port=args.server_port,
|
||||
)
|
||||
|
@ -91,8 +91,11 @@ def save_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -195,8 +198,11 @@ def open_config_file(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -278,8 +284,11 @@ def train_model(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# create caption json file
|
||||
if generate_caption_database:
|
||||
@ -585,7 +594,8 @@ def finetune_tab():
|
||||
seed,
|
||||
caption_extension,
|
||||
cache_latents,
|
||||
optimizer,optimizer_args,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
) = gradio_training(learning_rate_value='1e-5')
|
||||
with gr.Row():
|
||||
dataset_repeats = gr.Textbox(label='Dataset repeats', value=40)
|
||||
@ -617,7 +627,9 @@ def finetune_tab():
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
noise_offset,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -699,8 +711,11 @@ def finetune_tab():
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
]
|
||||
|
||||
button_run.click(train_model, inputs=settings_list)
|
||||
@ -742,13 +757,16 @@ def UI(**kwargs):
|
||||
utilities_tab(enable_dreambooth_tab=False)
|
||||
|
||||
# Show the interface
|
||||
launch_kwargs={}
|
||||
launch_kwargs = {}
|
||||
if not kwargs.get('username', None) == '':
|
||||
launch_kwargs["auth"] = (kwargs.get('username', None), kwargs.get('password', None))
|
||||
launch_kwargs['auth'] = (
|
||||
kwargs.get('username', None),
|
||||
kwargs.get('password', None),
|
||||
)
|
||||
if kwargs.get('server_port', 0) > 0:
|
||||
launch_kwargs["server_port"] = kwargs.get('server_port', 0)
|
||||
launch_kwargs['server_port'] = kwargs.get('server_port', 0)
|
||||
if kwargs.get('inbrowser', False):
|
||||
launch_kwargs["inbrowser"] = kwargs.get('inbrowser', False)
|
||||
launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False)
|
||||
print(launch_kwargs)
|
||||
interface.launch(**launch_kwargs)
|
||||
|
||||
@ -763,10 +781,20 @@ if __name__ == '__main__':
|
||||
'--password', type=str, default='', help='Password for authentication'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--server_port', type=int, default=0, help='Port to run the server listener on'
|
||||
'--server_port',
|
||||
type=int,
|
||||
default=0,
|
||||
help='Port to run the server listener on',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--inbrowser', action='store_true', help='Open in browser'
|
||||
)
|
||||
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
UI(username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port)
|
||||
UI(
|
||||
username=args.username,
|
||||
password=args.password,
|
||||
inbrowser=args.inbrowser,
|
||||
server_port=args.server_port,
|
||||
)
|
||||
|
30
kohya_gui.py
30
kohya_gui.py
@ -53,15 +53,16 @@ def UI(**kwargs):
|
||||
inbrowser = kwargs.get('inbrowser', False)
|
||||
share = kwargs.get('share', False)
|
||||
if username and password:
|
||||
launch_kwargs["auth"] = (username, password)
|
||||
launch_kwargs['auth'] = (username, password)
|
||||
if server_port > 0:
|
||||
launch_kwargs["server_port"] = server_port
|
||||
launch_kwargs['server_port'] = server_port
|
||||
if inbrowser:
|
||||
launch_kwargs["inbrowser"] = inbrowser
|
||||
launch_kwargs['inbrowser'] = inbrowser
|
||||
if share:
|
||||
launch_kwargs["share"] = share
|
||||
launch_kwargs['share'] = share
|
||||
interface.launch(**launch_kwargs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# torch.cuda.set_per_process_memory_fraction(0.48)
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -72,11 +73,24 @@ if __name__ == '__main__':
|
||||
'--password', type=str, default='', help='Password for authentication'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--server_port', type=int, default=0, help='Port to run the server listener on'
|
||||
'--server_port',
|
||||
type=int,
|
||||
default=0,
|
||||
help='Port to run the server listener on',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--inbrowser', action='store_true', help='Open in browser'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--share', action='store_true', help='Share the gradio UI'
|
||||
)
|
||||
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
|
||||
parser.add_argument("--share", action="store_true", help="Share the gradio UI")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
UI(username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port, share=args.share)
|
||||
UI(
|
||||
username=args.username,
|
||||
password=args.password,
|
||||
inbrowser=args.inbrowser,
|
||||
server_port=args.server_port,
|
||||
share=args.share,
|
||||
)
|
||||
|
@ -9,6 +9,7 @@ refresh_symbol = '\U0001f504' # 🔄
|
||||
save_style_symbol = '\U0001f4be' # 💾
|
||||
document_symbol = '\U0001F4C4' # 📄
|
||||
|
||||
|
||||
def update_optimizer(my_data):
|
||||
if my_data.get('use_8bit_adam', False):
|
||||
my_data['optimizer'] = 'AdamW8bit'
|
||||
@ -86,13 +87,18 @@ def remove_doublequote(file_path):
|
||||
|
||||
return file_path
|
||||
|
||||
|
||||
def set_legacy_8bitadam(optimizer, use_8bit_adam):
|
||||
if optimizer == 'AdamW8bit':
|
||||
# use_8bit_adam = True
|
||||
return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(value=True, interactive=False, visible=True)
|
||||
return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
|
||||
value=True, interactive=False, visible=True
|
||||
)
|
||||
else:
|
||||
# use_8bit_adam = False
|
||||
return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(value=False, interactive=False, visible=True)
|
||||
return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
|
||||
value=False, interactive=False, visible=True
|
||||
)
|
||||
|
||||
|
||||
def get_folder_path(folder_path=''):
|
||||
@ -489,14 +495,15 @@ def gradio_training(
|
||||
'DAdaptation',
|
||||
'Lion',
|
||||
'SGDNesterov',
|
||||
'SGDNesterov8bit'
|
||||
'SGDNesterov8bit',
|
||||
],
|
||||
value="AdamW8bit",
|
||||
value='AdamW8bit',
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
optimizer_args = gr.Textbox(
|
||||
label='Optimizer extra arguments', placeholder='(Optional) eg: relative_step=True scale_parameter=True warmup_init=True'
|
||||
label='Optimizer extra arguments',
|
||||
placeholder='(Optional) eg: relative_step=True scale_parameter=True warmup_init=True',
|
||||
)
|
||||
return (
|
||||
learning_rate,
|
||||
@ -549,11 +556,14 @@ def run_cmd_training(**kwargs):
|
||||
' --cache_latents' if kwargs.get('cache_latents') else '',
|
||||
# ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
|
||||
f' --optimizer_type="{kwargs.get("optimizer", "AdamW")}"',
|
||||
f' --optimizer_args {kwargs.get("optimizer_args", "")}' if not kwargs.get('optimizer_args') == '' else '',
|
||||
f' --optimizer_args {kwargs.get("optimizer_args", "")}'
|
||||
if not kwargs.get('optimizer_args') == ''
|
||||
else '',
|
||||
]
|
||||
run_cmd = ''.join(options)
|
||||
return run_cmd
|
||||
|
||||
|
||||
# # This function takes a dictionary of keyword arguments and returns a string that can be used to run a command-line training script
|
||||
# def run_cmd_training(**kwargs):
|
||||
# arg_map = {
|
||||
@ -611,7 +621,9 @@ def gradio_advanced_training():
|
||||
)
|
||||
with gr.Row():
|
||||
# This use_8bit_adam element should be removed in a future release as it is no longer used
|
||||
use_8bit_adam = gr.Checkbox(label='Use 8bit adam', value=False, visible=False)
|
||||
use_8bit_adam = gr.Checkbox(
|
||||
label='Use 8bit adam', value=False, visible=False
|
||||
)
|
||||
xformers = gr.Checkbox(label='Use xformers', value=True)
|
||||
color_aug = gr.Checkbox(label='Color augmentation', value=False)
|
||||
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
|
||||
@ -631,14 +643,10 @@ def gradio_advanced_training():
|
||||
|
||||
with gr.Row():
|
||||
caption_dropout_every_n_epochs = gr.Number(
|
||||
label="Dropout caption every n epochs",
|
||||
value=0
|
||||
label='Dropout caption every n epochs', value=0
|
||||
)
|
||||
caption_dropout_rate = gr.Slider(
|
||||
label="Rate of caption dropout",
|
||||
value=0,
|
||||
minimum=0,
|
||||
maximum=1
|
||||
label='Rate of caption dropout', value=0, minimum=0, maximum=1
|
||||
)
|
||||
with gr.Row():
|
||||
save_state = gr.Checkbox(label='Save training state', value=False)
|
||||
@ -676,7 +684,9 @@ def gradio_advanced_training():
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
noise_offset,
|
||||
)
|
||||
|
||||
|
||||
@ -706,11 +716,9 @@ def run_cmd_advanced_training(**kwargs):
|
||||
f' --caption_dropout_rate="{kwargs.get("caption_dropout_rate", "")}"'
|
||||
if float(kwargs.get('caption_dropout_rate', 0)) > 0
|
||||
else '',
|
||||
|
||||
f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}'
|
||||
if int(kwargs.get('bucket_reso_steps', 64)) >= 1
|
||||
else '',
|
||||
|
||||
' --save_state' if kwargs.get('save_state') else '',
|
||||
' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '',
|
||||
' --color_aug' if kwargs.get('color_aug') else '',
|
||||
@ -734,6 +742,7 @@ def run_cmd_advanced_training(**kwargs):
|
||||
run_cmd = ''.join(options)
|
||||
return run_cmd
|
||||
|
||||
|
||||
# def run_cmd_advanced_training(**kwargs):
|
||||
# arg_map = {
|
||||
# 'max_train_epochs': ' --max_train_epochs="{}"',
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -6,19 +6,22 @@ import time
|
||||
|
||||
tensorboard_proc = None # I know... bad but heh
|
||||
|
||||
|
||||
def start_tensorboard(logging_dir):
|
||||
global tensorboard_proc
|
||||
|
||||
if not os.listdir(logging_dir):
|
||||
print("Error: log folder is empty")
|
||||
msgbox(msg="Error: log folder is empty")
|
||||
print('Error: log folder is empty')
|
||||
msgbox(msg='Error: log folder is empty')
|
||||
return
|
||||
|
||||
run_cmd = f'tensorboard.exe --logdir "{logging_dir}"'
|
||||
|
||||
print(run_cmd)
|
||||
if tensorboard_proc is not None:
|
||||
print("Tensorboard is already running. Terminating existing process before starting new one...")
|
||||
print(
|
||||
'Tensorboard is already running. Terminating existing process before starting new one...'
|
||||
)
|
||||
stop_tensorboard()
|
||||
|
||||
# Start background process
|
||||
@ -31,16 +34,19 @@ def start_tensorboard(logging_dir):
|
||||
# Open the TensorBoard URL in the default browser
|
||||
print('Opening tensorboard url in browser...')
|
||||
import webbrowser
|
||||
|
||||
webbrowser.open('http://localhost:6006')
|
||||
|
||||
|
||||
def stop_tensorboard():
|
||||
print('Stopping tensorboard process...')
|
||||
tensorboard_proc.kill()
|
||||
print('...process stopped')
|
||||
|
||||
|
||||
def gradio_tensorboard():
|
||||
with gr.Row():
|
||||
button_start_tensorboard = gr.Button('Start tensorboard')
|
||||
button_stop_tensorboard = gr.Button('Stop tensorboard')
|
||||
|
||||
return(button_start_tensorboard, button_stop_tensorboard)
|
||||
return (button_start_tensorboard, button_stop_tensorboard)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -50,13 +50,16 @@ def UI(**kwargs):
|
||||
utilities_tab()
|
||||
|
||||
# Show the interface
|
||||
launch_kwargs={}
|
||||
launch_kwargs = {}
|
||||
if not kwargs.get('username', None) == '':
|
||||
launch_kwargs["auth"] = (kwargs.get('username', None), kwargs.get('password', None))
|
||||
launch_kwargs['auth'] = (
|
||||
kwargs.get('username', None),
|
||||
kwargs.get('password', None),
|
||||
)
|
||||
if kwargs.get('server_port', 0) > 0:
|
||||
launch_kwargs["server_port"] = kwargs.get('server_port', 0)
|
||||
launch_kwargs['server_port'] = kwargs.get('server_port', 0)
|
||||
if kwargs.get('inbrowser', False):
|
||||
launch_kwargs["inbrowser"] = kwargs.get('inbrowser', False)
|
||||
launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False)
|
||||
print(launch_kwargs)
|
||||
interface.launch(**launch_kwargs)
|
||||
|
||||
@ -71,10 +74,20 @@ if __name__ == '__main__':
|
||||
'--password', type=str, default='', help='Password for authentication'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--server_port', type=int, default=0, help='Port to run the server listener on'
|
||||
'--server_port',
|
||||
type=int,
|
||||
default=0,
|
||||
help='Port to run the server listener on',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--inbrowser', action='store_true', help='Open in browser'
|
||||
)
|
||||
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
UI(username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port)
|
||||
UI(
|
||||
username=args.username,
|
||||
password=args.password,
|
||||
inbrowser=args.inbrowser,
|
||||
server_port=args.server_port,
|
||||
)
|
||||
|
56
lora_gui.py
56
lora_gui.py
@ -47,6 +47,7 @@ refresh_symbol = '\U0001f504' # 🔄
|
||||
save_style_symbol = '\U0001f4be' # 💾
|
||||
document_symbol = '\U0001F4C4' # 📄
|
||||
|
||||
|
||||
def save_configuration(
|
||||
save_as,
|
||||
file_path,
|
||||
@ -105,9 +106,11 @@ def save_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -211,9 +214,11 @@ def open_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -297,9 +302,11 @@ def train_model(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
msgbox('Source model information is missing')
|
||||
@ -723,7 +730,9 @@ def lora_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
noise_offset,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -822,9 +831,11 @@ def lora_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
@ -886,13 +897,16 @@ def UI(**kwargs):
|
||||
)
|
||||
|
||||
# Show the interface
|
||||
launch_kwargs={}
|
||||
launch_kwargs = {}
|
||||
if not kwargs.get('username', None) == '':
|
||||
launch_kwargs["auth"] = (kwargs.get('username', None), kwargs.get('password', None))
|
||||
launch_kwargs['auth'] = (
|
||||
kwargs.get('username', None),
|
||||
kwargs.get('password', None),
|
||||
)
|
||||
if kwargs.get('server_port', 0) > 0:
|
||||
launch_kwargs["server_port"] = kwargs.get('server_port', 0)
|
||||
launch_kwargs['server_port'] = kwargs.get('server_port', 0)
|
||||
if kwargs.get('inbrowser', False):
|
||||
launch_kwargs["inbrowser"] = kwargs.get('inbrowser', False)
|
||||
launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False)
|
||||
print(launch_kwargs)
|
||||
interface.launch(**launch_kwargs)
|
||||
|
||||
@ -907,10 +921,20 @@ if __name__ == '__main__':
|
||||
'--password', type=str, default='', help='Password for authentication'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--server_port', type=int, default=0, help='Port to run the server listener on'
|
||||
'--server_port',
|
||||
type=int,
|
||||
default=0,
|
||||
help='Port to run the server listener on',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--inbrowser', action='store_true', help='Open in browser'
|
||||
)
|
||||
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
UI(username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port)
|
||||
UI(
|
||||
username=args.username,
|
||||
password=args.password,
|
||||
inbrowser=args.inbrowser,
|
||||
server_port=args.server_port,
|
||||
)
|
||||
|
@ -101,8 +101,11 @@ def save_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -205,8 +208,11 @@ def open_configuration(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -288,8 +294,11 @@ def train_model(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
msgbox('Source model information is missing')
|
||||
@ -641,7 +650,8 @@ def ti_tab(
|
||||
seed,
|
||||
caption_extension,
|
||||
cache_latents,
|
||||
optimizer,optimizer_args,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
) = gradio_training(
|
||||
learning_rate_value='1e-5',
|
||||
lr_scheduler_value='cosine',
|
||||
@ -699,7 +709,9 @@ def ti_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
noise_offset,
|
||||
) = gradio_advanced_training()
|
||||
color_aug.change(
|
||||
color_aug_changed,
|
||||
@ -791,8 +803,11 @@ def ti_tab(
|
||||
bucket_no_upscale,
|
||||
random_crop,
|
||||
bucket_reso_steps,
|
||||
caption_dropout_every_n_epochs, caption_dropout_rate,
|
||||
optimizer,optimizer_args,noise_offset,
|
||||
caption_dropout_every_n_epochs,
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,
|
||||
noise_offset,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
@ -854,13 +869,16 @@ def UI(**kwargs):
|
||||
)
|
||||
|
||||
# Show the interface
|
||||
launch_kwargs={}
|
||||
launch_kwargs = {}
|
||||
if not kwargs.get('username', None) == '':
|
||||
launch_kwargs["auth"] = (kwargs.get('username', None), kwargs.get('password', None))
|
||||
launch_kwargs['auth'] = (
|
||||
kwargs.get('username', None),
|
||||
kwargs.get('password', None),
|
||||
)
|
||||
if kwargs.get('server_port', 0) > 0:
|
||||
launch_kwargs["server_port"] = kwargs.get('server_port', 0)
|
||||
launch_kwargs['server_port'] = kwargs.get('server_port', 0)
|
||||
if kwargs.get('inbrowser', False):
|
||||
launch_kwargs["inbrowser"] = kwargs.get('inbrowser', False)
|
||||
launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False)
|
||||
print(launch_kwargs)
|
||||
interface.launch(**launch_kwargs)
|
||||
|
||||
@ -875,10 +893,20 @@ if __name__ == '__main__':
|
||||
'--password', type=str, default='', help='Password for authentication'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--server_port', type=int, default=0, help='Port to run the server listener on'
|
||||
'--server_port',
|
||||
type=int,
|
||||
default=0,
|
||||
help='Port to run the server listener on',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--inbrowser', action='store_true', help='Open in browser'
|
||||
)
|
||||
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
UI(username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port)
|
||||
UI(
|
||||
username=args.username,
|
||||
password=args.password,
|
||||
inbrowser=args.inbrowser,
|
||||
server_port=args.server_port,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user