Add v8 of train_db_fixed.py

Add diffusers_fine_tuning
This commit is contained in:
Bernard Maltais 2022-11-09 20:48:27 -05:00
parent 23a5b7f946
commit 36b06d41bf
19 changed files with 3723 additions and 4690 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
venv
mytraining.ps
__pycache__

View File

@ -122,4 +122,5 @@ Refer to this url for more details about finetuning: https://note.com/kohya_ss/n
## Change history
* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short).
* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short).
* 11/9 (v8): supports Diffusers 0.7.2. To upgrade diffusers run `pip install --upgrade diffusers[torch]`

View File

@ -0,0 +1,3 @@
# Diffusers Fine Tuning
This subfolder provide all the required toold to run the diffusers fine tuning version found in this note: https://note.com/kohya_ss/n/nbf7ce8d80f29

View File

@ -0,0 +1,122 @@
# このスクリプトのライセンスは、Apache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import glob
import os
import json
from tqdm import tqdm
def clean_tags(image_key, tags):
# replace '_' to ' '
tags = tags.replace('_', ' ')
# remove rating
tokens = tags.split(", rating")
if len(tokens) == 1:
print("no rating:")
print(f"{image_key} {tags}")
else:
if len(tokens) > 2:
print("multiple ratings:")
print(f"{image_key} {tags}")
tags = tokens[0]
return tags
# 上から順に検索、置換される
# ('置換元文字列', '置換後文字列')
CAPTION_REPLACEMENTS = [
('anime anime', 'anime'),
('young ', ''),
('anime girl', 'girl'),
('cartoon female', 'girl'),
('cartoon lady', 'girl'),
('cartoon character', 'girl'), # a or ~s
('cartoon woman', 'girl'),
('cartoon women', 'girls'),
('cartoon girl', 'girl'),
('anime female', 'girl'),
('anime lady', 'girl'),
('anime character', 'girl'), # a or ~s
('anime woman', 'girl'),
('anime women', 'girls'),
('lady', 'girl'),
('female', 'girl'),
('woman', 'girl'),
('women', 'girls'),
('people', 'girls'),
('person', 'girl'),
('a cartoon figure', 'a figure'),
('a cartoon image', 'an image'),
('a cartoon picture', 'a picture'),
('an anime cartoon image', 'an image'),
('a cartoon anime drawing', 'a drawing'),
('a cartoon drawing', 'a drawing'),
('girl girl', 'girl'),
]
def clean_caption(caption):
for rf, rt in CAPTION_REPLACEMENTS:
replaced = True
while replaced:
bef = caption
caption = caption.replace(rf, rt)
replaced = bef != caption
return caption
def main(args):
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png"))
print(f"found {len(image_paths)} images.")
if os.path.exists(args.in_json):
print(f"loading existing metadata: {args.in_json}")
with open(args.in_json, "rt", encoding='utf-8') as f:
metadata = json.load(f)
else:
print("no metadata / メタデータファイルがありません")
return
print("cleaning captions and tags.")
for image_path in tqdm(image_paths):
tags_path = os.path.splitext(image_path)[0] + '.txt'
with open(tags_path, "rt", encoding='utf-8') as f:
tags = f.readlines()[0].strip()
image_key = os.path.splitext(os.path.basename(image_path))[0]
if image_key not in metadata:
print(f"image not in metadata / メタデータに画像がありません: {image_path}")
return
tags = metadata[image_key].get('tags')
caption = metadata[image_key].get('caption')
if tags is None:
print(f"image does not have tags / メタデータにタグがありません: {image_path}")
return
if caption is None:
print(f"image does not have caption / メタデータにキャプションがありません: {image_path}")
return
metadata[image_key]['tags'] = clean_tags(image_key, tags)
metadata[image_key]['caption'] = clean_caption(caption)
# metadataを書き出して終わり
print(f"writing metadata: {args.out_json}")
with open(args.out_json, "wt", encoding='utf-8') as f:
json.dump(metadata, f, indent=2)
print("done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
# parser.add_argument("--debug", action="store_true", help="debug mode")
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,774 @@
# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import math
import os
import random
import json
import importlib
from tqdm import tqdm
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from transformers import CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
import numpy as np
from einops import rearrange
from torch import einsum
import fine_tuning_utils_ber as fine_tuning_utils
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
# checkpointファイル名
LAST_CHECKPOINT_NAME = "last.ckpt"
EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt"
def collate_fn(examples):
return examples[0]
class FineTuningDataset(torch.utils.data.Dataset):
def __init__(self, metadata, train_data_dir, batch_size, tokenizer, max_token_length, shuffle_caption, dataset_repeats, debug) -> None:
super().__init__()
self.metadata = metadata
self.train_data_dir = train_data_dir
self.batch_size = batch_size
self.tokenizer = tokenizer
self.max_token_length = max_token_length
self.shuffle_caption = shuffle_caption
self.debug = debug
self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2
print("make buckets")
# 最初に数を数える
self.bucket_resos = set()
for img_md in metadata.values():
if 'train_resolution' in img_md:
self.bucket_resos.add(tuple(img_md['train_resolution']))
self.bucket_resos = list(self.bucket_resos)
self.bucket_resos.sort()
print(f"number of buckets: {len(self.bucket_resos)}")
reso_to_index = {}
for i, reso in enumerate(self.bucket_resos):
reso_to_index[reso] = i
# bucketに割り当てていく
self.buckets = [[] for _ in range(len(self.bucket_resos))]
n = 1 if dataset_repeats is None else dataset_repeats
images_count = 0
for image_key, img_md in metadata.items():
if 'train_resolution' not in img_md:
continue
if not os.path.exists(os.path.join(self.train_data_dir, image_key + '.npz')):
continue
reso = tuple(img_md['train_resolution'])
for _ in range(n):
self.buckets[reso_to_index[reso]].append(image_key)
images_count += n
# 参照用indexを作る
self.buckets_indices = []
for bucket_index, bucket in enumerate(self.buckets):
batch_count = int(math.ceil(len(bucket) / self.batch_size))
for batch_index in range(batch_count):
self.buckets_indices.append((bucket_index, batch_index))
self.shuffle_buckets()
self._length = len(self.buckets_indices)
self.images_count = images_count
def show_buckets(self):
for i, (reso, bucket) in enumerate(zip(self.bucket_resos, self.buckets)):
print(f"bucket {i}: resolution {reso}, count: {len(bucket)}")
def shuffle_buckets(self):
random.shuffle(self.buckets_indices)
for bucket in self.buckets:
random.shuffle(bucket)
def load_latent(self, image_key):
return np.load(os.path.join(self.train_data_dir, image_key + '.npz'))['arr_0']
def __len__(self):
return self._length
def __getitem__(self, index):
if index == 0:
self.shuffle_buckets()
bucket = self.buckets[self.buckets_indices[index][0]]
image_index = self.buckets_indices[index][1] * self.batch_size
input_ids_list = []
latents_list = []
captions = []
for image_key in bucket[image_index:image_index + self.batch_size]:
img_md = self.metadata[image_key]
caption = img_md.get('caption')
tags = img_md.get('tags')
if caption is None:
caption = tags
elif tags is not None and len(tags) > 0:
caption = caption + ', ' + tags
assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{image_key}"
latents = self.load_latent(image_key)
if self.shuffle_caption:
tokens = caption.strip().split(",")
random.shuffle(tokens)
caption = ",".join(tokens).strip()
captions.append(caption)
input_ids = self.tokenizer(caption, padding="max_length", truncation=True,
max_length=self.tokenizer_max_length, return_tensors="pt").input_ids
# 77以上の時は "<CLS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<CLS>...<EOS>"の三連に変換する
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
if self.tokenizer_max_length > self.tokenizer.model_max_length:
input_ids = input_ids.squeeze(0)
iids_list = []
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2):
iid = (input_ids[0].unsqueeze(0),
input_ids[i:i + self.tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0))
iid = torch.cat(iid)
iids_list.append(iid)
input_ids = torch.stack(iids_list) # 3,77
input_ids_list.append(input_ids)
latents_list.append(torch.FloatTensor(latents))
example = {}
example['input_ids'] = torch.stack(input_ids_list)
example['latents'] = torch.stack(latents_list)
if self.debug:
example['image_keys'] = bucket[image_index:image_index + self.batch_size]
example['captions'] = captions
return example
def save_hypernetwork(output_file, hypernetwork):
state_dict = hypernetwork.get_state_dict()
torch.save(state_dict, output_file)
def train(args):
fine_tuning = args.hypernetwork_module is None # fine tuning or hypernetwork training
# モデル形式のオプション設定を確認する
use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path)
if not use_stable_diffusion_format:
assert os.path.exists(
args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}"
assert not fine_tuning or (
args.save_every_n_epochs is None or use_stable_diffusion_format), "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります"
if args.seed is not None:
set_seed(args.seed)
# メタデータを読み込む
if os.path.exists(args.in_json):
print(f"loading existing metadata: {args.in_json}")
with open(args.in_json, "rt", encoding='utf-8') as f:
metadata = json.load(f)
else:
print(f"no metadata / メタデータファイルがありません: {args.in_json}")
return
# tokenizerを読み込む
print("prepare tokenizer")
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
if args.max_token_length is not None:
print(f"update token length in tokenizer: {args.max_token_length}")
# datasetを用意する
print("prepare dataset")
train_dataset = FineTuningDataset(metadata, args.train_data_dir, args.train_batch_size,
tokenizer, args.max_token_length, args.shuffle_caption, args.dataset_repeats, args.debug_dataset)
if args.debug_dataset:
print(f"Total dataset length / データセットの長さ: {len(train_dataset)}")
print(f"Total images / 画像数: {train_dataset.images_count}")
train_dataset.show_buckets()
i = 0
for example in train_dataset:
print(f"image: {example['image_keys']}")
print(f"captions: {example['captions']}")
print(f"latents: {example['latents'].shape}")
print(f"input_ids: {example['input_ids'].shape}")
print(example['input_ids'])
i += 1
if i >= 8:
break
return
# acceleratorを準備する
print("prepare accelerator")
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)
# モデルを読み込む
if use_stable_diffusion_format:
print("load StableDiffusion checkpoint")
text_encoder, _, unet = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path)
else:
print("load Diffusers pretrained models")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
# モデルに xformers とか memory efficient attention を組み込む
replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
if not fine_tuning:
# Hypernetwork
print("import hypernetwork module:", args.hypernetwork_module)
hyp_module = importlib.import_module(args.hypernetwork_module)
hypernetwork = hyp_module.Hypernetwork()
if args.hypernetwork_weights is not None:
print("load hypernetwork weights from:", args.hypernetwork_weights)
hyp_sd = torch.load(args.hypernetwork_weights, map_location='cpu')
success = hypernetwork.load_from_state_dict(hyp_sd)
assert success, "hypernetwork weights loading failed."
print("apply hypernetwork")
hypernetwork.apply_to_diffusers(None, text_encoder, unet)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# 学習を準備する
if fine_tuning:
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
unet.requires_grad_(True) # unetは学習しない
net = unet
else:
unet.requires_grad_(False) # unetは学習しない
unet.eval()
hypernetwork.requires_grad_(True)
net = hypernetwork
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
# 8-bit Adamを使う
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
print("use 8-bit Adam optimizer")
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
optimizer = optimizer_class(net.parameters(), lr=args.learning_rate)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers)
# lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler(
"constant", optimizer, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
# acceleratorがなんかよろしくやってくれるらしい
if fine_tuning:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
net = unet
else:
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler)
net = hypernetwork
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False) # text encoderは学習しない
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num examples / サンプル数: {train_dataset.images_count}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
if accelerator.is_main_process:
accelerator.init_trackers("finetuning" if fine_tuning else "hypernetwork")
# 以下 train_dreambooth.py からほぼコピペ
for epoch in range(num_train_epochs):
print(f"epoch {epoch+1}/{num_train_epochs}")
net.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
latents = batch["latents"].to(accelerator.device)
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.no_grad():
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77
if args.clip_skip is None:
encoder_hidden_states = text_encoder(input_ids)[0]
else:
enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
if args.max_token_length is not None:
# <CLS>...<EOS> の三連を <CLS>...<EOS> へ戻す
sts_list = [encoder_hidden_states[:, 0].unsqueeze(1)]
for i in range(1, args.max_token_length, tokenizer.model_max_length):
sts_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2])
sts_list.append(encoder_hidden_states[:, -1].unsqueeze(1))
encoder_hidden_states = torch.cat(sts_list, dim=1)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(net.parameters(), 1.0) # args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
current_loss = loss.detach().item() * b_size
loss_total += current_loss
avr_loss = loss_total / (step+1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
# accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs:
print("saving check point.")
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1))
if fine_tuning:
fine_tuning_utils.save_stable_diffusion_checkpoint(
ckpt_file, text_encoder, accelerator.unwrap_model(net), args.pretrained_model_name_or_path, epoch + 1, global_step)
else:
save_hypernetwork(ckpt_file, accelerator.unwrap_model(net))
is_main_process = accelerator.is_main_process
if is_main_process:
net = accelerator.unwrap_model(net)
accelerator.end_training()
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
if fine_tuning:
if use_stable_diffusion_format:
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
fine_tuning_utils.save_stable_diffusion_checkpoint(
ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step)
else:
# Create the pipeline using using the trained modules and save it.
print(f"save trained model as Diffusers to {args.output_dir}")
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
text_encoder=text_encoder,
)
pipeline.save_pretrained(args.output_dir)
else:
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
print(f"save trained model to {ckpt_file}")
save_hypernetwork(ckpt_file, net)
print("model saved.")
# region モジュール入れ替え部
"""
高速化のためのモジュール入れ替え
"""
# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
# constants
EPSILON = 1e-6
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.function.Function):
@ staticmethod
@ torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
""" Algorithm 2 in the paper """
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = (q.shape[-1] ** -0.5)
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, 'b n -> b 1 1 n')
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@ staticmethod
@ torch.no_grad()
def backward(ctx, do):
""" Algorithm 4 in the paper """
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2)
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.)
p = exp_attn_weights / lc
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
if mem_eff_attn:
replace_unet_cross_attn_to_memory_efficient()
elif xformers:
replace_unet_cross_attn_to_xformers()
def replace_unet_cross_attn_to_memory_efficient():
print("Replace CrossAttention.forward to use FlashAttention")
flash_func = FlashAttentionFunction
def forward_flash_attn(self, x, context=None, mask=None):
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
out = rearrange(out, 'b h n d -> b n (h d)')
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~ わざわざ変えるなよ (;´Д`)
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
def replace_unet_cross_attn_to_xformers():
print("Replace CrossAttention.forward to use xformers")
try:
import xformers.ops
except ImportError:
raise ImportError("No xformers / xformersがインストールされていないようです")
def forward_xformers(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_xformers
# endregion
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default=None,
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル")
parser.add_argument("--in_json", type=str, default=None, help="metadata file to input / 読みこむメタデータファイル")
parser.add_argument("--shuffle_caption", action="store_true",
help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする")
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("--dataset_repeats", type=int, default=None, help="num times to repeat dataset / 学習にデータセットを繰り返す回数")
parser.add_argument("--output_dir", type=str, default=None,
help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)")
parser.add_argument("--hypernetwork_module", type=str, default=None,
help='train hypernetwork instead of fine tuning, module to use / fine tuningの代わりにHypernetworkの学習をする場合、そのモジュール')
parser.add_argument("--hypernetwork_weights", type=str, default=None,
help='hypernetwork weights to initialize for additional training / Hypernetworkの学習時に読み込む重みHypernetworkの追加学習')
parser.add_argument("--save_every_n_epochs", type=int, default=None,
help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存するStableDiffusion形式のモデルを読み込んだ場合のみ有効")
parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225],
help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長未指定で75、150または225が指定可")
parser.add_argument("--train_batch_size", type=int, default=1,
help="batch size for training / 学習時のバッチサイズ")
parser.add_argument("--use_8bit_adam", action="store_true",
help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使うbitsandbytesのインストールが必要")
parser.add_argument("--mem_eff_attn", action="store_true",
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う")
parser.add_argument("--xformers", action="store_true",
help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
parser.add_argument("--gradient_checkpointing", action="store_true",
help="enable gradient checkpointing / grandient checkpointingを有効にする")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数")
parser.add_argument("--mixed_precision", type=str, default="no",
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
parser.add_argument("--clip_skip", type=int, default=None,
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いるnは1以上")
parser.add_argument("--debug_dataset", action="store_true",
help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)")
parser.add_argument("--save_half", action="store_true",
help="save ckpt model with fp16 precision")
args = parser.parse_args()
train(args)

View File

@ -0,0 +1,772 @@
# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import math
import os
import random
import json
import importlib
from tqdm import tqdm
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from transformers import CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
import numpy as np
from einops import rearrange
from torch import einsum
import fine_tuning_utils
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
# checkpointファイル名
LAST_CHECKPOINT_NAME = "last.ckpt"
EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt"
def collate_fn(examples):
return examples[0]
class FineTuningDataset(torch.utils.data.Dataset):
def __init__(self, metadata, train_data_dir, batch_size, tokenizer, max_token_length, shuffle_caption, dataset_repeats, debug) -> None:
super().__init__()
self.metadata = metadata
self.train_data_dir = train_data_dir
self.batch_size = batch_size
self.tokenizer = tokenizer
self.max_token_length = max_token_length
self.shuffle_caption = shuffle_caption
self.debug = debug
self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2
print("make buckets")
# 最初に数を数える
self.bucket_resos = set()
for img_md in metadata.values():
if 'train_resolution' in img_md:
self.bucket_resos.add(tuple(img_md['train_resolution']))
self.bucket_resos = list(self.bucket_resos)
self.bucket_resos.sort()
print(f"number of buckets: {len(self.bucket_resos)}")
reso_to_index = {}
for i, reso in enumerate(self.bucket_resos):
reso_to_index[reso] = i
# bucketに割り当てていく
self.buckets = [[] for _ in range(len(self.bucket_resos))]
n = 1 if dataset_repeats is None else dataset_repeats
images_count = 0
for image_key, img_md in metadata.items():
if 'train_resolution' not in img_md:
continue
if not os.path.exists(os.path.join(self.train_data_dir, image_key + '.npz')):
continue
reso = tuple(img_md['train_resolution'])
for _ in range(n):
self.buckets[reso_to_index[reso]].append(image_key)
images_count += n
# 参照用indexを作る
self.buckets_indices = []
for bucket_index, bucket in enumerate(self.buckets):
batch_count = int(math.ceil(len(bucket) / self.batch_size))
for batch_index in range(batch_count):
self.buckets_indices.append((bucket_index, batch_index))
self.shuffle_buckets()
self._length = len(self.buckets_indices)
self.images_count = images_count
def show_buckets(self):
for i, (reso, bucket) in enumerate(zip(self.bucket_resos, self.buckets)):
print(f"bucket {i}: resolution {reso}, count: {len(bucket)}")
def shuffle_buckets(self):
random.shuffle(self.buckets_indices)
for bucket in self.buckets:
random.shuffle(bucket)
def load_latent(self, image_key):
return np.load(os.path.join(self.train_data_dir, image_key + '.npz'))['arr_0']
def __len__(self):
return self._length
def __getitem__(self, index):
if index == 0:
self.shuffle_buckets()
bucket = self.buckets[self.buckets_indices[index][0]]
image_index = self.buckets_indices[index][1] * self.batch_size
input_ids_list = []
latents_list = []
captions = []
for image_key in bucket[image_index:image_index + self.batch_size]:
img_md = self.metadata[image_key]
caption = img_md.get('caption')
tags = img_md.get('tags')
if caption is None:
caption = tags
elif tags is not None and len(tags) > 0:
caption = caption + ', ' + tags
assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{image_key}"
latents = self.load_latent(image_key)
if self.shuffle_caption:
tokens = caption.strip().split(",")
random.shuffle(tokens)
caption = ",".join(tokens).strip()
captions.append(caption)
input_ids = self.tokenizer(caption, padding="max_length", truncation=True,
max_length=self.tokenizer_max_length, return_tensors="pt").input_ids
# 77以上の時は "<CLS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<CLS>...<EOS>"の三連に変換する
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
if self.tokenizer_max_length > self.tokenizer.model_max_length:
input_ids = input_ids.squeeze(0)
iids_list = []
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2):
iid = (input_ids[0].unsqueeze(0),
input_ids[i:i + self.tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0))
iid = torch.cat(iid)
iids_list.append(iid)
input_ids = torch.stack(iids_list) # 3,77
input_ids_list.append(input_ids)
latents_list.append(torch.FloatTensor(latents))
example = {}
example['input_ids'] = torch.stack(input_ids_list)
example['latents'] = torch.stack(latents_list)
if self.debug:
example['image_keys'] = bucket[image_index:image_index + self.batch_size]
example['captions'] = captions
return example
def save_hypernetwork(output_file, hypernetwork):
state_dict = hypernetwork.get_state_dict()
torch.save(state_dict, output_file)
def train(args):
fine_tuning = args.hypernetwork_module is None # fine tuning or hypernetwork training
# モデル形式のオプション設定を確認する
use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path)
if not use_stable_diffusion_format:
assert os.path.exists(
args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}"
assert not fine_tuning or (
args.save_every_n_epochs is None or use_stable_diffusion_format), "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります"
if args.seed is not None:
set_seed(args.seed)
# メタデータを読み込む
if os.path.exists(args.in_json):
print(f"loading existing metadata: {args.in_json}")
with open(args.in_json, "rt", encoding='utf-8') as f:
metadata = json.load(f)
else:
print(f"no metadata / メタデータファイルがありません: {args.in_json}")
return
# tokenizerを読み込む
print("prepare tokenizer")
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
if args.max_token_length is not None:
print(f"update token length in tokenizer: {args.max_token_length}")
# datasetを用意する
print("prepare dataset")
train_dataset = FineTuningDataset(metadata, args.train_data_dir, args.train_batch_size,
tokenizer, args.max_token_length, args.shuffle_caption, args.dataset_repeats, args.debug_dataset)
if args.debug_dataset:
print(f"Total dataset length / データセットの長さ: {len(train_dataset)}")
print(f"Total images / 画像数: {train_dataset.images_count}")
train_dataset.show_buckets()
i = 0
for example in train_dataset:
print(f"image: {example['image_keys']}")
print(f"captions: {example['captions']}")
print(f"latents: {example['latents'].shape}")
print(f"input_ids: {example['input_ids'].shape}")
print(example['input_ids'])
i += 1
if i >= 8:
break
return
# acceleratorを準備する
print("prepare accelerator")
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)
# モデルを読み込む
if use_stable_diffusion_format:
print("load StableDiffusion checkpoint")
text_encoder, _, unet = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path)
else:
print("load Diffusers pretrained models")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
# モデルに xformers とか memory efficient attention を組み込む
replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
if not fine_tuning:
# Hypernetwork
print("import hypernetwork module:", args.hypernetwork_module)
hyp_module = importlib.import_module(args.hypernetwork_module)
hypernetwork = hyp_module.Hypernetwork()
if args.hypernetwork_weights is not None:
print("load hypernetwork weights from:", args.hypernetwork_weights)
hyp_sd = torch.load(args.hypernetwork_weights, map_location='cpu')
success = hypernetwork.load_from_state_dict(hyp_sd)
assert success, "hypernetwork weights loading failed."
print("apply hypernetwork")
hypernetwork.apply_to_diffusers(None, text_encoder, unet)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# 学習を準備する
if fine_tuning:
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
unet.requires_grad_(True) # unetは学習しない
net = unet
else:
unet.requires_grad_(False) # unetは学習しない
unet.eval()
hypernetwork.requires_grad_(True)
net = hypernetwork
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
# 8-bit Adamを使う
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
print("use 8-bit Adam optimizer")
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
optimizer = optimizer_class(net.parameters(), lr=args.learning_rate)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers)
# lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler(
"constant", optimizer, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
# acceleratorがなんかよろしくやってくれるらしい
if fine_tuning:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
net = unet
else:
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler)
net = hypernetwork
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False) # text encoderは学習しない
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num examples / サンプル数: {train_dataset.images_count}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
if accelerator.is_main_process:
accelerator.init_trackers("finetuning" if fine_tuning else "hypernetwork")
# 以下 train_dreambooth.py からほぼコピペ
for epoch in range(num_train_epochs):
print(f"epoch {epoch+1}/{num_train_epochs}")
net.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
latents = batch["latents"].to(accelerator.device)
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.no_grad():
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77
if args.clip_skip is None:
encoder_hidden_states = text_encoder(input_ids)[0]
else:
enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
if args.max_token_length is not None:
# <CLS>...<EOS> の三連を <CLS>...<EOS> へ戻す
sts_list = [encoder_hidden_states[:, 0].unsqueeze(1)]
for i in range(1, args.max_token_length, tokenizer.model_max_length):
sts_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2])
sts_list.append(encoder_hidden_states[:, -1].unsqueeze(1))
encoder_hidden_states = torch.cat(sts_list, dim=1)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(net.parameters(), 1.0) # args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
current_loss = loss.detach().item() * b_size
loss_total += current_loss
avr_loss = loss_total / (step+1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
# accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs:
print("saving check point.")
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1))
if fine_tuning:
fine_tuning_utils.save_stable_diffusion_checkpoint(
ckpt_file, text_encoder, accelerator.unwrap_model(net), args.pretrained_model_name_or_path, epoch + 1, global_step)
else:
save_hypernetwork(ckpt_file, accelerator.unwrap_model(net))
is_main_process = accelerator.is_main_process
if is_main_process:
net = accelerator.unwrap_model(net)
accelerator.end_training()
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
if fine_tuning:
if use_stable_diffusion_format:
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
fine_tuning_utils.save_stable_diffusion_checkpoint(
ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step)
else:
# Create the pipeline using using the trained modules and save it.
print(f"save trained model as Diffusers to {args.output_dir}")
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
text_encoder=text_encoder,
)
pipeline.save_pretrained(args.output_dir)
else:
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
print(f"save trained model to {ckpt_file}")
save_hypernetwork(ckpt_file, net)
print("model saved.")
# region モジュール入れ替え部
"""
高速化のためのモジュール入れ替え
"""
# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
# constants
EPSILON = 1e-6
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.function.Function):
@ staticmethod
@ torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
""" Algorithm 2 in the paper """
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = (q.shape[-1] ** -0.5)
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, 'b n -> b 1 1 n')
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@ staticmethod
@ torch.no_grad()
def backward(ctx, do):
""" Algorithm 4 in the paper """
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2)
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.)
p = exp_attn_weights / lc
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
if mem_eff_attn:
replace_unet_cross_attn_to_memory_efficient()
elif xformers:
replace_unet_cross_attn_to_xformers()
def replace_unet_cross_attn_to_memory_efficient():
print("Replace CrossAttention.forward to use FlashAttention")
flash_func = FlashAttentionFunction
def forward_flash_attn(self, x, context=None, mask=None):
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
out = rearrange(out, 'b h n d -> b n (h d)')
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~ わざわざ変えるなよ (;´Д`)
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
def replace_unet_cross_attn_to_xformers():
print("Replace CrossAttention.forward to use xformers")
try:
import xformers.ops
except ImportError:
raise ImportError("No xformers / xformersがインストールされていないようです")
def forward_xformers(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_xformers
# endregion
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default=None,
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル")
parser.add_argument("--in_json", type=str, default=None, help="metadata file to input / 読みこむメタデータファイル")
parser.add_argument("--shuffle_caption", action="store_true",
help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする")
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("--dataset_repeats", type=int, default=None, help="num times to repeat dataset / 学習にデータセットを繰り返す回数")
parser.add_argument("--output_dir", type=str, default=None,
help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)")
parser.add_argument("--hypernetwork_module", type=str, default=None,
help='train hypernetwork instead of fine tuning, module to use / fine tuningの代わりにHypernetworkの学習をする場合、そのモジュール')
parser.add_argument("--hypernetwork_weights", type=str, default=None,
help='hypernetwork weights to initialize for additional training / Hypernetworkの学習時に読み込む重みHypernetworkの追加学習')
parser.add_argument("--save_every_n_epochs", type=int, default=None,
help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存するStableDiffusion形式のモデルを読み込んだ場合のみ有効")
parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225],
help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長未指定で75、150または225が指定可")
parser.add_argument("--train_batch_size", type=int, default=1,
help="batch size for training / 学習時のバッチサイズ")
parser.add_argument("--use_8bit_adam", action="store_true",
help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使うbitsandbytesのインストールが必要")
parser.add_argument("--mem_eff_attn", action="store_true",
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う")
parser.add_argument("--xformers", action="store_true",
help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
parser.add_argument("--gradient_checkpointing", action="store_true",
help="enable gradient checkpointing / grandient checkpointingを有効にする")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数")
parser.add_argument("--mixed_precision", type=str, default="no",
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
parser.add_argument("--clip_skip", type=int, default=None,
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いるnは1以上")
parser.add_argument("--debug_dataset", action="store_true",
help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)")
args = parser.parse_args()
train(args)

View File

@ -0,0 +1,763 @@
import math
import torch
from transformers import CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
# StableDiffusionのモデルパラメータ
NUM_TRAIN_TIMESTEPS = 1000
BETA_START = 0.00085
BETA_END = 0.0120
UNET_PARAMS_MODEL_CHANNELS = 320
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
UNET_PARAMS_IMAGE_SIZE = 32 # unused
UNET_PARAMS_IN_CHANNELS = 4
UNET_PARAMS_OUT_CHANNELS = 4
UNET_PARAMS_NUM_RES_BLOCKS = 2
UNET_PARAMS_CONTEXT_DIM = 768
UNET_PARAMS_NUM_HEADS = 8
VAE_PARAMS_Z_CHANNELS = 4
VAE_PARAMS_RESOLUTION = 256
VAE_PARAMS_IN_CHANNELS = 3
VAE_PARAMS_OUT_CH = 3
VAE_PARAMS_CH = 128
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
VAE_PARAMS_NUM_RES_BLOCKS = 2
# region conversion
# checkpoint変換など ###############################
# region StableDiffusion->Diffusersの変換コード
# convert_original_stable_diffusion_to_diffusers をコピーしているASL 2.0
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def convert_ldm_unet_checkpoint(checkpoint, config):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
unet_key = "model.diffusion_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if ["conv.weight", "conv.bias"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def create_unet_diffusers_config():
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
# unet_params = original_config.model.params.unet_config.params
block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
config = dict(
sample_size=UNET_PARAMS_IMAGE_SIZE,
in_channels=UNET_PARAMS_IN_CHANNELS,
out_channels=UNET_PARAMS_OUT_CHANNELS,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM,
attention_head_dim=UNET_PARAMS_NUM_HEADS,
)
return config
def create_vae_diffusers_config():
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
# vae_params = original_config.model.params.first_stage_config.params.ddconfig
# _ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = dict(
sample_size=VAE_PARAMS_RESOLUTION,
in_channels=VAE_PARAMS_IN_CHANNELS,
out_channels=VAE_PARAMS_OUT_CH,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=VAE_PARAMS_Z_CHANNELS,
layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS,
)
return config
def convert_ldm_clip_checkpoint(checkpoint):
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
keys = list(checkpoint.keys())
text_model_dict = {}
for key in keys:
if key.startswith("cond_stage_model.transformer"):
text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key]
text_model.load_state_dict(text_model_dict)
return text_model
# endregion
# region Diffusers->StableDiffusion の変換コード
# convert_diffusers_to_original_stable_diffusion をコピーしているASL 2.0
def convert_unet_state_dict(unet_state_dict):
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
mapping = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# endregion
def load_checkpoint_with_conversion(ckpt_path):
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
TEXT_ENCODER_KEY_REPLACEMENTS = [
('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'),
('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'),
('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.')
]
checkpoint = torch.load(ckpt_path, map_location="cpu")
state_dict = checkpoint["state_dict"]
key_reps = []
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
for key in state_dict.keys():
if key.startswith(rep_from):
new_key = rep_to + key[len(rep_from):]
key_reps.append((key, new_key))
for key, new_key in key_reps:
state_dict[new_key] = state_dict[key]
del state_dict[key]
return checkpoint
def load_models_from_stable_diffusion_checkpoint(ckpt_path):
checkpoint = load_checkpoint_with_conversion(ckpt_path)
state_dict = checkpoint["state_dict"]
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config()
converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config)
unet = UNet2DConditionModel(**unet_config)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model.
vae_config = create_vae_diffusers_config()
converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
# convert text_model
text_model = convert_ldm_clip_checkpoint(state_dict)
return text_model, vae, unet
def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path, epochs, steps):
# VAEがメモリ上にないので、もう一度VAEを含めて読み込む
checkpoint = load_checkpoint_with_conversion(ckpt_path)
state_dict = checkpoint["state_dict"]
# Convert the UNet model
unet_state_dict = convert_unet_state_dict(unet.state_dict())
for k, v in unet_state_dict.items():
key = "model.diffusion_model." + k
assert key in state_dict, f"Illegal key in save SD: {key}"
state_dict[key] = v
# Convert the text encoder model
text_enc_dict = text_encoder.state_dict() # 変換不要
for k, v in text_enc_dict.items():
key = "cond_stage_model.transformer." + k
assert key in state_dict, f"Illegal key in save SD: {key}"
state_dict[key] = v
# Put together new checkpoint
new_ckpt = {'state_dict': state_dict}
if 'epoch' in checkpoint:
epochs += checkpoint['epoch']
if 'global_step' in checkpoint:
steps += checkpoint['global_step']
new_ckpt['epoch'] = epochs
new_ckpt['global_step'] = steps
torch.save(new_ckpt, output_file)
# endregion
def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64):
max_width, max_height = max_reso
max_area = (max_width // divisible) * (max_height // divisible)
resos = set()
size = int(math.sqrt(max_area)) * divisible
resos.add((size, size))
size = min_size
while size <= max_size:
width = size
height = min(max_size, (max_area // (width // divisible)) * divisible)
resos.add((width, height))
resos.add((height, width))
# # make additional resos
# if width >= height and width - divisible >= min_size:
# resos.add((width - divisible, height))
# resos.add((height, width - divisible))
# if height >= width and height - divisible >= min_size:
# resos.add((width, height - divisible))
# resos.add((height - divisible, width))
size += divisible
resos = list(resos)
resos.sort()
aspect_ratios = [w / h for w, h in resos]
return resos, aspect_ratios
if __name__ == '__main__':
resos, aspect_ratios = make_bucket_resolutions((512, 768))
print(len(resos))
print(resos)
print(aspect_ratios)
ars = set()
for ar in aspect_ratios:
if ar in ars:
print("error! duplicate ar:", ar)
ars.add(ar)

View File

@ -0,0 +1,771 @@
import math
import torch
from transformers import CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
# StableDiffusionのモデルパラメータ
NUM_TRAIN_TIMESTEPS = 1000
BETA_START = 0.00085
BETA_END = 0.0120
UNET_PARAMS_MODEL_CHANNELS = 320
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
UNET_PARAMS_IMAGE_SIZE = 32 # unused
UNET_PARAMS_IN_CHANNELS = 4
UNET_PARAMS_OUT_CHANNELS = 4
UNET_PARAMS_NUM_RES_BLOCKS = 2
UNET_PARAMS_CONTEXT_DIM = 768
UNET_PARAMS_NUM_HEADS = 8
VAE_PARAMS_Z_CHANNELS = 4
VAE_PARAMS_RESOLUTION = 256
VAE_PARAMS_IN_CHANNELS = 3
VAE_PARAMS_OUT_CH = 3
VAE_PARAMS_CH = 128
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
VAE_PARAMS_NUM_RES_BLOCKS = 2
# region conversion
# checkpoint変換など ###############################
# region StableDiffusion->Diffusersの変換コード
# convert_original_stable_diffusion_to_diffusers をコピーしているASL 2.0
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def convert_ldm_unet_checkpoint(checkpoint, config):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
unet_key = "model.diffusion_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if ["conv.weight", "conv.bias"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def create_unet_diffusers_config():
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
# unet_params = original_config.model.params.unet_config.params
block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
config = dict(
sample_size=UNET_PARAMS_IMAGE_SIZE,
in_channels=UNET_PARAMS_IN_CHANNELS,
out_channels=UNET_PARAMS_OUT_CHANNELS,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM,
attention_head_dim=UNET_PARAMS_NUM_HEADS,
)
return config
def create_vae_diffusers_config():
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
# vae_params = original_config.model.params.first_stage_config.params.ddconfig
# _ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = dict(
sample_size=VAE_PARAMS_RESOLUTION,
in_channels=VAE_PARAMS_IN_CHANNELS,
out_channels=VAE_PARAMS_OUT_CH,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=VAE_PARAMS_Z_CHANNELS,
layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS,
)
return config
def convert_ldm_clip_checkpoint(checkpoint):
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
keys = list(checkpoint.keys())
text_model_dict = {}
for key in keys:
if key.startswith("cond_stage_model.transformer"):
text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key]
text_model.load_state_dict(text_model_dict)
return text_model
# endregion
# region Diffusers->StableDiffusion の変換コード
# convert_diffusers_to_original_stable_diffusion をコピーしているASL 2.0
def convert_unet_state_dict(unet_state_dict):
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
mapping = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# endregion
def load_checkpoint_with_conversion(ckpt_path):
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
TEXT_ENCODER_KEY_REPLACEMENTS = [
('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'),
('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'),
('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.')
]
checkpoint = torch.load(ckpt_path, map_location="cpu")
state_dict = checkpoint["state_dict"]
key_reps = []
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
for key in state_dict.keys():
if key.startswith(rep_from):
new_key = rep_to + key[len(rep_from):]
key_reps.append((key, new_key))
for key, new_key in key_reps:
state_dict[new_key] = state_dict[key]
del state_dict[key]
return checkpoint
def load_models_from_stable_diffusion_checkpoint(ckpt_path):
checkpoint = load_checkpoint_with_conversion(ckpt_path)
state_dict = checkpoint["state_dict"]
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config()
converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config)
unet = UNet2DConditionModel(**unet_config)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model.
vae_config = create_vae_diffusers_config()
converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
# convert text_model
text_model = convert_ldm_clip_checkpoint(state_dict)
return text_model, vae, unet
def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path, epochs, steps):
# VAEがメモリ上にないので、もう一度VAEを含めて読み込む
checkpoint = load_checkpoint_with_conversion(ckpt_path)
state_dict = checkpoint["state_dict"]
# Convert the UNet model
unet_state_dict = convert_unet_state_dict(unet.state_dict())
for k, v in unet_state_dict.items():
key = "model.diffusion_model." + k
assert key in state_dict, f"Illegal key in save SD: {key}"
# if args.save_half:
# state_dict[key] = v.half() # save to fp16
# else:
# state_dict[key] = v
state_dict[key] = v.half() # save to fp16
# Convert the text encoder model
text_enc_dict = text_encoder.state_dict() # 変換不要
for k, v in text_enc_dict.items():
key = "cond_stage_model.transformer." + k
assert key in state_dict, f"Illegal key in save SD: {key}"
# if args.save_half:
# state_dict[key] = v.half() # save to fp16
# else:
# state_dict[key] = v
state_dict[key] = v.half() # save to fp16
# Put together new checkpoint
new_ckpt = {'state_dict': state_dict}
if 'epoch' in checkpoint:
epochs += checkpoint['epoch']
if 'global_step' in checkpoint:
steps += checkpoint['global_step']
new_ckpt['epoch'] = epochs
new_ckpt['global_step'] = steps
torch.save(new_ckpt, output_file)
# endregion
def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64):
max_width, max_height = max_reso
max_area = (max_width // divisible) * (max_height // divisible)
resos = set()
size = int(math.sqrt(max_area)) * divisible
resos.add((size, size))
size = min_size
while size <= max_size:
width = size
height = min(max_size, (max_area // (width // divisible)) * divisible)
resos.add((width, height))
resos.add((height, width))
# # make additional resos
# if width >= height and width - divisible >= min_size:
# resos.add((width - divisible, height))
# resos.add((height, width - divisible))
# if height >= width and height - divisible >= min_size:
# resos.add((width, height - divisible))
# resos.add((height - divisible, width))
size += divisible
resos = list(resos)
resos.sort()
aspect_ratios = [w / h for w, h in resos]
return resos, aspect_ratios
if __name__ == '__main__':
resos, aspect_ratios = make_bucket_resolutions((512, 768))
print(len(resos))
print(resos)
print(aspect_ratios)
ars = set()
for ar in aspect_ratios:
if ar in ars:
print("error! duplicate ar:", ar)
ars.add(ar)

View File

@ -0,0 +1,96 @@
# NAI compatible
import torch
class HypernetworkModule(torch.nn.Module):
def __init__(self, dim, multiplier=1.0):
super().__init__()
linear1 = torch.nn.Linear(dim, dim * 2)
linear2 = torch.nn.Linear(dim * 2, dim)
linear1.weight.data.normal_(mean=0.0, std=0.01)
linear1.bias.data.zero_()
linear2.weight.data.normal_(mean=0.0, std=0.01)
linear2.bias.data.zero_()
linears = [linear1, linear2]
self.linear = torch.nn.Sequential(*linears)
self.multiplier = multiplier
def forward(self, x):
return x + self.linear(x) * self.multiplier
class Hypernetwork(torch.nn.Module):
enable_sizes = [320, 640, 768, 1280]
# return self.modules[Hypernetwork.enable_sizes.index(size)]
def __init__(self, multiplier=1.0) -> None:
super().__init__()
self.modules = []
for size in Hypernetwork.enable_sizes:
self.modules.append((HypernetworkModule(size, multiplier), HypernetworkModule(size, multiplier)))
self.register_module(f"{size}_0", self.modules[-1][0])
self.register_module(f"{size}_1", self.modules[-1][1])
def apply_to_stable_diffusion(self, text_encoder, vae, unet):
blocks = unet.input_blocks + [unet.middle_block] + unet.output_blocks
for block in blocks:
for subblk in block:
if 'SpatialTransformer' in str(type(subblk)):
for tf_block in subblk.transformer_blocks:
for attn in [tf_block.attn1, tf_block.attn2]:
size = attn.context_dim
if size in Hypernetwork.enable_sizes:
attn.hypernetwork = self
else:
attn.hypernetwork = None
def apply_to_diffusers(self, text_encoder, vae, unet):
blocks = unet.down_blocks + [unet.mid_block] + unet.up_blocks
for block in blocks:
if hasattr(block, 'attentions'):
for subblk in block.attentions:
if 'SpatialTransformer' in str(type(subblk)) or 'Transformer2DModel' in str(type(subblk)): # 0.6.0 and 0.7~
for tf_block in subblk.transformer_blocks:
for attn in [tf_block.attn1, tf_block.attn2]:
size = attn.to_k.in_features
if size in Hypernetwork.enable_sizes:
attn.hypernetwork = self
else:
attn.hypernetwork = None
return True # TODO error checking
def forward(self, x, context):
size = context.shape[-1]
assert size in Hypernetwork.enable_sizes
module = self.modules[Hypernetwork.enable_sizes.index(size)]
return module[0].forward(context), module[1].forward(context)
def load_from_state_dict(self, state_dict):
# old ver to new ver
changes = {
'linear1.bias': 'linear.0.bias',
'linear1.weight': 'linear.0.weight',
'linear2.bias': 'linear.1.bias',
'linear2.weight': 'linear.1.weight',
}
for key_from, key_to in changes.items():
if key_from in state_dict:
state_dict[key_to] = state_dict[key_from]
del state_dict[key_from]
for size, sd in state_dict.items():
if type(size) == int:
self.modules[Hypernetwork.enable_sizes.index(size)][0].load_state_dict(sd[0], strict=True)
self.modules[Hypernetwork.enable_sizes.index(size)][1].load_state_dict(sd[1], strict=True)
return True
def get_state_dict(self):
state_dict = {}
for i, size in enumerate(Hypernetwork.enable_sizes):
sd0 = self.modules[i][0].state_dict()
sd1 = self.modules[i][1].state_dict()
state_dict[size] = [sd0, sd1]
return state_dict

View File

@ -0,0 +1,90 @@
# このスクリプトのライセンスは、Apache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import glob
import os
import json
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from models.blip import blip_decoder
# from Salesforce_BLIP.models.blip import blip_decoder
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def main(args):
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png"))
print(f"found {len(image_paths)} images.")
print(f"loading BLIP caption: {args.caption_weights}")
image_size = 384
model = blip_decoder(pretrained=args.caption_weights, image_size=image_size, vit='large')
model.eval()
model = model.to(DEVICE)
print("BLIP loaded")
# 正方形でいいのか? という気がするがソースがそうなので
transform = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
# captioningする
def run_batch(path_imgs):
imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE)
with torch.no_grad():
if args.beam_search:
captions = model.generate(imgs, sample=False, num_beams=args.num_beams,
max_length=args.max_length, min_length=args.min_length)
else:
captions = model.generate(imgs, sample=True, top_p=args.top_p, max_length=args.max_length, min_length=args.min_length)
for (image_path, _), caption in zip(path_imgs, captions):
with open(os.path.splitext(image_path)[0] + args.caption_extention, "wt", encoding='utf-8') as f:
f.write(caption + "\n")
if args.debug:
print(image_path, caption)
b_imgs = []
for image_path in tqdm(image_paths):
raw_image = Image.open(image_path)
if raw_image.mode != "RGB":
print(f"convert image mode {raw_image.mode} to RGB: {image_path}")
raw_image = raw_image.convert("RGB")
image = transform(raw_image)
b_imgs.append((image_path, image))
if len(b_imgs) >= args.batch_size:
run_batch(b_imgs)
b_imgs.clear()
if len(b_imgs) > 0:
run_batch(b_imgs)
print("done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("caption_weights", type=str,
help="BLIP caption weights (model_large_caption.pth) / BLIP captionの重みファイル(model_large_caption.pth)")
parser.add_argument("--caption_extention", type=str, default=".caption", help="extention of caption file / 出力されるキャプションファイルの拡張子")
parser.add_argument("--beam_search", action="store_true",
help="use beam search (default Nucleus sampling) / beam searchを使うこのオプション未指定時はNucleus sampling")
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数多いと精度が上がるが時間がかかる")
parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p")
parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長")
parser.add_argument("--min_length", type=int, default=5, help="min length of caption / captionの最小長")
parser.add_argument("--debug", action="store_true", help="debug mode")
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,61 @@
# このスクリプトのライセンスは、Apache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import glob
import os
import json
from tqdm import tqdm
def main(args):
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png"))
print(f"found {len(image_paths)} images.")
if args.in_json is not None:
print(f"loading existing metadata: {args.in_json}")
with open(args.in_json, "rt", encoding='utf-8') as f:
metadata = json.load(f)
print("captions for existing images will be overwritten / 既存の画像のキャプションは上書きされます")
else:
print("new metadata will be created / 新しいメタデータファイルが作成されます")
metadata = {}
print("merge caption texts to metadata json.")
for image_path in tqdm(image_paths):
caption_path = os.path.splitext(image_path)[0] + args.caption_extention
with open(caption_path, "rt", encoding='utf-8') as f:
caption = f.readlines()[0].strip()
image_key = os.path.splitext(os.path.basename(image_path))[0]
if image_key not in metadata:
# if args.verify_caption:
# print(f"image not in metadata / メタデータに画像がありません: {image_path}")
# return
metadata[image_key] = {}
# elif args.verify_caption and 'caption' not in metadata[image_key]:
# print(f"no caption in metadata / メタデータにcaptionがありません: {image_path}")
# return
metadata[image_key]['caption'] = caption
if args.debug:
print(image_key, caption)
# metadataを書き出して終わり
print(f"writing metadata: {args.out_json}")
with open(args.out_json, "wt", encoding='utf-8') as f:
json.dump(metadata, f, indent=2)
print("done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
parser.add_argument("--in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
parser.add_argument("--caption_extention", type=str, default=".caption", help="extention of caption file / 読み込むキャプションファイルの拡張子")
parser.add_argument("--debug", action="store_true", help="debug mode")
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,61 @@
# このスクリプトのライセンスは、Apache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import glob
import os
import json
from tqdm import tqdm
def main(args):
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png"))
print(f"found {len(image_paths)} images.")
if args.in_json is not None:
print(f"loading existing metadata: {args.in_json}")
with open(args.in_json, "rt", encoding='utf-8') as f:
metadata = json.load(f)
print("tags data for existing images will be overwritten / 既存の画像のタグは上書きされます")
else:
print("new metadata will be created / 新しいメタデータファイルが作成されます")
metadata = {}
print("merge tags to metadata json.")
for image_path in tqdm(image_paths):
tags_path = os.path.splitext(image_path)[0] + '.txt'
with open(tags_path, "rt", encoding='utf-8') as f:
tags = f.readlines()[0].strip()
image_key = os.path.splitext(os.path.basename(image_path))[0]
if image_key not in metadata:
# if args.verify_caption:
# print(f"image not in metadata / メタデータに画像がありません: {image_path}")
# return
metadata[image_key] = {}
# elif args.verify_caption and 'caption' not in metadata[image_key]:
# print(f"no caption in metadata / メタデータにcaptionがありません: {image_path}")
# return
metadata[image_key]['tags'] = tags
if args.debug:
print(image_key, tags)
# metadataを書き出して終わり
print(f"writing metadata: {args.out_json}")
with open(args.out_json, "wt", encoding='utf-8') as f:
json.dump(metadata, f, indent=2)
print("done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
parser.add_argument("--in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
# parser.add_argument("--verify_caption", action="store_true", help="verify caption exists / メタデータにすでにcaptionが存在することを確認する")
parser.add_argument("--debug", action="store_true", help="debug mode")
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,172 @@
# このスクリプトのライセンスは、Apache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
import argparse
import glob
import os
import json
from tqdm import tqdm
import numpy as np
from diffusers import AutoencoderKL
from PIL import Image
import cv2
import torch
from torchvision import transforms
import fine_tuning_utils
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
IMAGE_TRANSFORMS = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def get_latents(vae, images, weight_dtype):
img_tensors = [IMAGE_TRANSFORMS(image) for image in images]
img_tensors = torch.stack(img_tensors)
img_tensors = img_tensors.to(DEVICE, weight_dtype)
with torch.no_grad():
latents = vae.encode(img_tensors).latent_dist.sample().float().to("cpu").numpy()
return latents
def main(args):
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png"))
print(f"found {len(image_paths)} images.")
if os.path.exists(args.in_json):
print(f"loading existing metadata: {args.in_json}")
with open(args.in_json, "rt", encoding='utf-8') as f:
metadata = json.load(f)
else:
print(f"no metadata / メタデータファイルがありません: {args.in_json}")
return
# モデル形式のオプション設定を確認する
use_stable_diffusion_format = os.path.isfile(args.model_name_or_path)
if not use_stable_diffusion_format:
assert os.path.exists(args.model_name_or_path), f"no model / モデルがありません : {args.model_name_or_path}"
# モデルを読み込む
if use_stable_diffusion_format:
print("load StableDiffusion checkpoint")
_, vae, _ = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.model_name_or_path)
else:
print("load Diffusers pretrained models")
vae = AutoencoderKL.from_pretrained(args.model_name_or_path, subfolder="vae")
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.eval()
vae.to(DEVICE, dtype=weight_dtype)
# bucketのサイズを計算する
max_reso = tuple([int(t) for t in args.max_resolution.split(',')])
assert len(max_reso) == 2, f"illegal resolution (not 'width,height') / 画像サイズに誤りがあります。'幅,高さ'で指定してください: {args.max_resolution}"
bucket_resos, bucket_aspect_ratios = fine_tuning_utils.make_bucket_resolutions(max_reso)
# 画像をひとつずつ適切なbucketに割り当てながらlatentを計算する
bucket_aspect_ratios = np.array(bucket_aspect_ratios)
buckets_imgs = [[] for _ in range(len(bucket_resos))]
bucket_counts = [0 for _ in range(len(bucket_resos))]
img_ar_errors = []
for i, image_path in enumerate(tqdm(image_paths)):
image_key = os.path.splitext(os.path.basename(image_path))[0]
if image_key not in metadata:
metadata[image_key] = {}
image = Image.open(image_path)
if image.mode != 'RGB':
image = image.convert("RGB")
aspect_ratio = image.width / image.height
ar_errors = bucket_aspect_ratios - aspect_ratio
bucket_id = np.abs(ar_errors).argmin()
reso = bucket_resos[bucket_id]
ar_error = ar_errors[bucket_id]
img_ar_errors.append(abs(ar_error))
# どのサイズにリサイズするか→トリミングする方向で
if ar_error <= 0: # 横が長い→縦を合わせる
scale = reso[1] / image.height
else:
scale = reso[0] / image.width
resized_size = (int(image.width * scale + .5), int(image.height * scale + .5))
# print(image.width, image.height, bucket_id, bucket_resos[bucket_id], ar_errors[bucket_id], resized_size,
# bucket_resos[bucket_id][0] - resized_size[0], bucket_resos[bucket_id][1] - resized_size[1])
assert resized_size[0] == reso[0] or resized_size[1] == reso[
1], f"internal error, resized size not match: {reso}, {resized_size}, {image.width}, {image.height}"
assert resized_size[0] >= reso[0] and resized_size[1] >= reso[
1], f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}"
# 画像をリサイズしてトリミングする
# PILにinter_areaがないのでcv2で……
image = np.array(image)
image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA)
if resized_size[0] > reso[0]:
trim_size = resized_size[0] - reso[0]
image = image[:, trim_size//2:trim_size//2 + reso[0]]
elif resized_size[1] > reso[1]:
trim_size = resized_size[1] - reso[1]
image = image[trim_size//2:trim_size//2 + reso[1]]
assert image.shape[0] == reso[1] and image.shape[1] == reso[0], f"internal error, illegal trimmed size: {image.shape}, {reso}"
# # debug
# cv2.imwrite(f"r:\\test\\img_{i:05d}.jpg", image[:, :, ::-1])
# バッチへ追加
buckets_imgs[bucket_id].append((image_key, reso, image))
bucket_counts[bucket_id] += 1
metadata[image_key]['train_resolution'] = reso
# バッチを推論するか判定して推論する
is_last = i == len(image_paths) - 1
for j in range(len(buckets_imgs)):
bucket = buckets_imgs[j]
if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size:
latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype)
for (image_key, reso, _), latent in zip(bucket, latents):
np.savez(os.path.join(args.train_data_dir, image_key), latent)
bucket.clear()
for i, (reso, count) in enumerate(zip(bucket_resos, bucket_counts)):
print(f"bucket {i} {reso}: {count}")
img_ar_errors = np.array(img_ar_errors)
print(f"mean ar error: {np.mean(img_ar_errors)}")
# metadataを書き出して終わり
print(f"writing metadata: {args.out_json}")
with open(args.out_json, "wt", encoding='utf-8') as f:
json.dump(metadata, f, indent=2)
print("done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル")
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
parser.add_argument("--max_resolution", type=str, default="512,512",
help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)")
parser.add_argument("--mixed_precision", type=str, default="no",
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,6 @@
transformers>=4.21.0
ftfy
albumentations
opencv-python
einops
pytorch_lightning

View File

@ -3,6 +3,7 @@
# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images,
# enable reg images in fine-tuning, add dataset_repeats option
# v8: supports Diffusers 0.7.2
from torch.autograd.function import Function
import argparse
@ -1555,7 +1556,14 @@ def replace_unet_cross_attn_to_xformers():
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out)
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_xformers
# endregion

View File

@ -1,8 +1,9 @@
# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images,
# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images,
# enable reg images in fine-tuning, add dataset_repeats option
# v8: supports Diffusers 0.7.2
from torch.autograd.function import Function
import argparse
@ -1522,7 +1523,15 @@ def replace_unet_cross_attn_to_memory_efficient():
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
@ -1549,7 +1558,15 @@ def replace_unet_cross_attn_to_xformers():
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out)
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_xformers
# endregion

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff