Improve GUI
This commit is contained in:
parent
6b41f4f951
commit
2c069d1067
@ -26,10 +26,10 @@ def UI(username, password):
|
||||
output_dir_input,
|
||||
logging_dir_input,
|
||||
) = dreambooth_tab()
|
||||
with gr.Tab('Dreambooth LoRA'):
|
||||
lora_tab()
|
||||
with gr.Tab('Finetune'):
|
||||
finetune_tab()
|
||||
with gr.Tab('LoRA'):
|
||||
lora_tab()
|
||||
with gr.Tab('Utilities'):
|
||||
utilities_tab(
|
||||
train_data_dir_input=train_data_dir_input,
|
||||
|
65
lora_gui.py
65
lora_gui.py
@ -42,7 +42,6 @@ def save_configuration(
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
@ -65,7 +64,7 @@ def save_configuration(
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_train, network_dim
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_dim
|
||||
):
|
||||
original_file_path = file_path
|
||||
|
||||
@ -94,7 +93,6 @@ def save_configuration(
|
||||
'reg_data_dir': reg_data_dir,
|
||||
'output_dir': output_dir,
|
||||
'max_resolution': max_resolution,
|
||||
'learning_rate': learning_rate,
|
||||
'lr_scheduler': lr_scheduler,
|
||||
'lr_warmup': lr_warmup,
|
||||
'train_batch_size': train_batch_size,
|
||||
@ -120,7 +118,6 @@ def save_configuration(
|
||||
'prior_loss_weight': prior_loss_weight,
|
||||
'text_encoder_lr': text_encoder_lr,
|
||||
'unet_lr': unet_lr,
|
||||
'network_train': network_train,
|
||||
'network_dim': network_dim
|
||||
}
|
||||
|
||||
@ -141,7 +138,6 @@ def open_configuration(
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
@ -164,7 +160,7 @@ def open_configuration(
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_train, network_dim
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_dim
|
||||
):
|
||||
|
||||
original_file_path = file_path
|
||||
@ -192,7 +188,6 @@ def open_configuration(
|
||||
my_data.get('reg_data_dir', reg_data_dir),
|
||||
my_data.get('output_dir', output_dir),
|
||||
my_data.get('max_resolution', max_resolution),
|
||||
my_data.get('learning_rate', learning_rate),
|
||||
my_data.get('lr_scheduler', lr_scheduler),
|
||||
my_data.get('lr_warmup', lr_warmup),
|
||||
my_data.get('train_batch_size', train_batch_size),
|
||||
@ -220,7 +215,6 @@ def open_configuration(
|
||||
my_data.get('prior_loss_weight', prior_loss_weight),
|
||||
my_data.get('text_encoder_lr', text_encoder_lr),
|
||||
my_data.get('unet_lr', unet_lr),
|
||||
my_data.get('network_train', network_train),
|
||||
my_data.get('network_dim', network_dim),
|
||||
)
|
||||
|
||||
@ -234,7 +228,6 @@ def train_model(
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
@ -257,7 +250,7 @@ def train_model(
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_train, network_dim
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_dim
|
||||
):
|
||||
def save_inference_file(output_dir, v2, v_parameterization):
|
||||
# Copy inference model for v2 if required
|
||||
@ -294,6 +287,14 @@ def train_model(
|
||||
if output_dir == '':
|
||||
msgbox('Output folder path is missing')
|
||||
return
|
||||
|
||||
# If string is empty set string to 0.
|
||||
if text_encoder_lr == '': text_encoder_lr = 0
|
||||
if unet_lr == '': unet_lr = 0
|
||||
|
||||
if (float(text_encoder_lr) == 0) and (float(unet_lr) == 0):
|
||||
msgbox('At least one Learning Rate value for "Text encoder" or "Unet" need to be provided')
|
||||
return
|
||||
|
||||
# Get a list of all subfolders in train_data_dir
|
||||
subfolders = [
|
||||
@ -394,7 +395,7 @@ def train_model(
|
||||
run_cmd += f' --resolution={max_resolution}'
|
||||
run_cmd += f' --output_dir={output_dir}'
|
||||
run_cmd += f' --train_batch_size={train_batch_size}'
|
||||
run_cmd += f' --learning_rate={learning_rate}'
|
||||
# run_cmd += f' --learning_rate={learning_rate}'
|
||||
run_cmd += f' --lr_scheduler={lr_scheduler}'
|
||||
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
|
||||
run_cmd += f' --max_train_steps={max_train_steps}'
|
||||
@ -418,14 +419,18 @@ def train_model(
|
||||
if not float(prior_loss_weight) == 1.0:
|
||||
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
|
||||
run_cmd += f' --network_module=networks.lora'
|
||||
if not text_encoder_lr == '':
|
||||
if not float(text_encoder_lr) == 0:
|
||||
run_cmd += f' --text_encoder_lr={text_encoder_lr}'
|
||||
if not unet_lr == '':
|
||||
run_cmd += f' --unet_lr={unet_lr}'
|
||||
if network_train == 'Text encoder only':
|
||||
run_cmd += f' --network_train_text_encoder_only'
|
||||
elif network_train == 'Unet only':
|
||||
else:
|
||||
run_cmd += f' --network_train_unet_only'
|
||||
if not float(unet_lr) == 0:
|
||||
run_cmd += f' --unet_lr={unet_lr}'
|
||||
else:
|
||||
run_cmd += f' --network_train_text_encoder_only'
|
||||
# if network_train == 'Text encoder only':
|
||||
# run_cmd += f' --network_train_text_encoder_only'
|
||||
# elif network_train == 'Unet only':
|
||||
# run_cmd += f' --network_train_unet_only'
|
||||
run_cmd += f' --network_dim={network_dim}'
|
||||
|
||||
|
||||
@ -695,7 +700,7 @@ def lora_tab(
|
||||
)
|
||||
with gr.Tab('Training parameters'):
|
||||
with gr.Row():
|
||||
learning_rate_input = gr.Textbox(label='Learning rate', value=1e-4)
|
||||
# learning_rate_input = gr.Textbox(label='Learning rate', value=1e-4, visible=False)
|
||||
lr_scheduler_input = gr.Dropdown(
|
||||
label='LR Scheduler',
|
||||
choices=[
|
||||
@ -712,16 +717,16 @@ def lora_tab(
|
||||
with gr.Row():
|
||||
text_encoder_lr = gr.Textbox(label='Text Encoder learning rate', value=1e-6, placeholder='Optional')
|
||||
unet_lr = gr.Textbox(label='Unet learning rate', value=1e-4, placeholder='Optional')
|
||||
network_train =gr.Dropdown(
|
||||
label='Network to train',
|
||||
choices=[
|
||||
'Text encoder and Unet',
|
||||
'Text encoder only',
|
||||
'Unet only',
|
||||
],
|
||||
value='Text encoder and Unet',
|
||||
interactive=True
|
||||
)
|
||||
# network_train = gr.Dropdown(
|
||||
# label='Network to train',
|
||||
# choices=[
|
||||
# 'Text encoder and Unet',
|
||||
# 'Text encoder only',
|
||||
# 'Unet only',
|
||||
# ],
|
||||
# value='Text encoder and Unet',
|
||||
# interactive=True
|
||||
# )
|
||||
network_dim = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=32,
|
||||
@ -846,7 +851,7 @@ def lora_tab(
|
||||
reg_data_dir_input,
|
||||
output_dir_input,
|
||||
max_resolution_input,
|
||||
learning_rate_input,
|
||||
# learning_rate_input,
|
||||
lr_scheduler_input,
|
||||
lr_warmup_input,
|
||||
train_batch_size_input,
|
||||
@ -869,7 +874,7 @@ def lora_tab(
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_train, network_dim
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_dim
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
|
Loading…
Reference in New Issue
Block a user