Add new Utility to Extract a LoRA from a finetuned model
This commit is contained in:
parent
c20a10d7fd
commit
34f7cd8e57
@ -30,6 +30,8 @@ Once you have created the LoRA network you can generate images via auto1111 by i
|
||||
|
||||
## Change history
|
||||
|
||||
* 2023/01/06 (v19.4):
|
||||
- Add new Utility to Extract a LoRA from a finetuned model
|
||||
* 2023/01/06 (v19.3.1):
|
||||
- Emergency fix for dreambooth_ui no longer working, sorry
|
||||
- Add LoRA network merge too GUI. Run `pip install -U -r requirements.txt` after pulling this new release.
|
||||
|
@ -10,9 +10,7 @@
|
||||
|
||||
cloneofsimo氏のリポジトリ、およびd8ahazard氏の[Dreambooth Extension for Stable-Diffusion-WebUI](https://github.com/d8ahazard/sd_dreambooth_extension)とは、現時点では互換性がありません。いくつかの機能拡張を行っているためです(後述)。
|
||||
|
||||
WebUI等で画像生成する場合には、学習したLoRAのモデルを学習元のStable Diffusionのモデルに、このリポジトリ内のスクリプトであらかじめマージしておく必要があります。マージ後のモデルファイルはLoRAの学習結果が反映されたものになります。
|
||||
|
||||
なお当リポジトリ内の画像生成スクリプトで生成する場合はマージ不要です。
|
||||
WebUI等で画像生成する場合には、学習したLoRAのモデルを学習元のStable Diffusionのモデルにこのリポジトリ内のスクリプトであらかじめマージしておくか、こちらの[WebUI用extention](https://github.com/kohya-ss/sd-webui-additional-networks)を使ってください。
|
||||
|
||||
## 学習方法
|
||||
|
||||
@ -24,7 +22,7 @@ DreamBoothの手法(identifier(sksなど)とclass、オプションで正
|
||||
|
||||
### DreamBoothの手法を用いる場合
|
||||
|
||||
note.com [環境整備とDreamBooth学習スクリプトについて](https://note.com/kohya_ss/n/nba4eceaa4594) を参照してデータを用意してください。
|
||||
[DreamBoothのガイド](./train_db_README-ja.md) を参照してデータを用意してください。
|
||||
|
||||
学習するとき、train_db.pyの代わりにtrain_network.pyを指定してください。
|
||||
|
||||
@ -110,7 +108,7 @@ python networks\merge_lora.py --sd_model ..\model\model.ckpt
|
||||
|
||||
### 複数のLoRAのモデルをマージする
|
||||
|
||||
結局のところSDモデルにマージしないと推論できないのであまり使い道はないかもしれません。ただ、複数のLoRAモデルをひとつずつSDモデルにマージしていく場合と、複数のLoRAモデルをマージしてからSDモデルにマージする場合とは、計算順序の関連で微妙に異なる結果になります。
|
||||
複数のLoRAモデルをひとつずつSDモデルに適用する場合と、複数のLoRAモデルをマージしてからSDモデルにマージする場合とは、計算順序の関連で微妙に異なる結果になります。
|
||||
|
||||
たとえば以下のようなコマンドラインになります。
|
||||
|
||||
@ -144,6 +142,40 @@ gen_img_diffusers.pyに、--network_module、--network_weights、--network_dim
|
||||
|
||||
--network_mulオプションで0~1.0の数値を指定すると、LoRAの適用率を変えられます。
|
||||
|
||||
## 二つのモデルの差分からLoRAモデルを作成する
|
||||
|
||||
[こちらのディスカッション](https://github.com/cloneofsimo/lora/discussions/56)を参考に実装したものです。数式はそのまま使わせていただきました(よく理解していませんが近似には特異値分解を用いるようです)。
|
||||
|
||||
二つのモデル(たとえばfine tuningの元モデルとfine tuning後のモデル)の差分を、LoRAで近似します。
|
||||
|
||||
### スクリプトの実行方法
|
||||
|
||||
以下のように指定してください。
|
||||
```
|
||||
python networks\extract_lora_from_models.py --model_org base-model.ckpt
|
||||
--model_tuned fine-tuned-model.ckpt
|
||||
--save_to lora-weights.safetensors --dim 4
|
||||
```
|
||||
|
||||
--model_orgオプションに元のStable Diffusionモデルを指定します。作成したLoRAモデルを適用する場合は、このモデルを指定して適用することになります。.ckptまたは.safetensorsが指定できます。
|
||||
|
||||
--model_tunedオプションに差分を抽出する対象のStable Diffusionモデルを指定します。たとえばfine tuningやDreamBooth後のモデルを指定します。.ckptまたは.safetensorsが指定できます。
|
||||
|
||||
--save_toにLoRAモデルの保存先を指定します。--dimにLoRAの次元数を指定します。
|
||||
|
||||
生成されたLoRAモデルは、学習したLoRAモデルと同様に使用できます。
|
||||
|
||||
Text Encoderが二つのモデルで同じ場合にはLoRAはU-NetのみのLoRAとなります。
|
||||
|
||||
### その他のオプション
|
||||
|
||||
- --v2
|
||||
- v2.xのStable Diffusionモデルを使う場合に指定してください。
|
||||
- --device
|
||||
- ``--device cuda``としてcudaを指定すると計算をGPU上で行います。処理が速くなります(CPUでもそこまで遅くないため、せいぜい倍~数倍程度のようです)。
|
||||
- --save_precision
|
||||
- LoRAの保存形式を"float", "fp16", "bf16"から指定します。省略時はfloatになります。
|
||||
|
||||
## 追加情報
|
||||
|
||||
### cloneofsimo氏のリポジトリとの違い
|
||||
|
@ -22,7 +22,6 @@ from library.common_gui import (
|
||||
from library.dreambooth_folder_creation_gui import (
|
||||
gradio_dreambooth_folder_creation_tab,
|
||||
)
|
||||
from library.dataset_balancing_gui import gradio_dataset_balancing_tab
|
||||
from library.utilities import utilities_tab
|
||||
from easygui import msgbox
|
||||
|
||||
@ -398,13 +397,13 @@ def train_model(
|
||||
if flip_aug:
|
||||
run_cmd += ' --flip_aug'
|
||||
run_cmd += (
|
||||
f' --pretrained_model_name_or_path={pretrained_model_name_or_path}'
|
||||
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
|
||||
)
|
||||
run_cmd += f' --train_data_dir="{train_data_dir}"'
|
||||
if len(reg_data_dir):
|
||||
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
|
||||
run_cmd += f' --resolution={max_resolution}'
|
||||
run_cmd += f' --output_dir={output_dir}'
|
||||
run_cmd += f' --output_dir="{output_dir}"'
|
||||
run_cmd += f' --train_batch_size={train_batch_size}'
|
||||
run_cmd += f' --learning_rate={learning_rate}'
|
||||
run_cmd += f' --lr_scheduler={lr_scheduler}'
|
||||
@ -416,7 +415,7 @@ def train_model(
|
||||
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
|
||||
run_cmd += f' --seed={seed}'
|
||||
run_cmd += f' --save_precision={save_precision}'
|
||||
run_cmd += f' --logging_dir={logging_dir}'
|
||||
run_cmd += f' --logging_dir="{logging_dir}"'
|
||||
if not caption_extension == '':
|
||||
run_cmd += f' --caption_extension={caption_extension}'
|
||||
if not stop_text_encoder_training == 0:
|
||||
@ -817,7 +816,6 @@ def dreambooth_tab(
|
||||
output_dir_input=output_dir_input,
|
||||
logging_dir_input=logging_dir_input,
|
||||
)
|
||||
gradio_dataset_balancing_tab()
|
||||
|
||||
button_run = gr.Button('Train model')
|
||||
|
||||
|
@ -276,8 +276,8 @@ def train_model(
|
||||
run_cmd += f' --caption_extension=".txt"'
|
||||
else:
|
||||
run_cmd += f' --caption_extension={caption_extension}'
|
||||
run_cmd += f' {image_folder}'
|
||||
run_cmd += f' {train_dir}/{caption_metadata_filename}'
|
||||
run_cmd += f' "{image_folder}"'
|
||||
run_cmd += f' "{train_dir}/{caption_metadata_filename}"'
|
||||
if full_path:
|
||||
run_cmd += f' --full_path'
|
||||
|
||||
@ -291,10 +291,10 @@ def train_model(
|
||||
run_cmd = (
|
||||
f'./venv/Scripts/python.exe finetune/prepare_buckets_latents.py'
|
||||
)
|
||||
run_cmd += f' {image_folder}'
|
||||
run_cmd += f' {train_dir}/{caption_metadata_filename}'
|
||||
run_cmd += f' {train_dir}/{latent_metadata_filename}'
|
||||
run_cmd += f' {pretrained_model_name_or_path}'
|
||||
run_cmd += f' "{image_folder}"'
|
||||
run_cmd += f' "{train_dir}/{caption_metadata_filename}"'
|
||||
run_cmd += f' "{train_dir}/{latent_metadata_filename}"'
|
||||
run_cmd += f' "{pretrained_model_name_or_path}"'
|
||||
run_cmd += f' --batch_size={batch_size}'
|
||||
run_cmd += f' --max_resolution={max_resolution}'
|
||||
run_cmd += f' --min_bucket_reso={min_bucket_reso}'
|
||||
@ -344,13 +344,13 @@ def train_model(
|
||||
if xformers:
|
||||
run_cmd += f' --xformers'
|
||||
run_cmd += (
|
||||
f' --pretrained_model_name_or_path={pretrained_model_name_or_path}'
|
||||
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
|
||||
)
|
||||
run_cmd += f' --in_json={train_dir}/{latent_metadata_filename}'
|
||||
run_cmd += f' --train_data_dir={image_folder}'
|
||||
run_cmd += f' --output_dir={output_dir}'
|
||||
run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"'
|
||||
run_cmd += f' --train_data_dir="{image_folder}"'
|
||||
run_cmd += f' --output_dir="{output_dir}"'
|
||||
if not logging_dir == '':
|
||||
run_cmd += f' --logging_dir={logging_dir}'
|
||||
run_cmd += f' --logging_dir="{logging_dir}"'
|
||||
run_cmd += f' --train_batch_size={train_batch_size}'
|
||||
run_cmd += f' --dataset_repeats={dataset_repeats}'
|
||||
run_cmd += f' --learning_rate={learning_rate}'
|
||||
|
@ -4,6 +4,8 @@ import argparse
|
||||
from dreambooth_gui import dreambooth_tab
|
||||
from finetune_gui import finetune_tab
|
||||
from library.utilities import utilities_tab
|
||||
from library.extract_lora_gui import gradio_extract_lora_tab
|
||||
from library.merge_lora_gui import gradio_merge_lora_tab
|
||||
from lora_gui import lora_tab
|
||||
|
||||
|
||||
@ -38,6 +40,8 @@ def UI(username, password):
|
||||
logging_dir_input=logging_dir_input,
|
||||
enable_copy_info_button=True,
|
||||
)
|
||||
gradio_extract_lora_tab()
|
||||
gradio_merge_lora_tab()
|
||||
|
||||
# Show the interface
|
||||
if not username == '':
|
||||
|
@ -3,17 +3,22 @@ import os
|
||||
import gradio as gr
|
||||
from easygui import msgbox
|
||||
|
||||
def get_dir_and_file(file_path):
|
||||
dir_path, file_name = os.path.split(file_path)
|
||||
return (dir_path, file_name)
|
||||
|
||||
def get_file_path(file_path='', defaultextension='.json'):
|
||||
def get_file_path(file_path='', defaultextension='.json', extension_name='Config files'):
|
||||
current_file_path = file_path
|
||||
# print(f'current file path: {current_file_path}')
|
||||
|
||||
initial_dir, initial_file = get_dir_and_file(file_path)
|
||||
|
||||
root = Tk()
|
||||
root.wm_attributes('-topmost', 1)
|
||||
root.withdraw()
|
||||
file_path = filedialog.askopenfilename(
|
||||
filetypes=(('Config files', '*.json'), ('All files', '*')),
|
||||
defaultextension=defaultextension,
|
||||
filetypes=((f'{extension_name}', f'{defaultextension}'), ('All files', '*')),
|
||||
defaultextension=defaultextension, initialfile=initial_file, initialdir=initial_dir
|
||||
)
|
||||
root.destroy()
|
||||
|
||||
@ -26,10 +31,13 @@ def get_any_file_path(file_path=''):
|
||||
current_file_path = file_path
|
||||
# print(f'current file path: {current_file_path}')
|
||||
|
||||
initial_dir, initial_file = get_dir_and_file(file_path)
|
||||
|
||||
root = Tk()
|
||||
root.wm_attributes('-topmost', 1)
|
||||
root.withdraw()
|
||||
file_path = filedialog.askopenfilename()
|
||||
file_path = filedialog.askopenfilename(initialdir=initial_dir,
|
||||
initialfile=initial_file,)
|
||||
root.destroy()
|
||||
|
||||
if file_path == '':
|
||||
@ -48,10 +56,12 @@ def remove_doublequote(file_path):
|
||||
def get_folder_path(folder_path=''):
|
||||
current_folder_path = folder_path
|
||||
|
||||
initial_dir, initial_file = get_dir_and_file(folder_path)
|
||||
|
||||
root = Tk()
|
||||
root.wm_attributes('-topmost', 1)
|
||||
root.withdraw()
|
||||
folder_path = filedialog.askdirectory()
|
||||
folder_path = filedialog.askdirectory(initialdir=initial_dir)
|
||||
root.destroy()
|
||||
|
||||
if folder_path == '':
|
||||
@ -60,16 +70,20 @@ def get_folder_path(folder_path=''):
|
||||
return folder_path
|
||||
|
||||
|
||||
def get_saveasfile_path(file_path='', defaultextension='.json'):
|
||||
def get_saveasfile_path(file_path='', defaultextension='.json', extension_name='Config files'):
|
||||
current_file_path = file_path
|
||||
# print(f'current file path: {current_file_path}')
|
||||
|
||||
initial_dir, initial_file = get_dir_and_file(file_path)
|
||||
|
||||
root = Tk()
|
||||
root.wm_attributes('-topmost', 1)
|
||||
root.withdraw()
|
||||
save_file_path = filedialog.asksaveasfile(
|
||||
filetypes=(('Config files', '*.json'), ('All files', '*')),
|
||||
filetypes=((f'{extension_name}', f'{defaultextension}'), ('All files', '*')),
|
||||
defaultextension=defaultextension,
|
||||
initialdir=initial_dir,
|
||||
initialfile=initial_file,
|
||||
)
|
||||
root.destroy()
|
||||
|
||||
@ -85,6 +99,30 @@ def get_saveasfile_path(file_path='', defaultextension='.json'):
|
||||
|
||||
return file_path
|
||||
|
||||
def get_saveasfilename_path(file_path='', extensions='*', extension_name='Config files'):
|
||||
current_file_path = file_path
|
||||
# print(f'current file path: {current_file_path}')
|
||||
|
||||
initial_dir, initial_file = get_dir_and_file(file_path)
|
||||
|
||||
root = Tk()
|
||||
root.wm_attributes('-topmost', 1)
|
||||
root.withdraw()
|
||||
save_file_path = filedialog.asksaveasfilename(filetypes=((f'{extension_name}', f'{extensions}'), ('All files', '*')),
|
||||
defaultextension=extensions,
|
||||
initialdir=initial_dir,
|
||||
initialfile=initial_file,
|
||||
)
|
||||
root.destroy()
|
||||
|
||||
if save_file_path == '':
|
||||
file_path = current_file_path
|
||||
else:
|
||||
# print(save_file_path)
|
||||
file_path = save_file_path
|
||||
|
||||
return file_path
|
||||
|
||||
|
||||
def add_pre_postfix(
|
||||
folder='', prefix='', postfix='', caption_file_ext='.caption'
|
||||
|
127
library/extract_lora_gui.py
Normal file
127
library/extract_lora_gui.py
Normal file
@ -0,0 +1,127 @@
|
||||
import gradio as gr
|
||||
from easygui import msgbox
|
||||
import subprocess
|
||||
import os
|
||||
from .common_gui import get_saveasfilename_path, get_any_file_path, get_file_path
|
||||
|
||||
folder_symbol = '\U0001f4c2' # 📂
|
||||
refresh_symbol = '\U0001f504' # 🔄
|
||||
save_style_symbol = '\U0001f4be' # 💾
|
||||
document_symbol = '\U0001F4C4' # 📄
|
||||
|
||||
|
||||
def extract_lora(
|
||||
model_tuned, model_org, save_to, save_precision, dim, v2,
|
||||
):
|
||||
# Check for caption_text_input
|
||||
if model_tuned == '':
|
||||
msgbox('Invalid finetuned model file')
|
||||
return
|
||||
|
||||
if model_org == '':
|
||||
msgbox('Invalid base model file')
|
||||
return
|
||||
|
||||
# Check if source model exist
|
||||
if not os.path.isfile(model_tuned):
|
||||
msgbox('The provided finetuned model is not a file')
|
||||
return
|
||||
|
||||
if not os.path.isfile(model_org):
|
||||
msgbox('The provided base model is not a file')
|
||||
return
|
||||
|
||||
run_cmd = f'.\\venv\Scripts\python.exe "networks\extract_lora_from_models.py"'
|
||||
run_cmd += f' --save_precision {save_precision}'
|
||||
run_cmd += f' --save_to "{save_to}"'
|
||||
run_cmd += f' --model_org "{model_org}"'
|
||||
run_cmd += f' --model_tuned "{model_tuned}"'
|
||||
run_cmd += f' --dim {dim}'
|
||||
if v2:
|
||||
run_cmd += f' --v2'
|
||||
|
||||
print(run_cmd)
|
||||
|
||||
# Run the command
|
||||
subprocess.run(run_cmd)
|
||||
|
||||
|
||||
###
|
||||
# Gradio UI
|
||||
###
|
||||
|
||||
|
||||
def gradio_extract_lora_tab():
|
||||
with gr.Tab('Extract LoRA'):
|
||||
gr.Markdown(
|
||||
'This utility can extract a LoRA network from a finetuned model.'
|
||||
)
|
||||
lora_ext = gr.Textbox(value='*.pt *.safetensors', visible=False)
|
||||
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)
|
||||
model_ext = gr.Textbox(value='*.ckpt *.safetensors', visible=False)
|
||||
model_ext_name = gr.Textbox(value='Model types', visible=False)
|
||||
|
||||
with gr.Row():
|
||||
model_tuned = gr.Textbox(
|
||||
label='Finetuned model',
|
||||
placeholder='Path to the finetuned model to extract',
|
||||
interactive=True,
|
||||
)
|
||||
button_model_tuned_file = gr.Button(
|
||||
folder_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
button_model_tuned_file.click(
|
||||
get_file_path,
|
||||
inputs=[model_tuned, model_ext, model_ext_name],
|
||||
outputs=model_tuned,
|
||||
)
|
||||
|
||||
model_org = gr.Textbox(
|
||||
label='Stable Diffusion base model',
|
||||
placeholder='Stable Diffusion original model: ckpt or safetensors file',
|
||||
interactive=True,
|
||||
)
|
||||
button_model_org_file = gr.Button(
|
||||
folder_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
button_model_org_file.click(
|
||||
get_file_path,
|
||||
inputs=[model_org, model_ext, model_ext_name],
|
||||
outputs=model_org,
|
||||
)
|
||||
with gr.Row():
|
||||
save_to = gr.Textbox(
|
||||
label='Save to',
|
||||
placeholder='path where to save the extracted LoRA model...',
|
||||
interactive=True,
|
||||
)
|
||||
button_save_to = gr.Button(
|
||||
folder_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
button_save_to.click(
|
||||
get_saveasfilename_path, inputs=[save_to, lora_ext, lora_ext_name], outputs=save_to
|
||||
)
|
||||
save_precision = gr.Dropdown(
|
||||
label='Save precison',
|
||||
choices=['fp16', 'bf16', 'float'],
|
||||
value='float',
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
dim = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=128,
|
||||
label='Network Dimension',
|
||||
value=8,
|
||||
step=1,
|
||||
interactive=True,
|
||||
)
|
||||
v2 = gr.Checkbox(label='v2', value=False, interactive=True)
|
||||
|
||||
extract_button = gr.Button('Extract LoRA model')
|
||||
|
||||
extract_button.click(
|
||||
extract_lora,
|
||||
inputs=[model_tuned, model_org, save_to, save_precision, dim, v2
|
||||
],
|
||||
)
|
@ -2,7 +2,7 @@ import gradio as gr
|
||||
from easygui import msgbox
|
||||
import subprocess
|
||||
import os
|
||||
from .common_gui import get_folder_path, get_any_file_path
|
||||
from .common_gui import get_saveasfilename_path, get_any_file_path, get_file_path
|
||||
|
||||
folder_symbol = '\U0001f4c2' # 📂
|
||||
refresh_symbol = '\U0001f504' # 🔄
|
||||
@ -55,29 +55,11 @@ def merge_lora(
|
||||
def gradio_merge_lora_tab():
|
||||
with gr.Tab('Merge LoRA'):
|
||||
gr.Markdown(
|
||||
'This utility can merge LoRA networks.'
|
||||
'This utility can merge two LoRA networks together.'
|
||||
)
|
||||
# with gr.Row():
|
||||
# sd_model = gr.Textbox(
|
||||
# label='Stable Diffusion model',
|
||||
# placeholder='(Optional) only select if mergind a LoRA into a ckpt or tensorflow model',
|
||||
# interactive=True,
|
||||
# )
|
||||
# button_sd_model_dir = gr.Button(
|
||||
# folder_symbol, elem_id='open_folder_small'
|
||||
# )
|
||||
# button_sd_model_dir.click(
|
||||
# get_folder_path, outputs=sd_model
|
||||
# )
|
||||
|
||||
# button_sd_model_file = gr.Button(
|
||||
# document_symbol, elem_id='open_folder_small'
|
||||
# )
|
||||
# button_sd_model_file.click(
|
||||
# get_any_file_path,
|
||||
# inputs=[sd_model],
|
||||
# outputs=sd_model,
|
||||
# )
|
||||
lora_ext = gr.Textbox(value='*.pt *.safetensors', visible=False)
|
||||
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)
|
||||
|
||||
with gr.Row():
|
||||
lora_a_model = gr.Textbox(
|
||||
@ -86,11 +68,11 @@ def gradio_merge_lora_tab():
|
||||
interactive=True,
|
||||
)
|
||||
button_lora_a_model_file = gr.Button(
|
||||
document_symbol, elem_id='open_folder_small'
|
||||
folder_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
button_lora_a_model_file.click(
|
||||
get_any_file_path,
|
||||
inputs=[lora_a_model],
|
||||
get_file_path,
|
||||
inputs=[lora_a_model, lora_ext, lora_ext_name],
|
||||
outputs=lora_a_model,
|
||||
)
|
||||
|
||||
@ -100,11 +82,11 @@ def gradio_merge_lora_tab():
|
||||
interactive=True,
|
||||
)
|
||||
button_lora_b_model_file = gr.Button(
|
||||
document_symbol, elem_id='open_folder_small'
|
||||
folder_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
button_lora_b_model_file.click(
|
||||
get_any_file_path,
|
||||
inputs=[lora_b_model],
|
||||
get_file_path,
|
||||
inputs=[lora_b_model, lora_ext, lora_ext_name],
|
||||
outputs=lora_b_model,
|
||||
)
|
||||
with gr.Row():
|
||||
@ -121,7 +103,7 @@ def gradio_merge_lora_tab():
|
||||
folder_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
button_save_to.click(
|
||||
get_any_file_path, inputs=save_to, outputs=save_to
|
||||
get_saveasfilename_path, inputs=[save_to, lora_ext, lora_ext_name], outputs=save_to
|
||||
)
|
||||
precision = gr.Dropdown(
|
||||
label='Merge precison',
|
||||
|
30
lora_gui.py
30
lora_gui.py
@ -426,13 +426,13 @@ def train_model(
|
||||
if flip_aug:
|
||||
run_cmd += ' --flip_aug'
|
||||
run_cmd += (
|
||||
f' --pretrained_model_name_or_path={pretrained_model_name_or_path}'
|
||||
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
|
||||
)
|
||||
run_cmd += f' --train_data_dir="{train_data_dir}"'
|
||||
if len(reg_data_dir):
|
||||
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
|
||||
run_cmd += f' --resolution={max_resolution}'
|
||||
run_cmd += f' --output_dir={output_dir}'
|
||||
run_cmd += f' --output_dir="{output_dir}"'
|
||||
run_cmd += f' --train_batch_size={train_batch_size}'
|
||||
# run_cmd += f' --learning_rate={learning_rate}'
|
||||
run_cmd += f' --lr_scheduler={lr_scheduler}'
|
||||
@ -444,7 +444,7 @@ def train_model(
|
||||
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
|
||||
run_cmd += f' --seed={seed}'
|
||||
run_cmd += f' --save_precision={save_precision}'
|
||||
run_cmd += f' --logging_dir={logging_dir}'
|
||||
run_cmd += f' --logging_dir="{logging_dir}"'
|
||||
if not caption_extension == '':
|
||||
run_cmd += f' --caption_extension={caption_extension}'
|
||||
if not stop_text_encoder_training == 0:
|
||||
@ -454,7 +454,7 @@ def train_model(
|
||||
if not save_model_as == 'same as source model':
|
||||
run_cmd += f' --save_model_as={save_model_as}'
|
||||
if not resume == '':
|
||||
run_cmd += f' --resume={resume}'
|
||||
run_cmd += f' --resume="{resume}"'
|
||||
if not float(prior_loss_weight) == 1.0:
|
||||
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
|
||||
run_cmd += f' --network_module=networks.lora'
|
||||
@ -472,7 +472,7 @@ def train_model(
|
||||
# run_cmd += f' --network_train_unet_only'
|
||||
run_cmd += f' --network_dim={network_dim}'
|
||||
if not lora_network_weights == '':
|
||||
run_cmd += f' --network_weights={lora_network_weights}'
|
||||
run_cmd += f' --network_weights="{lora_network_weights}"'
|
||||
if int(clip_skip) > 1:
|
||||
run_cmd += f' --clip_skip={str(clip_skip)}'
|
||||
|
||||
@ -756,33 +756,23 @@ def lora_tab(
|
||||
'linear',
|
||||
'polynomial',
|
||||
],
|
||||
value='constant',
|
||||
value='cosine',
|
||||
)
|
||||
lr_warmup_input = gr.Textbox(label='LR warmup', value=0)
|
||||
lr_warmup_input = gr.Textbox(label='LR warmup (% of steps)', value=10)
|
||||
with gr.Row():
|
||||
text_encoder_lr = gr.Textbox(
|
||||
label='Text Encoder learning rate',
|
||||
value=1e-6,
|
||||
value="5e-5",
|
||||
placeholder='Optional',
|
||||
)
|
||||
unet_lr = gr.Textbox(
|
||||
label='Unet learning rate', value=1e-4, placeholder='Optional'
|
||||
label='Unet learning rate', value="1e-3", placeholder='Optional'
|
||||
)
|
||||
# network_train = gr.Dropdown(
|
||||
# label='Network to train',
|
||||
# choices=[
|
||||
# 'Text encoder and Unet',
|
||||
# 'Text encoder only',
|
||||
# 'Unet only',
|
||||
# ],
|
||||
# value='Text encoder and Unet',
|
||||
# interactive=True
|
||||
# )
|
||||
network_dim = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=128,
|
||||
label='Network Dimension',
|
||||
value=4,
|
||||
value=8,
|
||||
step=1,
|
||||
interactive=True,
|
||||
)
|
||||
|
158
networks/extract_lora_from_models.py
Normal file
158
networks/extract_lora_from_models.py
Normal file
@ -0,0 +1,158 @@
|
||||
# extract approximating LoRA by svd from two SD models
|
||||
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
|
||||
# Thanks to cloneofsimo!
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
from tqdm import tqdm
|
||||
import library.model_util as model_util
|
||||
import lora
|
||||
|
||||
|
||||
CLAMP_QUANTILE = 0.99
|
||||
MIN_DIFF = 1e-6
|
||||
|
||||
|
||||
def save_to_file(file_name, model, state_dict, dtype):
|
||||
if dtype is not None:
|
||||
for key in list(state_dict.keys()):
|
||||
if type(state_dict[key]) == torch.Tensor:
|
||||
state_dict[key] = state_dict[key].to(dtype)
|
||||
|
||||
if os.path.splitext(file_name)[1] == '.safetensors':
|
||||
save_file(model, file_name)
|
||||
else:
|
||||
torch.save(model, file_name)
|
||||
|
||||
|
||||
def svd(args):
|
||||
def str_to_dtype(p):
|
||||
if p == 'float':
|
||||
return torch.float
|
||||
if p == 'fp16':
|
||||
return torch.float16
|
||||
if p == 'bf16':
|
||||
return torch.bfloat16
|
||||
return None
|
||||
|
||||
save_dtype = str_to_dtype(args.save_precision)
|
||||
|
||||
print(f"loading SD model : {args.model_org}")
|
||||
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org)
|
||||
print(f"loading SD model : {args.model_tuned}")
|
||||
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned)
|
||||
|
||||
# create LoRA network to extract weights
|
||||
lora_network_o = lora.create_network(1.0, args.dim, None, text_encoder_o, unet_o)
|
||||
lora_network_t = lora.create_network(1.0, args.dim, None, text_encoder_t, unet_t)
|
||||
assert len(lora_network_o.text_encoder_loras) == len(
|
||||
lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) "
|
||||
|
||||
# get diffs
|
||||
diffs = {}
|
||||
text_encoder_different = False
|
||||
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
|
||||
lora_name = lora_o.lora_name
|
||||
module_o = lora_o.org_module
|
||||
module_t = lora_t.org_module
|
||||
diff = module_t.weight - module_o.weight
|
||||
|
||||
# Text Encoder might be same
|
||||
if torch.max(torch.abs(diff)) > MIN_DIFF:
|
||||
text_encoder_different = True
|
||||
|
||||
diff = diff.float()
|
||||
diffs[lora_name] = diff
|
||||
|
||||
if not text_encoder_different:
|
||||
print("Text encoder is same. Extract U-Net only.")
|
||||
lora_network_o.text_encoder_loras = []
|
||||
diffs = {}
|
||||
|
||||
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
|
||||
lora_name = lora_o.lora_name
|
||||
module_o = lora_o.org_module
|
||||
module_t = lora_t.org_module
|
||||
diff = module_t.weight - module_o.weight
|
||||
diff = diff.float()
|
||||
|
||||
if args.device:
|
||||
diff = diff.to(args.device)
|
||||
|
||||
diffs[lora_name] = diff
|
||||
|
||||
# make LoRA with svd
|
||||
print("calculating by svd")
|
||||
rank = args.dim
|
||||
lora_weights = {}
|
||||
with torch.no_grad():
|
||||
for lora_name, mat in tqdm(list(diffs.items())):
|
||||
conv2d = (len(mat.size()) == 4)
|
||||
if conv2d:
|
||||
mat = mat.squeeze()
|
||||
|
||||
U, S, Vh = torch.linalg.svd(mat)
|
||||
|
||||
U = U[:, :rank]
|
||||
S = S[:rank]
|
||||
U = U @ torch.diag(S)
|
||||
|
||||
Vh = Vh[:rank, :]
|
||||
|
||||
dist = torch.cat([U.flatten(), Vh.flatten()])
|
||||
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
|
||||
low_val = -hi_val
|
||||
|
||||
U = U.clamp(low_val, hi_val)
|
||||
Vh = Vh.clamp(low_val, hi_val)
|
||||
|
||||
lora_weights[lora_name] = (U, Vh)
|
||||
|
||||
# make state dict for LoRA
|
||||
lora_network_o.apply_to(text_encoder_o, unet_o, text_encoder_different, True) # to make state dict
|
||||
lora_sd = lora_network_o.state_dict()
|
||||
print(f"LoRA has {len(lora_sd)} weights.")
|
||||
|
||||
for key in list(lora_sd.keys()):
|
||||
lora_name = key.split('.')[0]
|
||||
i = 0 if "lora_up" in key else 1
|
||||
|
||||
weights = lora_weights[lora_name][i]
|
||||
# print(key, i, weights.size(), lora_sd[key].size())
|
||||
if len(lora_sd[key].size()) == 4:
|
||||
weights = weights.unsqueeze(2).unsqueeze(3)
|
||||
|
||||
assert weights.size() == lora_sd[key].size()
|
||||
lora_sd[key] = weights
|
||||
|
||||
# load state dict to LoRA and save it
|
||||
info = lora_network_o.load_state_dict(lora_sd)
|
||||
print(f"Loading extracted LoRA weights: {info}")
|
||||
|
||||
dir_name = os.path.dirname(args.save_to)
|
||||
if dir_name and not os.path.exists(dir_name):
|
||||
os.makedirs(dir_name, exist_ok=True)
|
||||
|
||||
lora_network_o.save_weights(args.save_to, save_dtype)
|
||||
print(f"LoRA weights are saved to: {args.save_to}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--v2", action='store_true',
|
||||
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
|
||||
parser.add_argument("--save_precision", type=str, default=None,
|
||||
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat")
|
||||
parser.add_argument("--model_org", type=str, default=None,
|
||||
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors")
|
||||
parser.add_argument("--model_tuned", type=str, default=None,
|
||||
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors")
|
||||
parser.add_argument("--save_to", type=str, default=None,
|
||||
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
|
||||
parser.add_argument("--dim", type=int, default=4, help="dimension of LoRA (default 4) / LoRAの次元数(デフォルト4)")
|
||||
parser.add_argument("--device", type=str, default=None, help="device to use, 'cuda' for GPU / 計算を行うデバイス、'cuda'でGPUを使う")
|
||||
|
||||
args = parser.parse_args()
|
||||
svd(args)
|
Loading…
Reference in New Issue
Block a user