From 20e62af1a638270a11e299b8c14458a837b1bb24 Mon Sep 17 00:00:00 2001 From: bmaltais Date: Fri, 3 Feb 2023 14:40:03 -0500 Subject: [PATCH] Update to latest kohya_ss sd-script code --- README-ja.md | 2 +- README.md | 17 +++ finetune/clean_captions_and_tags.py | 65 ++++++++- finetune/make_captions.py | 101 +++++++++---- finetune/make_captions_by_git.py | 145 +++++++++++++++++++ finetune/merge_captions_to_metadata.py | 35 +++-- finetune/merge_dd_tags_to_metadata.py | 38 ++--- finetune/prepare_buckets_latents.py | 126 +++++++++++++---- finetune/prepare_buckets_latents_new.py | 180 ------------------------ finetune/tag_images_by_wd14_tagger.py | 125 +++++++++++----- finetune_gui.py | 2 +- gen_img_diffusers.py | 75 ++++++++-- library/train_util.py | 79 ++++++++++- requirements.txt | 9 +- tools/resize_images_to_resolution.py | 66 +++++++++ train_network.py | 93 ++++++------ 16 files changed, 782 insertions(+), 376 deletions(-) create mode 100644 finetune/make_captions_by_git.py delete mode 100644 finetune/prepare_buckets_latents_new.py create mode 100644 tools/resize_images_to_resolution.py diff --git a/README-ja.md b/README-ja.md index c661a16..2427652 100644 --- a/README-ja.md +++ b/README-ja.md @@ -116,7 +116,7 @@ accelerate configの質問には以下のように答えてください。(bf1 cd sd-scripts git pull .\venv\Scripts\activate -pip install --upgrade -r +pip install --upgrade -r requirements.txt ``` コマンドが成功すれば新しいバージョンが使用できます。 diff --git a/README.md b/README.md index 98018c9..254b0c2 100644 --- a/README.md +++ b/README.md @@ -143,6 +143,23 @@ Then redo the installation instruction within the kohya_ss venv. ## Change history +* 2023/02/03 + - Increase max LoRA rank (dim) size to 1024. + - Update finetune preprocessing scripts. + - ``.bmp`` and ``.jpeg`` are supported. Thanks to breakcore2 and p1atdev! + - The default weights of ``tag_images_by_wd14_tagger.py`` is now ``SmilingWolf/wd-v1-4-convnext-tagger-v2``. You can specify another model id from ``SmilingWolf`` by ``--repo_id`` option. Thanks to SmilingWolf for the great work. + - To change the weight, remove ``wd14_tagger_model`` folder, and run the script again. + - ``--max_data_loader_n_workers`` option is added to each script. This option uses the DataLoader for data loading to speed up loading, 20%~30% faster. + - Please specify 2 or 4, depends on the number of CPU cores. + - ``--recursive`` option is added to ``merge_dd_tags_to_metadata.py`` and ``merge_captions_to_metadata.py``, only works with ``--full_path``. + - ``make_captions_by_git.py`` is added. It uses [GIT microsoft/git-large-textcaps](https://huggingface.co/microsoft/git-large-textcaps) for captioning. + - ``requirements.txt`` is updated. If you use this script, [please update the libraries](https://github.com/kohya-ss/sd-scripts#upgrade). + - Usage is almost the same as ``make_captions.py``, but batch size should be smaller. + - ``--remove_words`` option removes as much text as possible (such as ``the word "XXXX" on it``). + - ``--skip_existing`` option is added to ``prepare_buckets_latents.py``. Images with existing npz files are ignored by this option. + - ``clean_captions_and_tags.py`` is updated to remove duplicated or conflicting tags, e.g. ``shirt`` is removed when ``white shirt`` exists. if ``black hair`` is with ``red hair``, both are removed. + - Tag frequency is added to the metadata in ``train_network.py``. Thanks to space-nuko! + - __All tags and number of occurrences of the tag are recorded.__ If you do not want it, disable metadata storing with ``--no_metadata`` option. * 2023/01/30 (v20.5.2): - Add ``--lr_scheduler_num_cycles`` and ``--lr_scheduler_power`` options for ``train_network.py`` for cosine_with_restarts and polynomial learning rate schedulers. Thanks to mgz-dev! - Fixed U-Net ``sample_size`` parameter to ``64`` when converting from SD to Diffusers format, in ``convert_diffusers20_original_sd.py`` diff --git a/finetune/clean_captions_and_tags.py b/finetune/clean_captions_and_tags.py index 8f53737..11a59b1 100644 --- a/finetune/clean_captions_and_tags.py +++ b/finetune/clean_captions_and_tags.py @@ -5,13 +5,32 @@ import argparse import glob import os import json +import re from tqdm import tqdm +PATTERN_HAIR_LENGTH = re.compile(r', (long|short|medium) hair, ') +PATTERN_HAIR_CUT = re.compile(r', (bob|hime) cut, ') +PATTERN_HAIR = re.compile(r', ([\w\-]+) hair, ') +PATTERN_WORD = re.compile(r', ([\w\-]+|hair ornament), ') + +# 複数人がいるとき、複数の髪色や目の色が定義されていれば削除する +PATTERNS_REMOVE_IN_MULTI = [ + PATTERN_HAIR_LENGTH, + PATTERN_HAIR_CUT, + re.compile(r', [\w\-]+ eyes, '), + re.compile(r', ([\w\-]+ sleeves|sleeveless), '), + # 複数の髪型定義がある場合は削除する + re.compile( + r', (ponytail|braid|ahoge|twintails|[\w\-]+ bun|single hair bun|single side bun|two side up|two tails|[\w\-]+ braid|sidelocks), '), +] + def clean_tags(image_key, tags): # replace '_' to ' ' + tags = tags.replace('^_^', '^@@@^') tags = tags.replace('_', ' ') + tags = tags.replace('^@@@^', '^_^') # remove rating: deepdanbooruのみ tokens = tags.split(", rating") @@ -26,6 +45,37 @@ def clean_tags(image_key, tags): print(f"{image_key} {tags}") tags = tokens[0] + tags = ", " + tags.replace(", ", ", , ") + ", " # カンマ付きで検索をするための身も蓋もない対策 + + # 複数の人物がいる場合は髪色等のタグを削除する + if 'girls' in tags or 'boys' in tags: + for pat in PATTERNS_REMOVE_IN_MULTI: + found = pat.findall(tags) + if len(found) > 1: # 二つ以上、タグがある + tags = pat.sub("", tags) + + # 髪の特殊対応 + srch_hair_len = PATTERN_HAIR_LENGTH.search(tags) # 髪の長さタグは例外なので避けておく(全員が同じ髪の長さの場合) + if srch_hair_len: + org = srch_hair_len.group() + tags = PATTERN_HAIR_LENGTH.sub(", @@@, ", tags) + + found = PATTERN_HAIR.findall(tags) + if len(found) > 1: + tags = PATTERN_HAIR.sub("", tags) + + if srch_hair_len: + tags = tags.replace(", @@@, ", org) # 戻す + + # white shirtとshirtみたいな重複タグの削除 + found = PATTERN_WORD.findall(tags) + for word in found: + if re.search(f", ((\w+) )+{word}, ", tags): + tags = tags.replace(f", {word}, ", "") + + tags = tags.replace(", , ", ", ") + assert tags.startswith(", ") and tags.endswith(", ") + tags = tags[2:-2] return tags @@ -88,13 +138,23 @@ def main(args): if tags is None: print(f"image does not have tags / メタデータにタグがありません: {image_key}") else: - metadata[image_key]['tags'] = clean_tags(image_key, tags) + org = tags + tags = clean_tags(image_key, tags) + metadata[image_key]['tags'] = tags + if args.debug and org != tags: + print("FROM: " + org) + print("TO: " + tags) caption = metadata[image_key].get('caption') if caption is None: print(f"image does not have caption / メタデータにキャプションがありません: {image_key}") else: - metadata[image_key]['caption'] = clean_caption(caption) + org = caption + caption = clean_caption(caption) + metadata[image_key]['caption'] = caption + if args.debug and org != caption: + print("FROM: " + org) + print("TO: " + caption) # metadataを書き出して終わり print(f"writing metadata: {args.out_json}") @@ -108,6 +168,7 @@ if __name__ == '__main__': # parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル") parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") + parser.add_argument("--debug", action="store_true", help="debug mode") args, unknown = parser.parse_known_args() if len(unknown) == 1: diff --git a/finetune/make_captions.py b/finetune/make_captions.py index b02420b..a2a35b3 100644 --- a/finetune/make_captions.py +++ b/finetune/make_captions.py @@ -11,18 +11,59 @@ import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from blip.blip import blip_decoder -# from Salesforce_BLIP.models.blip import blip_decoder +import library.train_util as train_util DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') +IMAGE_SIZE = 384 + +# 正方形でいいのか? という気がするがソースがそうなので +IMAGE_TRANSFORM = transforms.Compose([ + transforms.Resize((IMAGE_SIZE, IMAGE_SIZE), interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor(), + transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) +]) + +# 共通化したいが微妙に処理が異なる…… +class ImageLoadingTransformDataset(torch.utils.data.Dataset): + def __init__(self, image_paths): + self.images = image_paths + + def __len__(self): + return len(self.images) + + def __getitem__(self, idx): + img_path = self.images[idx] + + try: + image = Image.open(img_path).convert("RGB") + # convert to tensor temporarily so dataloader will accept it + tensor = IMAGE_TRANSFORM(image) + except Exception as e: + print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}") + return None + + return (tensor, img_path) + + +def collate_fn_remove_corrupted(batch): + """Collate function that allows to remove corrupted examples in the + dataloader. It expects that the dataloader returns 'None' when that occurs. + The 'None's in the batch are removed. + """ + # Filter out all the Nones (corrupted examples) + batch = list(filter(lambda x: x is not None, batch)) + return batch + + def main(args): # fix the seed for reproducibility - seed = args.seed # + utils.get_rank() + seed = args.seed # + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) - + if not os.path.exists("blip"): args.train_data_dir = os.path.abspath(args.train_data_dir) # convert to absolute path @@ -31,24 +72,15 @@ def main(args): os.chdir('finetune') print(f"load images from {args.train_data_dir}") - image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \ - glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp")) + image_paths = train_util.glob_images(args.train_data_dir) print(f"found {len(image_paths)} images.") print(f"loading BLIP caption: {args.caption_weights}") - image_size = 384 - model = blip_decoder(pretrained=args.caption_weights, image_size=image_size, vit='large', med_config="./blip/med_config.json") + model = blip_decoder(pretrained=args.caption_weights, image_size=IMAGE_SIZE, vit='large', med_config="./blip/med_config.json") model.eval() model = model.to(DEVICE) print("BLIP loaded") - # 正方形でいいのか? という気がするがソースがそうなので - transform = transforms.Compose([ - transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC), - transforms.ToTensor(), - transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) - ]) - # captioningする def run_batch(path_imgs): imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE) @@ -66,18 +98,35 @@ def main(args): if args.debug: print(image_path, caption) - b_imgs = [] - for image_path in tqdm(image_paths, smoothing=0.0): - raw_image = Image.open(image_path) - if raw_image.mode != "RGB": - print(f"convert image mode {raw_image.mode} to RGB: {image_path}") - raw_image = raw_image.convert("RGB") + # 読み込みの高速化のためにDataLoaderを使うオプション + if args.max_data_loader_n_workers is not None: + dataset = ImageLoadingTransformDataset(image_paths) + data = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, + num_workers=args.max_data_loader_n_workers, collate_fn=collate_fn_remove_corrupted, drop_last=False) + else: + data = [[(None, ip)] for ip in image_paths] - image = transform(raw_image) - b_imgs.append((image_path, image)) - if len(b_imgs) >= args.batch_size: - run_batch(b_imgs) - b_imgs.clear() + b_imgs = [] + for data_entry in tqdm(data, smoothing=0.0): + for data in data_entry: + if data is None: + continue + + img_tensor, image_path = data + if img_tensor is None: + try: + raw_image = Image.open(image_path) + if raw_image.mode != 'RGB': + raw_image = raw_image.convert("RGB") + img_tensor = IMAGE_TRANSFORM(raw_image) + except Exception as e: + print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}") + continue + + b_imgs.append((image_path, img_tensor)) + if len(b_imgs) >= args.batch_size: + run_batch(b_imgs) + b_imgs.clear() if len(b_imgs) > 0: run_batch(b_imgs) @@ -95,6 +144,8 @@ if __name__ == '__main__': parser.add_argument("--beam_search", action="store_true", help="use beam search (default Nucleus sampling) / beam searchを使う(このオプション未指定時はNucleus sampling)") parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") + parser.add_argument("--max_data_loader_n_workers", type=int, default=None, + help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)") parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数(多いと精度が上がるが時間がかかる)") parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p") parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長") diff --git a/finetune/make_captions_by_git.py b/finetune/make_captions_by_git.py new file mode 100644 index 0000000..ebc9192 --- /dev/null +++ b/finetune/make_captions_by_git.py @@ -0,0 +1,145 @@ +import argparse +import os +import re + +from PIL import Image +from tqdm import tqdm +import torch +from transformers import AutoProcessor, AutoModelForCausalLM +from transformers.generation.utils import GenerationMixin + +import library.train_util as train_util + + +DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + +PATTERN_REPLACE = [ + re.compile(r'(has|with|and) the (words?|letters?|name) (" ?[^"]*"|\w+)( ?(is )?(on|in) (the |her |their |him )?\w+)?'), + re.compile(r'(with a sign )?that says ?(" ?[^"]*"|\w+)( ?on it)?'), + re.compile(r"(with a sign )?that says ?(' ?(i'm)?[^']*'|\w+)( ?on it)?"), + re.compile(r'with the number \d+ on (it|\w+ \w+)'), + re.compile(r'with the words "'), + re.compile(r'word \w+ on it'), + re.compile(r'that says the word \w+ on it'), + re.compile('that says\'the word "( on it)?'), +] + +# 誤検知しまくりの with the word xxxx を消す + + +def remove_words(captions, debug): + removed_caps = [] + for caption in captions: + cap = caption + for pat in PATTERN_REPLACE: + cap = pat.sub("", cap) + if debug and cap != caption: + print(caption) + print(cap) + removed_caps.append(cap) + return removed_caps + + +def collate_fn_remove_corrupted(batch): + """Collate function that allows to remove corrupted examples in the + dataloader. It expects that the dataloader returns 'None' when that occurs. + The 'None's in the batch are removed. + """ + # Filter out all the Nones (corrupted examples) + batch = list(filter(lambda x: x is not None, batch)) + return batch + + +def main(args): + # GITにバッチサイズが1より大きくても動くようにパッチを当てる: transformers 4.26.0用 + org_prepare_input_ids_for_generation = GenerationMixin._prepare_input_ids_for_generation + curr_batch_size = [args.batch_size] # ループの最後で件数がbatch_size未満になるので入れ替えられるように + + # input_idsがバッチサイズと同じ件数である必要がある:バッチサイズはこの関数から参照できないので外から渡す + # ここより上で置き換えようとするとすごく大変 + def _prepare_input_ids_for_generation_patch(self, bos_token_id, encoder_outputs): + input_ids = org_prepare_input_ids_for_generation(self, bos_token_id, encoder_outputs) + if input_ids.size()[0] != curr_batch_size[0]: + input_ids = input_ids.repeat(curr_batch_size[0], 1) + return input_ids + GenerationMixin._prepare_input_ids_for_generation = _prepare_input_ids_for_generation_patch + + print(f"load images from {args.train_data_dir}") + image_paths = train_util.glob_images(args.train_data_dir) + print(f"found {len(image_paths)} images.") + + # できればcacheに依存せず明示的にダウンロードしたい + print(f"loading GIT: {args.model_id}") + git_processor = AutoProcessor.from_pretrained(args.model_id) + git_model = AutoModelForCausalLM.from_pretrained(args.model_id).to(DEVICE) + print("GIT loaded") + + # captioningする + def run_batch(path_imgs): + imgs = [im for _, im in path_imgs] + + curr_batch_size[0] = len(path_imgs) + inputs = git_processor(images=imgs, return_tensors="pt").to(DEVICE) # 画像はpil形式 + generated_ids = git_model.generate(pixel_values=inputs.pixel_values, max_length=args.max_length) + captions = git_processor.batch_decode(generated_ids, skip_special_tokens=True) + + if args.remove_words: + captions = remove_words(captions, args.debug) + + for (image_path, _), caption in zip(path_imgs, captions): + with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding='utf-8') as f: + f.write(caption + "\n") + if args.debug: + print(image_path, caption) + + # 読み込みの高速化のためにDataLoaderを使うオプション + if args.max_data_loader_n_workers is not None: + dataset = train_util.ImageLoadingDataset(image_paths) + data = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, + num_workers=args.max_data_loader_n_workers, collate_fn=collate_fn_remove_corrupted, drop_last=False) + else: + data = [[(None, ip)] for ip in image_paths] + + b_imgs = [] + for data_entry in tqdm(data, smoothing=0.0): + for data in data_entry: + if data is None: + continue + + image, image_path = data + if image is None: + try: + image = Image.open(image_path) + if image.mode != 'RGB': + image = image.convert("RGB") + except Exception as e: + print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}") + continue + + b_imgs.append((image_path, image)) + if len(b_imgs) >= args.batch_size: + run_batch(b_imgs) + b_imgs.clear() + + if len(b_imgs) > 0: + run_batch(b_imgs) + + print("done!") + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子") + parser.add_argument("--model_id", type=str, default="microsoft/git-large-textcaps", + help="model id for GIT in Hugging Face / 使用するGITのHugging FaceのモデルID") + parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") + parser.add_argument("--max_data_loader_n_workers", type=int, default=None, + help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)") + parser.add_argument("--max_length", type=int, default=50, help="max length of caption / captionの最大長") + parser.add_argument("--remove_words", action="store_true", + help="remove like `with the words xxx` from caption / `with the words xxx`のような部分をキャプションから削除する") + parser.add_argument("--debug", action="store_true", help="debug mode") + + args = parser.parse_args() + main(args) diff --git a/finetune/merge_captions_to_metadata.py b/finetune/merge_captions_to_metadata.py index 2da6356..cbc5033 100644 --- a/finetune/merge_captions_to_metadata.py +++ b/finetune/merge_captions_to_metadata.py @@ -1,26 +1,24 @@ -# このスクリプトのライセンスは、Apache License 2.0とします -# (c) 2022 Kohya S. @kohya_ss - import argparse -import glob -import os import json - +from pathlib import Path +from typing import List from tqdm import tqdm +import library.train_util as train_util def main(args): - image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \ - glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp")) + assert not args.recursive or (args.recursive and args.full_path), "recursive requires full_path / recursiveはfull_pathと同時に指定してください" + + train_data_dir_path = Path(args.train_data_dir) + image_paths: List[Path] = train_util.glob_images_pathlib(train_data_dir_path, args.recursive) print(f"found {len(image_paths)} images.") - if args.in_json is None and os.path.isfile(args.out_json): + if args.in_json is None and Path(args.out_json).is_file(): args.in_json = args.out_json if args.in_json is not None: print(f"loading existing metadata: {args.in_json}") - with open(args.in_json, "rt", encoding='utf-8') as f: - metadata = json.load(f) + metadata = json.loads(Path(args.in_json).read_text(encoding='utf-8')) print("captions for existing images will be overwritten / 既存の画像のキャプションは上書きされます") else: print("new metadata will be created / 新しいメタデータファイルが作成されます") @@ -28,11 +26,10 @@ def main(args): print("merge caption texts to metadata json.") for image_path in tqdm(image_paths): - caption_path = os.path.splitext(image_path)[0] + args.caption_extension - with open(caption_path, "rt", encoding='utf-8') as f: - caption = f.readlines()[0].strip() + caption_path = image_path.with_suffix(args.caption_extension) + caption = caption_path.read_text(encoding='utf-8').strip() - image_key = image_path if args.full_path else os.path.splitext(os.path.basename(image_path))[0] + image_key = str(image_path) if args.full_path else image_path.stem if image_key not in metadata: metadata[image_key] = {} @@ -42,8 +39,7 @@ def main(args): # metadataを書き出して終わり print(f"writing metadata: {args.out_json}") - with open(args.out_json, "wt", encoding='utf-8') as f: - json.dump(metadata, f, indent=2) + Path(args.out_json).write_text(json.dumps(metadata, indent=2), encoding='utf-8') print("done!") @@ -51,12 +47,15 @@ if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") - parser.add_argument("--in_json", type=str, help="metadata file to input (if omitted and out_json exists, existing out_json is read) / 読み込むメタデータファイル(省略時、out_jsonが存在すればそれを読み込む)") + parser.add_argument("--in_json", type=str, + help="metadata file to input (if omitted and out_json exists, existing out_json is read) / 読み込むメタデータファイル(省略時、out_jsonが存在すればそれを読み込む)") parser.add_argument("--caption_extention", type=str, default=None, help="extension of caption file (for backward compatibility) / 読み込むキャプションファイルの拡張子(スペルミスしていたのを残してあります)") parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 読み込むキャプションファイルの拡張子") parser.add_argument("--full_path", action="store_true", help="use full path as image-key in metadata (supports multiple directories) / メタデータで画像キーをフルパスにする(複数の学習画像ディレクトリに対応)") + parser.add_argument("--recursive", action="store_true", + help="recursively look for training tags in all child folders of train_data_dir / train_data_dirのすべての子フォルダにある学習タグを再帰的に探す") parser.add_argument("--debug", action="store_true", help="debug mode") args = parser.parse_args() diff --git a/finetune/merge_dd_tags_to_metadata.py b/finetune/merge_dd_tags_to_metadata.py index 8101ecd..4285feb 100644 --- a/finetune/merge_dd_tags_to_metadata.py +++ b/finetune/merge_dd_tags_to_metadata.py @@ -1,26 +1,24 @@ -# このスクリプトのライセンスは、Apache License 2.0とします -# (c) 2022 Kohya S. @kohya_ss - import argparse -import glob -import os import json - +from pathlib import Path +from typing import List from tqdm import tqdm +import library.train_util as train_util def main(args): - image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \ - glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp")) + assert not args.recursive or (args.recursive and args.full_path), "recursive requires full_path / recursiveはfull_pathと同時に指定してください" + + train_data_dir_path = Path(args.train_data_dir) + image_paths: List[Path] = train_util.glob_images_pathlib(train_data_dir_path, args.recursive) print(f"found {len(image_paths)} images.") - if args.in_json is None and os.path.isfile(args.out_json): + if args.in_json is None and Path(args.out_json).is_file(): args.in_json = args.out_json if args.in_json is not None: print(f"loading existing metadata: {args.in_json}") - with open(args.in_json, "rt", encoding='utf-8') as f: - metadata = json.load(f) + metadata = json.loads(Path(args.in_json).read_text(encoding='utf-8')) print("tags data for existing images will be overwritten / 既存の画像のタグは上書きされます") else: print("new metadata will be created / 新しいメタデータファイルが作成されます") @@ -28,11 +26,10 @@ def main(args): print("merge tags to metadata json.") for image_path in tqdm(image_paths): - tags_path = os.path.splitext(image_path)[0] + '.txt' - with open(tags_path, "rt", encoding='utf-8') as f: - tags = f.readlines()[0].strip() + tags_path = image_path.with_suffix(args.caption_extension) + tags = tags_path.read_text(encoding='utf-8').strip() - image_key = image_path if args.full_path else os.path.splitext(os.path.basename(image_path))[0] + image_key = str(image_path) if args.full_path else image_path.stem if image_key not in metadata: metadata[image_key] = {} @@ -42,8 +39,8 @@ def main(args): # metadataを書き出して終わり print(f"writing metadata: {args.out_json}") - with open(args.out_json, "wt", encoding='utf-8') as f: - json.dump(metadata, f, indent=2) + Path(args.out_json).write_text(json.dumps(metadata, indent=2), encoding='utf-8') + print("done!") @@ -51,9 +48,14 @@ if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") - parser.add_argument("--in_json", type=str, help="metadata file to input (if omitted and out_json exists, existing out_json is read) / 読み込むメタデータファイル(省略時、out_jsonが存在すればそれを読み込む)") + parser.add_argument("--in_json", type=str, + help="metadata file to input (if omitted and out_json exists, existing out_json is read) / 読み込むメタデータファイル(省略時、out_jsonが存在すればそれを読み込む)") parser.add_argument("--full_path", action="store_true", help="use full path as image-key in metadata (supports multiple directories) / メタデータで画像キーをフルパスにする(複数の学習画像ディレクトリに対応)") + parser.add_argument("--recursive", action="store_true", + help="recursively look for training tags in all child folders of train_data_dir / train_data_dirのすべての子フォルダにある学習タグを再帰的に探す") + parser.add_argument("--caption_extension", type=str, default=".txt", + help="extension of caption (tag) file / 読み込むキャプション(タグ)ファイルの拡張子") parser.add_argument("--debug", action="store_true", help="debug mode, print tags") args = parser.parse_args() diff --git a/finetune/prepare_buckets_latents.py b/finetune/prepare_buckets_latents.py index 00f847a..d1b9ea2 100644 --- a/finetune/prepare_buckets_latents.py +++ b/finetune/prepare_buckets_latents.py @@ -1,20 +1,16 @@ -# このスクリプトのライセンスは、Apache License 2.0とします -# (c) 2022 Kohya S. @kohya_ss - import argparse -import glob import os import json from tqdm import tqdm import numpy as np -from diffusers import AutoencoderKL from PIL import Image import cv2 import torch from torchvision import transforms import library.model_util as model_util +import library.train_util as train_util DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') @@ -26,6 +22,16 @@ IMAGE_TRANSFORMS = transforms.Compose( ) +def collate_fn_remove_corrupted(batch): + """Collate function that allows to remove corrupted examples in the + dataloader. It expects that the dataloader returns 'None' when that occurs. + The 'None's in the batch are removed. + """ + # Filter out all the Nones (corrupted examples) + batch = list(filter(lambda x: x is not None, batch)) + return batch + + def get_latents(vae, images, weight_dtype): img_tensors = [IMAGE_TRANSFORMS(image) for image in images] img_tensors = torch.stack(img_tensors) @@ -35,9 +41,18 @@ def get_latents(vae, images, weight_dtype): return latents +def get_npz_filename_wo_ext(data_dir, image_key, is_full_path, flip): + if is_full_path: + base_name = os.path.splitext(os.path.basename(image_key))[0] + else: + base_name = image_key + if flip: + base_name += '_flip' + return os.path.join(data_dir, base_name) + + def main(args): - image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \ - glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp")) + image_paths = train_util.glob_images(args.train_data_dir) print(f"found {len(image_paths)} images.") if os.path.exists(args.in_json): @@ -70,15 +85,56 @@ def main(args): buckets_imgs = [[] for _ in range(len(bucket_resos))] bucket_counts = [0 for _ in range(len(bucket_resos))] img_ar_errors = [] - for i, image_path in enumerate(tqdm(image_paths, smoothing=0.0)): + + def process_batch(is_last): + for j in range(len(buckets_imgs)): + bucket = buckets_imgs[j] + if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size: + latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype) + + for (image_key, _, _), latent in zip(bucket, latents): + npz_file_name = get_npz_filename_wo_ext(args.train_data_dir, image_key, args.full_path, False) + np.savez(npz_file_name, latent) + + # flip + if args.flip_aug: + latents = get_latents(vae, [img[:, ::-1].copy() for _, _, img in bucket], weight_dtype) # copyがないとTensor変換できない + + for (image_key, _, _), latent in zip(bucket, latents): + npz_file_name = get_npz_filename_wo_ext(args.train_data_dir, image_key, args.full_path, True) + np.savez(npz_file_name, latent) + + bucket.clear() + + # 読み込みの高速化のためにDataLoaderを使うオプション + if args.max_data_loader_n_workers is not None: + dataset = train_util.ImageLoadingDataset(image_paths) + data = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, + num_workers=args.max_data_loader_n_workers, collate_fn=collate_fn_remove_corrupted, drop_last=False) + else: + data = [[(None, ip)] for ip in image_paths] + + for data_entry in tqdm(data, smoothing=0.0): + if data_entry[0] is None: + continue + + img_tensor, image_path = data_entry[0] + if img_tensor is not None: + image = transforms.functional.to_pil_image(img_tensor) + else: + try: + image = Image.open(image_path) + if image.mode != 'RGB': + image = image.convert("RGB") + except Exception as e: + print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}") + continue + image_key = image_path if args.full_path else os.path.splitext(os.path.basename(image_path))[0] if image_key not in metadata: metadata[image_key] = {} - image = Image.open(image_path) - if image.mode != 'RGB': - image = image.convert("RGB") - + # 本当はこの部分もDataSetに持っていけば高速化できるがいろいろ大変 aspect_ratio = image.width / image.height ar_errors = bucket_aspect_ratios - aspect_ratio bucket_id = np.abs(ar_errors).argmin() @@ -102,6 +158,25 @@ def main(args): assert resized_size[0] >= reso[0] and resized_size[1] >= reso[ 1], f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}" + # 既に存在するファイルがあればshapeを確認して同じならskipする + if args.skip_existing: + npz_files = [get_npz_filename_wo_ext(args.train_data_dir, image_key, args.full_path, False) + ".npz"] + if args.flip_aug: + npz_files.append(get_npz_filename_wo_ext(args.train_data_dir, image_key, args.full_path, True) + ".npz") + + found = True + for npz_file in npz_files: + if not os.path.exists(npz_file): + found = False + break + + dat = np.load(npz_file)['arr_0'] + if dat.shape[1] != reso[1] // 8 or dat.shape[2] != reso[0] // 8: # latentsのshapeを確認 + found = False + break + if found: + continue + # 画像をリサイズしてトリミングする # PILにinter_areaがないのでcv2で…… image = np.array(image) @@ -123,25 +198,10 @@ def main(args): metadata[image_key]['train_resolution'] = reso # バッチを推論するか判定して推論する - is_last = i == len(image_paths) - 1 - for j in range(len(buckets_imgs)): - bucket = buckets_imgs[j] - if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size: - latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype) + process_batch(False) - for (image_key, reso, _), latent in zip(bucket, latents): - npz_file_name = os.path.splitext(os.path.basename(image_key))[0] if args.full_path else image_key - np.savez(os.path.join(args.train_data_dir, npz_file_name), latent) - - # flip - if args.flip_aug: - latents = get_latents(vae, [img[:, ::-1].copy() for _, _, img in bucket], weight_dtype) # copyがないとTensor変換できない - - for (image_key, reso, _), latent in zip(bucket, latents): - npz_file_name = os.path.splitext(os.path.basename(image_key))[0] if args.full_path else image_key - np.savez(os.path.join(args.train_data_dir, npz_file_name + '_flip'), latent) - - bucket.clear() + # 残りを処理する + process_batch(True) for i, (reso, count) in enumerate(zip(bucket_resos, bucket_counts)): print(f"bucket {i} {reso}: {count}") @@ -162,8 +222,10 @@ if __name__ == '__main__': parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル") parser.add_argument("--v2", action='store_true', - help='load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む') + help='not used (for backward compatibility) / 使用されません(互換性のため残してあります)') parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") + parser.add_argument("--max_data_loader_n_workers", type=int, default=None, + help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)") parser.add_argument("--max_resolution", type=str, default="512,512", help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)") parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度") @@ -174,6 +236,8 @@ if __name__ == '__main__': help="use full path as image-key in metadata (supports multiple directories) / メタデータで画像キーをフルパスにする(複数の学習画像ディレクトリに対応)") parser.add_argument("--flip_aug", action="store_true", help="flip augmentation, save latents for flipped images / 左右反転した画像もlatentを取得、保存する") + parser.add_argument("--skip_existing", action="store_true", + help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)") args = parser.parse_args() main(args) diff --git a/finetune/prepare_buckets_latents_new.py b/finetune/prepare_buckets_latents_new.py deleted file mode 100644 index d68ea37..0000000 --- a/finetune/prepare_buckets_latents_new.py +++ /dev/null @@ -1,180 +0,0 @@ -# このスクリプトのライセンスは、Apache License 2.0とします -# (c) 2022 Kohya S. @kohya_ss - -import argparse -import glob -import os -import json - -from tqdm import tqdm -import numpy as np -from diffusers import AutoencoderKL -from PIL import Image -import cv2 -import torch -from torchvision import transforms - -import library.model_util as model_util - -DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - -IMAGE_TRANSFORMS = transforms.Compose( - [ - transforms.ToTensor(), - transforms.Normalize([0.5], [0.5]), - ] -) - - -def get_latents(vae, images, weight_dtype): - img_tensors = [IMAGE_TRANSFORMS(image) for image in images] - img_tensors = torch.stack(img_tensors) - img_tensors = img_tensors.to(DEVICE, weight_dtype) - with torch.no_grad(): - latents = vae.encode(img_tensors).latent_dist.sample().float().to("cpu").numpy() - return latents - - -def main(args): - # image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \ - # glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp")) - # print(f"found {len(image_paths)} images.") - - - if os.path.exists(args.in_json): - print(f"loading existing metadata: {args.in_json}") - with open(args.in_json, "rt", encoding='utf-8') as f: - metadata = json.load(f) - else: - print(f"no metadata / メタデータファイルがありません: {args.in_json}") - return - - weight_dtype = torch.float32 - if args.mixed_precision == "fp16": - weight_dtype = torch.float16 - elif args.mixed_precision == "bf16": - weight_dtype = torch.bfloat16 - - vae = model_util.load_vae(args.model_name_or_path, weight_dtype) - vae.eval() - vae.to(DEVICE, dtype=weight_dtype) - - # bucketのサイズを計算する - max_reso = tuple([int(t) for t in args.max_resolution.split(',')]) - assert len(max_reso) == 2, f"illegal resolution (not 'width,height') / 画像サイズに誤りがあります。'幅,高さ'で指定してください: {args.max_resolution}" - - bucket_resos, bucket_aspect_ratios = model_util.make_bucket_resolutions( - max_reso, args.min_bucket_reso, args.max_bucket_reso) - - # 画像をひとつずつ適切なbucketに割り当てながらlatentを計算する - bucket_aspect_ratios = np.array(bucket_aspect_ratios) - buckets_imgs = [[] for _ in range(len(bucket_resos))] - bucket_counts = [0 for _ in range(len(bucket_resos))] - img_ar_errors = [] - for i, image_path in enumerate(tqdm(metadata, smoothing=0.0)): - image_key = image_path - if image_key not in metadata: - metadata[image_key] = {} - - image = Image.open(image_path) - if image.mode != 'RGB': - image = image.convert("RGB") - - aspect_ratio = image.width / image.height - ar_errors = bucket_aspect_ratios - aspect_ratio - bucket_id = np.abs(ar_errors).argmin() - reso = bucket_resos[bucket_id] - ar_error = ar_errors[bucket_id] - img_ar_errors.append(abs(ar_error)) - - # どのサイズにリサイズするか→トリミングする方向で - if ar_error <= 0: # 横が長い→縦を合わせる - scale = reso[1] / image.height - else: - scale = reso[0] / image.width - - resized_size = (int(image.width * scale + .5), int(image.height * scale + .5)) - - # print(image.width, image.height, bucket_id, bucket_resos[bucket_id], ar_errors[bucket_id], resized_size, - # bucket_resos[bucket_id][0] - resized_size[0], bucket_resos[bucket_id][1] - resized_size[1]) - - assert resized_size[0] == reso[0] or resized_size[1] == reso[ - 1], f"internal error, resized size not match: {reso}, {resized_size}, {image.width}, {image.height}" - assert resized_size[0] >= reso[0] and resized_size[1] >= reso[ - 1], f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}" - - # 画像をリサイズしてトリミングする - # PILにinter_areaがないのでcv2で…… - image = np.array(image) - image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA) - if resized_size[0] > reso[0]: - trim_size = resized_size[0] - reso[0] - image = image[:, trim_size//2:trim_size//2 + reso[0]] - elif resized_size[1] > reso[1]: - trim_size = resized_size[1] - reso[1] - image = image[trim_size//2:trim_size//2 + reso[1]] - assert image.shape[0] == reso[1] and image.shape[1] == reso[0], f"internal error, illegal trimmed size: {image.shape}, {reso}" - - # # debug - # cv2.imwrite(f"r:\\test\\img_{i:05d}.jpg", image[:, :, ::-1]) - - # バッチへ追加 - buckets_imgs[bucket_id].append((image_key, reso, image)) - bucket_counts[bucket_id] += 1 - metadata[image_key]['train_resolution'] = reso - - # バッチを推論するか判定して推論する - is_last = i == len(metadata) - 1 - for j in range(len(buckets_imgs)): - bucket = buckets_imgs[j] - if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size: - latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype) - - for (image_key, reso, _), latent in zip(bucket, latents): - npz_file_name = os.path.splitext(os.path.basename(image_key))[0] - np.savez(os.path.join(os.path.dirname(image_key), npz_file_name), latent) - - # flip - if args.flip_aug: - latents = get_latents(vae, [img[:, ::-1].copy() for _, _, img in bucket], weight_dtype) # copyがないとTensor変換できない - - for (image_key, reso, _), latent in zip(bucket, latents): - npz_file_name = os.path.splitext(os.path.basename(image_key))[0] - np.savez(os.path.join(os.path.dirname(image_key), npz_file_name + '_flip'), latent) - - bucket.clear() - - for i, (reso, count) in enumerate(zip(bucket_resos, bucket_counts)): - print(f"bucket {i} {reso}: {count}") - img_ar_errors = np.array(img_ar_errors) - print(f"mean ar error: {np.mean(img_ar_errors)}") - - # metadataを書き出して終わり - print(f"writing metadata: {args.out_json}") - with open(args.out_json, "wt", encoding='utf-8') as f: - json.dump(metadata, f, indent=2) - print("done!") - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") - parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル") - parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") - parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル") - parser.add_argument("--v2", action='store_true', - help='load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む') - parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") - parser.add_argument("--max_resolution", type=str, default="512,512", - help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)") - parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度") - parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最小解像度") - parser.add_argument("--mixed_precision", type=str, default="no", - choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") - parser.add_argument("--full_path", action="store_true", - help="use full path as image-key in metadata (supports multiple directories) / メタデータで画像キーをフルパスにする(複数の学習画像ディレクトリに対応)") - parser.add_argument("--flip_aug", action="store_true", - help="flip augmentation, save latents for flipped images / 左右反転した画像もlatentを取得、保存する") - - args = parser.parse_args() - main(args) diff --git a/finetune/tag_images_by_wd14_tagger.py b/finetune/tag_images_by_wd14_tagger.py index c576789..609b8c5 100644 --- a/finetune/tag_images_by_wd14_tagger.py +++ b/finetune/tag_images_by_wd14_tagger.py @@ -1,6 +1,3 @@ -# このスクリプトのライセンスは、Apache License 2.0とします -# (c) 2022 Kohya S. @kohya_ss - import argparse import csv import glob @@ -12,32 +9,87 @@ from tqdm import tqdm import numpy as np from tensorflow.keras.models import load_model from huggingface_hub import hf_hub_download +import torch + +import library.train_util as train_util # from wd14 tagger IMAGE_SIZE = 448 -WD14_TAGGER_REPO = 'SmilingWolf/wd-v1-4-vit-tagger' +# wd-v1-4-swinv2-tagger-v2 / wd-v1-4-vit-tagger / wd-v1-4-vit-tagger-v2/ wd-v1-4-convnext-tagger / wd-v1-4-convnext-tagger-v2 +DEFAULT_WD14_TAGGER_REPO = 'SmilingWolf/wd-v1-4-convnext-tagger-v2' FILES = ["keras_metadata.pb", "saved_model.pb", "selected_tags.csv"] SUB_DIR = "variables" SUB_DIR_FILES = ["variables.data-00000-of-00001", "variables.index"] CSV_FILE = FILES[-1] +def preprocess_image(image): + image = np.array(image) + image = image[:, :, ::-1] # RGB->BGR + + # pad to square + size = max(image.shape[0:2]) + pad_x = size - image.shape[1] + pad_y = size - image.shape[0] + pad_l = pad_x // 2 + pad_t = pad_y // 2 + image = np.pad(image, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode='constant', constant_values=255) + + interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4 + image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp) + + image = image.astype(np.float32) + return image + + +class ImageLoadingPrepDataset(torch.utils.data.Dataset): + def __init__(self, image_paths): + self.images = image_paths + + def __len__(self): + return len(self.images) + + def __getitem__(self, idx): + img_path = self.images[idx] + + try: + image = Image.open(img_path).convert("RGB") + image = preprocess_image(image) + tensor = torch.tensor(image) + except Exception as e: + print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}") + return None + + return (tensor, img_path) + + +def collate_fn_remove_corrupted(batch): + """Collate function that allows to remove corrupted examples in the + dataloader. It expects that the dataloader returns 'None' when that occurs. + The 'None's in the batch are removed. + """ + # Filter out all the Nones (corrupted examples) + batch = list(filter(lambda x: x is not None, batch)) + return batch + + def main(args): # hf_hub_downloadをそのまま使うとsymlink関係で問題があるらしいので、キャッシュディレクトリとforce_filenameを指定してなんとかする # depreacatedの警告が出るけどなくなったらその時 # https://github.com/toriato/stable-diffusion-webui-wd14-tagger/issues/22 if not os.path.exists(args.model_dir) or args.force_download: - print("downloading wd14 tagger model from hf_hub") + print(f"downloading wd14 tagger model from hf_hub. id: {args.repo_id}") for file in FILES: hf_hub_download(args.repo_id, file, cache_dir=args.model_dir, force_download=True, force_filename=file) for file in SUB_DIR_FILES: hf_hub_download(args.repo_id, file, subfolder=SUB_DIR, cache_dir=os.path.join( args.model_dir, SUB_DIR), force_download=True, force_filename=file) + else: + print("using existing wd14 tagger model") # 画像を読み込む - image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \ - glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp")) + image_paths = train_util.glob_images(args.train_data_dir) print(f"found {len(image_paths)} images.") print("loading model and labels") @@ -72,7 +124,7 @@ def main(args): # Everything else is tags: pick any where prediction confidence > threshold tag_text = "" for i, p in enumerate(prob[4:]): # numpyとか使うのが良いけど、まあそれほど数も多くないのでループで - if p >= args.thresh: + if p >= args.thresh and i < len(tags): tag_text += ", " + tags[i] if len(tag_text) > 0: @@ -83,34 +135,37 @@ def main(args): if args.debug: print(image_path, tag_text) + # 読み込みの高速化のためにDataLoaderを使うオプション + if args.max_data_loader_n_workers is not None: + dataset = ImageLoadingPrepDataset(image_paths) + data = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, + num_workers=args.max_data_loader_n_workers, collate_fn=collate_fn_remove_corrupted, drop_last=False) + else: + data = [[(None, ip)] for ip in image_paths] + b_imgs = [] - for image_path in tqdm(image_paths, smoothing=0.0): - img = Image.open(image_path) # cv2は日本語ファイル名で死ぬのとモード変換したいのでpillowで開く - if img.mode != 'RGB': - img = img.convert("RGB") - img = np.array(img) - img = img[:, :, ::-1] # RGB->BGR + for data_entry in tqdm(data, smoothing=0.0): + for data in data_entry: + if data is None: + continue - # pad to square - size = max(img.shape[0:2]) - pad_x = size - img.shape[1] - pad_y = size - img.shape[0] - pad_l = pad_x // 2 - pad_t = pad_y // 2 - img = np.pad(img, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode='constant', constant_values=255) + image, image_path = data + if image is not None: + image = image.detach().numpy() + else: + try: + image = Image.open(image_path) + if image.mode != 'RGB': + image = image.convert("RGB") + image = preprocess_image(image) + except Exception as e: + print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}") + continue + b_imgs.append((image_path, image)) - interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4 - img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp) - # cv2.imshow("img", img) - # cv2.waitKey() - # cv2.destroyAllWindows() - - img = img.astype(np.float32) - b_imgs.append((image_path, img)) - - if len(b_imgs) >= args.batch_size: - run_batch(b_imgs) - b_imgs.clear() + if len(b_imgs) >= args.batch_size: + run_batch(b_imgs) + b_imgs.clear() if len(b_imgs) > 0: run_batch(b_imgs) @@ -121,7 +176,7 @@ def main(args): if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") - parser.add_argument("--repo_id", type=str, default=WD14_TAGGER_REPO, + parser.add_argument("--repo_id", type=str, default=DEFAULT_WD14_TAGGER_REPO, help="repo id for wd14 tagger on Hugging Face / Hugging Faceのwd14 taggerのリポジトリID") parser.add_argument("--model_dir", type=str, default="wd14_tagger_model", help="directory to store wd14 tagger model / wd14 taggerのモデルを格納するディレクトリ") @@ -129,6 +184,8 @@ if __name__ == '__main__': help="force downloading wd14 tagger models / wd14 taggerのモデルを再ダウンロードします") parser.add_argument("--thresh", type=float, default=0.35, help="threshold of confidence to add a tag / タグを追加するか判定する閾値") parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") + parser.add_argument("--max_data_loader_n_workers", type=int, default=None, + help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)") parser.add_argument("--caption_extention", type=str, default=None, help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)") parser.add_argument("--caption_extension", type=str, default=".txt", help="extension of caption file / 出力されるキャプションファイルの拡張子") diff --git a/finetune_gui.py b/finetune_gui.py index 4597649..981be39 100644 --- a/finetune_gui.py +++ b/finetune_gui.py @@ -292,7 +292,7 @@ def train_model( subprocess.run(run_cmd) image_num = len( - [f for f in os.listdir(image_folder) if f.endswith('.npz')] + [f for f in os.listdir(image_folder) if f.endswith('.jpg') or f.endswith('.png') or f.endswith('.webp')] ) print(f'image_num = {image_num}') diff --git a/gen_img_diffusers.py b/gen_img_diffusers.py index 19c63ac..25a5b2d 100644 --- a/gen_img_diffusers.py +++ b/gen_img_diffusers.py @@ -470,6 +470,9 @@ class PipelineLike(): self.scheduler = scheduler self.safety_checker = None + # Textual Inversion + self.token_replacements = {} + # CLIP guidance self.clip_guidance_scale = clip_guidance_scale self.clip_image_guidance_scale = clip_image_guidance_scale @@ -484,6 +487,19 @@ class PipelineLike(): self.vgg16_feat_model = torchvision.models._utils.IntermediateLayerGetter(vgg16_model.features, return_layers=return_layers) self.vgg16_normalize = transforms.Normalize(mean=VGG16_IMAGE_MEAN, std=VGG16_IMAGE_STD) + # Textual Inversion + def add_token_replacement(self, target_token_id, rep_token_ids): + self.token_replacements[target_token_id] = rep_token_ids + + def replace_token(self, tokens): + new_tokens = [] + for token in tokens: + if token in self.token_replacements: + new_tokens.extend(self.token_replacements[token]) + else: + new_tokens.append(token) + return new_tokens + # region xformersとか使う部分:独自に書き換えるので関係なし def enable_xformers_memory_efficient_attention(self): r""" @@ -1507,6 +1523,9 @@ def get_prompts_with_weights(pipe: PipelineLike, prompt: List[str], max_length: for word, weight in texts_and_weights: # tokenize and discard the starting and the ending token token = pipe.tokenizer(word).input_ids[1:-1] + + token = pipe.replace_token(token) + text_token += token # copy the weight by length of token text_weight += [weight] * len(token) @@ -1826,12 +1845,12 @@ def main(args): text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.ckpt) else: print("load Diffusers pretrained models") - pipe = StableDiffusionPipeline.from_pretrained(args.ckpt, safety_checker=None, torch_dtype=dtype) - text_encoder = pipe.text_encoder - vae = pipe.vae - unet = pipe.unet - tokenizer = pipe.tokenizer - del pipe + loading_pipe = StableDiffusionPipeline.from_pretrained(args.ckpt, safety_checker=None, torch_dtype=dtype) + text_encoder = loading_pipe.text_encoder + vae = loading_pipe.vae + unet = loading_pipe.unet + tokenizer = loading_pipe.tokenizer + del loading_pipe # VAEを読み込む if args.vae is not None: @@ -2039,6 +2058,44 @@ def main(args): if args.diffusers_xformers: pipe.enable_xformers_memory_efficient_attention() + # Textual Inversionを処理する + if args.textual_inversion_embeddings: + token_ids_embeds = [] + for embeds_file in args.textual_inversion_embeddings: + if model_util.is_safetensors(embeds_file): + from safetensors.torch import load_file + data = load_file(embeds_file) + else: + data = torch.load(embeds_file, map_location="cpu") + + embeds = next(iter(data.values())) + if type(embeds) != torch.Tensor: + raise ValueError(f"weight file does not contains Tensor / 重みファイルのデータがTensorではありません: {embeds_file}") + + num_vectors_per_token = embeds.size()[0] + token_string = os.path.splitext(os.path.basename(embeds_file))[0] + token_strings = [token_string] + [f"{token_string}{i+1}" for i in range(num_vectors_per_token - 1)] + + # add new word to tokenizer, count is num_vectors_per_token + num_added_tokens = tokenizer.add_tokens(token_strings) + assert num_added_tokens == num_vectors_per_token, f"tokenizer has same word to token string (filename). please rename the file / 指定した名前(ファイル名)のトークンが既に存在します。ファイルをリネームしてください: {embeds_file}" + + token_ids = tokenizer.convert_tokens_to_ids(token_strings) + print(f"Textual Inversion embeddings `{token_string}` loaded. Tokens are added: {token_ids}") + assert min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1, f"token ids is not ordered" + assert len(tokenizer) - 1 == token_ids[-1], f"token ids is not end of tokenize: {len(tokenizer)}" + + if num_vectors_per_token > 1: + pipe.add_token_replacement(token_ids[0], token_ids) + + token_ids_embeds.append((token_ids, embeds)) + + text_encoder.resize_token_embeddings(len(tokenizer)) + token_embeds = text_encoder.get_input_embeddings().weight.data + for token_ids, embeds in token_ids_embeds: + for token_id, embed in zip(token_ids, embeds): + token_embeds[token_id] = embed + # promptを取得する if args.from_file is not None: print(f"reading prompts from {args.from_file}") @@ -2157,8 +2214,8 @@ def main(args): os.makedirs(args.outdir, exist_ok=True) max_embeddings_multiples = 1 if args.max_embeddings_multiples is None else args.max_embeddings_multiples - for iter in range(args.n_iter): - print(f"iteration {iter+1}/{args.n_iter}") + for gen_iter in range(args.n_iter): + print(f"iteration {gen_iter+1}/{args.n_iter}") iter_seed = random.randint(0, 0x7fffffff) # バッチ処理の関数 @@ -2527,6 +2584,8 @@ if __name__ == '__main__': parser.add_argument("--network_mul", type=float, default=None, nargs='*', help='Hypernetwork multiplier / Hypernetworkの効果の倍率') parser.add_argument("--network_args", type=str, default=None, nargs='*', help='additional argmuments for network (key=value) / ネットワークへの追加の引数') + parser.add_argument("--textual_inversion_embeddings", type=str, default=None, nargs='*', + help='Embeddings files of Textual Inversion / Textual Inversionのembeddings') parser.add_argument("--clip_skip", type=int, default=None, help='layer number from bottom to use in CLIP / CLIPの後ろからn層目の出力を使う') parser.add_argument("--max_embeddings_multiples", type=int, default=None, help='max embeding multiples, max token length is 75 * multiples / トークン長をデフォルトの何倍とするか 75*この値 がトークン長となる') diff --git a/library/train_util.py b/library/train_util.py index 85b58d7..86508a3 100644 --- a/library/train_util.py +++ b/library/train_util.py @@ -45,6 +45,7 @@ DEFAULT_LAST_OUTPUT_NAME = "last" # region dataset IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp"] +# , ".PNG", ".JPG", ".JPEG", ".WEBP", ".BMP"] # Linux? class ImageInfo(): @@ -87,6 +88,7 @@ class BaseDataset(torch.utils.data.Dataset): self.enable_bucket = False self.min_bucket_reso = None self.max_bucket_reso = None + self.tag_frequency = {} self.bucket_info = None self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2 @@ -115,6 +117,16 @@ class BaseDataset(torch.utils.data.Dataset): self.replacements = {} + def set_tag_frequency(self, dir_name, captions): + frequency_for_dir = self.tag_frequency.get(dir_name, {}) + self.tag_frequency[dir_name] = frequency_for_dir + for caption in captions: + for tag in caption.split(","): + if tag and not tag.isspace(): + tag = tag.lower() + frequency = frequency_for_dir.get(tag, 0) + frequency_for_dir[tag] = frequency + 1 + def disable_token_padding(self): self.token_padding_disabled = True @@ -140,7 +152,7 @@ class BaseDataset(torch.utils.data.Dataset): if type(str_to) == list: caption = random.choice(str_to) else: - caption = str_to + caption = str_to else: caption = caption.replace(str_from, str_to) @@ -240,13 +252,14 @@ class BaseDataset(torch.utils.data.Dataset): print("number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む)") for i, (reso, img_keys) in enumerate(zip(bucket_resos, self.buckets)): self.bucket_info["buckets"][i] = {"resolution": reso, "count": len(img_keys)} - print(f"bucket {i}: resolution {reso}, count: {len(img_keys)}") + # only show bucket info if there is an actual image in it + if len(img_keys) > 0: + print(f"bucket {i}: resolution {reso}, count: {len(img_keys)}") img_ar_errors = np.array(img_ar_errors) mean_img_ar_error = np.mean(np.abs(img_ar_errors)) self.bucket_info["mean_img_ar_error"] = mean_img_ar_error print(f"mean ar error (without repeats): {mean_img_ar_error}") - # 参照用indexを作る self.buckets_indices: list(BucketBatchIndex) = [] @@ -545,6 +558,8 @@ class DreamBoothDataset(BaseDataset): cap_for_img = read_caption(img_path) captions.append(caption_by_folder if cap_for_img is None else cap_for_img) + self.set_tag_frequency(os.path.basename(dir), captions) # タグ頻度を記録 + return n_repeats, img_paths, captions print("prepare train images.") @@ -553,10 +568,13 @@ class DreamBoothDataset(BaseDataset): for dir in train_dirs: n_repeats, img_paths, captions = load_dreambooth_dir(os.path.join(train_data_dir, dir)) num_train_images += n_repeats * len(img_paths) + for img_path, caption in zip(img_paths, captions): info = ImageInfo(img_path, n_repeats, caption, False, img_path) self.register_image(info) + self.dataset_dirs_info[os.path.basename(dir)] = {"n_repeats": n_repeats, "img_count": len(img_paths)} + print(f"{num_train_images} train images with repeating.") self.num_train_images = num_train_images @@ -570,9 +588,11 @@ class DreamBoothDataset(BaseDataset): for dir in reg_dirs: n_repeats, img_paths, captions = load_dreambooth_dir(os.path.join(reg_data_dir, dir)) num_reg_images += n_repeats * len(img_paths) + for img_path, caption in zip(img_paths, captions): info = ImageInfo(img_path, n_repeats, caption, True, img_path) reg_infos.append(info) + self.reg_dataset_dirs_info[os.path.basename(dir)] = {"n_repeats": n_repeats, "img_count": len(img_paths)} print(f"{num_reg_images} reg images.") @@ -617,6 +637,7 @@ class FineTuningDataset(BaseDataset): self.train_data_dir = train_data_dir self.batch_size = batch_size + tags_list = [] for image_key, img_md in metadata.items(): # path情報を作る if os.path.exists(image_key): @@ -633,6 +654,7 @@ class FineTuningDataset(BaseDataset): caption = tags elif tags is not None and len(tags) > 0: caption = caption + ', ' + tags + tags_list.append(tags) assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{abs_path}" image_info = ImageInfo(image_key, dataset_repeats, caption, False, abs_path) @@ -646,7 +668,8 @@ class FineTuningDataset(BaseDataset): self.num_train_images = len(metadata) * dataset_repeats self.num_reg_images = 0 - self.dataset_dirs_info[os.path.basename(self.train_data_dir)] = {"n_repeats": dataset_repeats, "img_count": len(metadata)} + self.set_tag_frequency(os.path.basename(json_file_name), tags_list) + self.dataset_dirs_info[os.path.basename(json_file_name)] = {"n_repeats": dataset_repeats, "img_count": len(metadata)} # check existence of all npz files if not self.color_aug: @@ -667,6 +690,8 @@ class FineTuningDataset(BaseDataset): print(f"npz file does not exist. make latents with VAE / npzファイルが見つからないためVAEを使ってlatentsを取得します") elif not npz_all: print(f"some of npz file does not exist. ignore npz files / いくつかのnpzファイルが見つからないためnpzファイルを無視します") + if self.flip_aug: + print("maybe no flipped files / 反転されたnpzファイルがないのかもしれません") for image_info in self.image_data.values(): image_info.latents_npz = image_info.latents_npz_flipped = None @@ -756,15 +781,30 @@ def debug_dataset(train_dataset, show_input_ids=False): break -def glob_images(dir, base): +def glob_images(directory, base="*"): img_paths = [] for ext in IMAGE_EXTENSIONS: if base == '*': - img_paths.extend(glob.glob(os.path.join(glob.escape(dir), base + ext))) + img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext))) else: - img_paths.extend(glob.glob(glob.escape(os.path.join(dir, base + ext)))) + img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext)))) + # img_paths = list(set(img_paths)) # 重複を排除 + # img_paths.sort() return img_paths + +def glob_images_pathlib(dir_path, recursive): + image_paths = [] + if recursive: + for ext in IMAGE_EXTENSIONS: + image_paths += list(dir_path.rglob('*' + ext)) + else: + for ext in IMAGE_EXTENSIONS: + image_paths += list(dir_path.glob('*' + ext)) + # image_paths = list(set(image_paths)) # 重複を排除 + # image_paths.sort() + return image_paths + # endregion @@ -1495,5 +1535,30 @@ def save_state_on_train_end(args: argparse.Namespace, accelerator): model_name = DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name accelerator.save_state(os.path.join(args.output_dir, LAST_STATE_NAME.format(model_name))) +# endregion + +# region 前処理用 + + +class ImageLoadingDataset(torch.utils.data.Dataset): + def __init__(self, image_paths): + self.images = image_paths + + def __len__(self): + return len(self.images) + + def __getitem__(self, idx): + img_path = self.images[idx] + + try: + image = Image.open(img_path).convert("RGB") + # convert to tensor temporarily so dataloader will accept it + tensor_pil = transforms.functional.pil_to_tensor(image) + except Exception as e: + print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}") + return None + + return (tensor_pil, img_path) + # endregion diff --git a/requirements.txt b/requirements.txt index f5f13fa..709a834 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ accelerate==0.15.0 -transformers==4.25.1 +transformers==4.26.0 ftfy albumentations opencv-python @@ -9,14 +9,13 @@ pytorch_lightning bitsandbytes==0.35.0 tensorboard safetensors==0.2.6 -gradio==3.15.0 +gradio altair easygui -tk # for BLIP captioning requests -timm -fairscale +timm==0.4.12 +fairscale==0.4.4 # for WD14 captioning tensorflow<2.11 huggingface-hub diff --git a/tools/resize_images_to_resolution.py b/tools/resize_images_to_resolution.py new file mode 100644 index 0000000..f1aecb3 --- /dev/null +++ b/tools/resize_images_to_resolution.py @@ -0,0 +1,66 @@ +import os +import cv2 +import argparse +import shutil +import math + +def resize_images(src_img_folder, dst_img_folder, max_resolution="512x512", divisible_by=2): + # Calculate max_pixels from max_resolution string + max_pixels = int(max_resolution.split("x")[0]) * int(max_resolution.split("x")[1]) + + # Create destination folder if it does not exist + if not os.path.exists(dst_img_folder): + os.makedirs(dst_img_folder) + + # Iterate through all files in src_img_folder + for filename in os.listdir(src_img_folder): + # Check if the image is png, jpg or webp + if not filename.endswith(('.png', '.jpg', '.webp')): + # Copy the file to the destination folder if not png, jpg or webp + shutil.copy(os.path.join(src_img_folder, filename), os.path.join(dst_img_folder, filename)) + continue + + # Load image + img = cv2.imread(os.path.join(src_img_folder, filename)) + + # Calculate current number of pixels + current_pixels = img.shape[0] * img.shape[1] + + # Check if the image needs resizing + if current_pixels > max_pixels: + # Calculate scaling factor + scale_factor = max_pixels / current_pixels + + # Calculate new dimensions + new_height = int(img.shape[0] * math.sqrt(scale_factor)) + new_width = int(img.shape[1] * math.sqrt(scale_factor)) + + # Resize image + img = cv2.resize(img, (new_width, new_height)) + + # Calculate the new height and width that are divisible by divisible_by + new_height = new_height if new_height % divisible_by == 0 else new_height - new_height % divisible_by + new_width = new_width if new_width % divisible_by == 0 else new_width - new_width % divisible_by + + # Center crop the image to the calculated dimensions + y = int((img.shape[0] - new_height) / 2) + x = int((img.shape[1] - new_width) / 2) + img = img[y:y + new_height, x:x + new_width] + + # Save resized image in dst_img_folder + cv2.imwrite(os.path.join(dst_img_folder, filename), img, [cv2.IMWRITE_JPEG_QUALITY, 100]) + + print(f"Resized image: {filename} with size {img.shape[0]}x{img.shape[1]}") + + +def main(): + parser = argparse.ArgumentParser(description='Resize images in a folder to a specified max resolution') + parser.add_argument('src_img_folder', type=str, help='Source folder containing the images') + parser.add_argument('dst_img_folder', type=str, help='Destination folder to save the resized images') + parser.add_argument('--max_resolution', type=str, help='Maximum resolution in the format "512x512"', default="512x512") + parser.add_argument('--divisible_by', type=int, help='Ensure new dimensions are divisible by this value', default=2) + args = parser.parse_args() + resize_images(args.src_img_folder, args.dst_img_folder, args.max_resolution) + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/train_network.py b/train_network.py index 37a10f6..8840522 100644 --- a/train_network.py +++ b/train_network.py @@ -1,3 +1,6 @@ +from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION +from torch.optim import Optimizer +from typing import Optional, Union import importlib import argparse import gc @@ -40,9 +43,6 @@ def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_sche # Which is a newer release of diffusers than currently packaged with sd-scripts # This code can be removed when newer diffusers version (v0.12.1 or greater) is tested and implemented to sd-scripts -from typing import Optional, Union -from torch.optim import Optimizer -from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION def get_scheduler_fix( name: Union[str, SchedulerType], @@ -52,53 +52,53 @@ def get_scheduler_fix( num_cycles: int = 1, power: float = 1.0, ): - """ - Unified API to get any scheduler from its name. - Args: - name (`str` or `SchedulerType`): - The name of the scheduler to use. - optimizer (`torch.optim.Optimizer`): - The optimizer that will be used during training. - num_warmup_steps (`int`, *optional*): - The number of warmup steps to do. This is not required by all schedulers (hence the argument being - optional), the function will raise an error if it's unset and the scheduler type requires it. - num_training_steps (`int``, *optional*): - The number of training steps to do. This is not required by all schedulers (hence the argument being - optional), the function will raise an error if it's unset and the scheduler type requires it. - num_cycles (`int`, *optional*): - The number of hard restarts used in `COSINE_WITH_RESTARTS` scheduler. - power (`float`, *optional*, defaults to 1.0): - Power factor. See `POLYNOMIAL` scheduler - last_epoch (`int`, *optional*, defaults to -1): - The index of the last epoch when resuming training. - """ - name = SchedulerType(name) - schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name] - if name == SchedulerType.CONSTANT: - return schedule_func(optimizer) + """ + Unified API to get any scheduler from its name. + Args: + name (`str` or `SchedulerType`): + The name of the scheduler to use. + optimizer (`torch.optim.Optimizer`): + The optimizer that will be used during training. + num_warmup_steps (`int`, *optional*): + The number of warmup steps to do. This is not required by all schedulers (hence the argument being + optional), the function will raise an error if it's unset and the scheduler type requires it. + num_training_steps (`int``, *optional*): + The number of training steps to do. This is not required by all schedulers (hence the argument being + optional), the function will raise an error if it's unset and the scheduler type requires it. + num_cycles (`int`, *optional*): + The number of hard restarts used in `COSINE_WITH_RESTARTS` scheduler. + power (`float`, *optional*, defaults to 1.0): + Power factor. See `POLYNOMIAL` scheduler + last_epoch (`int`, *optional*, defaults to -1): + The index of the last epoch when resuming training. + """ + name = SchedulerType(name) + schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name] + if name == SchedulerType.CONSTANT: + return schedule_func(optimizer) - # All other schedulers require `num_warmup_steps` - if num_warmup_steps is None: - raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.") + # All other schedulers require `num_warmup_steps` + if num_warmup_steps is None: + raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.") - if name == SchedulerType.CONSTANT_WITH_WARMUP: - return schedule_func(optimizer, num_warmup_steps=num_warmup_steps) + if name == SchedulerType.CONSTANT_WITH_WARMUP: + return schedule_func(optimizer, num_warmup_steps=num_warmup_steps) - # All other schedulers require `num_training_steps` - if num_training_steps is None: - raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.") + # All other schedulers require `num_training_steps` + if num_training_steps is None: + raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.") - if name == SchedulerType.COSINE_WITH_RESTARTS: - return schedule_func( - optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles - ) + if name == SchedulerType.COSINE_WITH_RESTARTS: + return schedule_func( + optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles + ) - if name == SchedulerType.POLYNOMIAL: - return schedule_func( - optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, power=power - ) + if name == SchedulerType.POLYNOMIAL: + return schedule_func( + optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, power=power + ) - return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps) + return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps) def train(args): @@ -135,7 +135,7 @@ def train(args): train_util.debug_dataset(train_dataset) return if len(train_dataset) == 0: - print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください") + print("No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)") return # acceleratorを準備する @@ -224,7 +224,7 @@ def train(args): # lr schedulerを用意する # lr_scheduler = diffusers.optimization.get_scheduler( lr_scheduler = get_scheduler_fix( - args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, + args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, num_cycles=args.lr_scheduler_num_cycles, power=args.lr_scheduler_power) @@ -335,6 +335,7 @@ def train(args): "ss_keep_tokens": args.keep_tokens, "ss_dataset_dirs": json.dumps(train_dataset.dataset_dirs_info), "ss_reg_dataset_dirs": json.dumps(train_dataset.reg_dataset_dirs_info), + "ss_tag_frequency": json.dumps(train_dataset.tag_frequency), "ss_bucket_info": json.dumps(train_dataset.bucket_info), "ss_training_comment": args.training_comment # will not be updated after training }