diff --git a/.gitignore b/.gitignore index 24edb94..91e52ac 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,3 @@ venv mytraining.ps +__pycache__ diff --git a/README.md b/README.md index a5b001c..a78e321 100644 --- a/README.md +++ b/README.md @@ -122,4 +122,5 @@ Refer to this url for more details about finetuning: https://note.com/kohya_ss/n ## Change history -* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short). \ No newline at end of file +* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short). +* 11/9 (v8): supports Diffusers 0.7.2. To upgrade diffusers run `pip install --upgrade diffusers[torch]` \ No newline at end of file diff --git a/diffusers_fine_tuning/README.md b/diffusers_fine_tuning/README.md new file mode 100644 index 0000000..993537e --- /dev/null +++ b/diffusers_fine_tuning/README.md @@ -0,0 +1,3 @@ +# Diffusers Fine Tuning + +This subfolder provide all the required toold to run the diffusers fine tuning version found in this note: https://note.com/kohya_ss/n/nbf7ce8d80f29 diff --git a/diffusers_fine_tuning/clean_captions_and_tags.py b/diffusers_fine_tuning/clean_captions_and_tags.py new file mode 100644 index 0000000..91503a7 --- /dev/null +++ b/diffusers_fine_tuning/clean_captions_and_tags.py @@ -0,0 +1,122 @@ +# このスクリプトのライセンスは、Apache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +import argparse +import glob +import os +import json + +from tqdm import tqdm + + +def clean_tags(image_key, tags): + # replace '_' to ' ' + tags = tags.replace('_', ' ') + + # remove rating + tokens = tags.split(", rating") + if len(tokens) == 1: + print("no rating:") + print(f"{image_key} {tags}") + else: + if len(tokens) > 2: + print("multiple ratings:") + print(f"{image_key} {tags}") + tags = tokens[0] + + return tags + + +# 上から順に検索、置換される +# ('置換元文字列', '置換後文字列') +CAPTION_REPLACEMENTS = [ + ('anime anime', 'anime'), + ('young ', ''), + ('anime girl', 'girl'), + ('cartoon female', 'girl'), + ('cartoon lady', 'girl'), + ('cartoon character', 'girl'), # a or ~s + ('cartoon woman', 'girl'), + ('cartoon women', 'girls'), + ('cartoon girl', 'girl'), + ('anime female', 'girl'), + ('anime lady', 'girl'), + ('anime character', 'girl'), # a or ~s + ('anime woman', 'girl'), + ('anime women', 'girls'), + ('lady', 'girl'), + ('female', 'girl'), + ('woman', 'girl'), + ('women', 'girls'), + ('people', 'girls'), + ('person', 'girl'), + ('a cartoon figure', 'a figure'), + ('a cartoon image', 'an image'), + ('a cartoon picture', 'a picture'), + ('an anime cartoon image', 'an image'), + ('a cartoon anime drawing', 'a drawing'), + ('a cartoon drawing', 'a drawing'), + ('girl girl', 'girl'), +] + + +def clean_caption(caption): + for rf, rt in CAPTION_REPLACEMENTS: + replaced = True + while replaced: + bef = caption + caption = caption.replace(rf, rt) + replaced = bef != caption + return caption + +def main(args): + image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png")) + print(f"found {len(image_paths)} images.") + + if os.path.exists(args.in_json): + print(f"loading existing metadata: {args.in_json}") + with open(args.in_json, "rt", encoding='utf-8') as f: + metadata = json.load(f) + else: + print("no metadata / メタデータファイルがありません") + return + + print("cleaning captions and tags.") + for image_path in tqdm(image_paths): + tags_path = os.path.splitext(image_path)[0] + '.txt' + with open(tags_path, "rt", encoding='utf-8') as f: + tags = f.readlines()[0].strip() + + image_key = os.path.splitext(os.path.basename(image_path))[0] + if image_key not in metadata: + print(f"image not in metadata / メタデータに画像がありません: {image_path}") + return + + tags = metadata[image_key].get('tags') + caption = metadata[image_key].get('caption') + if tags is None: + print(f"image does not have tags / メタデータにタグがありません: {image_path}") + return + if caption is None: + print(f"image does not have caption / メタデータにキャプションがありません: {image_path}") + return + + metadata[image_key]['tags'] = clean_tags(image_key, tags) + metadata[image_key]['caption'] = clean_caption(caption) + + # metadataを書き出して終わり + print(f"writing metadata: {args.out_json}") + with open(args.out_json, "wt", encoding='utf-8') as f: + json.dump(metadata, f, indent=2) + print("done!") + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル") + parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") + # parser.add_argument("--debug", action="store_true", help="debug mode") + + args = parser.parse_args() + main(args) diff --git a/diffusers_fine_tuning/fine_tune_v1-ber.py b/diffusers_fine_tuning/fine_tune_v1-ber.py new file mode 100644 index 0000000..66ccbd2 --- /dev/null +++ b/diffusers_fine_tuning/fine_tune_v1-ber.py @@ -0,0 +1,774 @@ +# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +import argparse +import math +import os +import random +import json +import importlib + +from tqdm import tqdm +import torch +from accelerate import Accelerator +from accelerate.utils import set_seed +from transformers import CLIPTextModel, CLIPTokenizer +import diffusers +from diffusers import DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel +import numpy as np +from einops import rearrange +from torch import einsum + +import fine_tuning_utils_ber as fine_tuning_utils + +# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う +TOKENIZER_PATH = "openai/clip-vit-large-patch14" + +# checkpointファイル名 +LAST_CHECKPOINT_NAME = "last.ckpt" +EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" + + +def collate_fn(examples): + return examples[0] + + +class FineTuningDataset(torch.utils.data.Dataset): + def __init__(self, metadata, train_data_dir, batch_size, tokenizer, max_token_length, shuffle_caption, dataset_repeats, debug) -> None: + super().__init__() + + self.metadata = metadata + self.train_data_dir = train_data_dir + self.batch_size = batch_size + self.tokenizer = tokenizer + self.max_token_length = max_token_length + self.shuffle_caption = shuffle_caption + self.debug = debug + + self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2 + + print("make buckets") + + # 最初に数を数える + self.bucket_resos = set() + for img_md in metadata.values(): + if 'train_resolution' in img_md: + self.bucket_resos.add(tuple(img_md['train_resolution'])) + self.bucket_resos = list(self.bucket_resos) + self.bucket_resos.sort() + print(f"number of buckets: {len(self.bucket_resos)}") + + reso_to_index = {} + for i, reso in enumerate(self.bucket_resos): + reso_to_index[reso] = i + + # bucketに割り当てていく + self.buckets = [[] for _ in range(len(self.bucket_resos))] + n = 1 if dataset_repeats is None else dataset_repeats + images_count = 0 + for image_key, img_md in metadata.items(): + if 'train_resolution' not in img_md: + continue + if not os.path.exists(os.path.join(self.train_data_dir, image_key + '.npz')): + continue + + reso = tuple(img_md['train_resolution']) + for _ in range(n): + self.buckets[reso_to_index[reso]].append(image_key) + images_count += n + + # 参照用indexを作る + self.buckets_indices = [] + for bucket_index, bucket in enumerate(self.buckets): + batch_count = int(math.ceil(len(bucket) / self.batch_size)) + for batch_index in range(batch_count): + self.buckets_indices.append((bucket_index, batch_index)) + + self.shuffle_buckets() + self._length = len(self.buckets_indices) + self.images_count = images_count + + def show_buckets(self): + for i, (reso, bucket) in enumerate(zip(self.bucket_resos, self.buckets)): + print(f"bucket {i}: resolution {reso}, count: {len(bucket)}") + + def shuffle_buckets(self): + random.shuffle(self.buckets_indices) + for bucket in self.buckets: + random.shuffle(bucket) + + def load_latent(self, image_key): + return np.load(os.path.join(self.train_data_dir, image_key + '.npz'))['arr_0'] + + def __len__(self): + return self._length + + def __getitem__(self, index): + if index == 0: + self.shuffle_buckets() + + bucket = self.buckets[self.buckets_indices[index][0]] + image_index = self.buckets_indices[index][1] * self.batch_size + + input_ids_list = [] + latents_list = [] + captions = [] + for image_key in bucket[image_index:image_index + self.batch_size]: + img_md = self.metadata[image_key] + caption = img_md.get('caption') + tags = img_md.get('tags') + + if caption is None: + caption = tags + elif tags is not None and len(tags) > 0: + caption = caption + ', ' + tags + assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{image_key}" + + latents = self.load_latent(image_key) + + if self.shuffle_caption: + tokens = caption.strip().split(",") + random.shuffle(tokens) + caption = ",".join(tokens).strip() + + captions.append(caption) + + input_ids = self.tokenizer(caption, padding="max_length", truncation=True, + max_length=self.tokenizer_max_length, return_tensors="pt").input_ids + + # 77以上の時は " .... " でトータル227とかになっているので、"..."の三連に変換する + # 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に + if self.tokenizer_max_length > self.tokenizer.model_max_length: + input_ids = input_ids.squeeze(0) + iids_list = [] + for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2): + iid = (input_ids[0].unsqueeze(0), + input_ids[i:i + self.tokenizer.model_max_length - 2], + input_ids[-1].unsqueeze(0)) + iid = torch.cat(iid) + iids_list.append(iid) + input_ids = torch.stack(iids_list) # 3,77 + + input_ids_list.append(input_ids) + latents_list.append(torch.FloatTensor(latents)) + + example = {} + example['input_ids'] = torch.stack(input_ids_list) + example['latents'] = torch.stack(latents_list) + if self.debug: + example['image_keys'] = bucket[image_index:image_index + self.batch_size] + example['captions'] = captions + return example + + +def save_hypernetwork(output_file, hypernetwork): + state_dict = hypernetwork.get_state_dict() + torch.save(state_dict, output_file) + + +def train(args): + fine_tuning = args.hypernetwork_module is None # fine tuning or hypernetwork training + + # モデル形式のオプション設定を確認する + use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) + if not use_stable_diffusion_format: + assert os.path.exists( + args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}" + + assert not fine_tuning or ( + args.save_every_n_epochs is None or use_stable_diffusion_format), "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" + + if args.seed is not None: + set_seed(args.seed) + + # メタデータを読み込む + if os.path.exists(args.in_json): + print(f"loading existing metadata: {args.in_json}") + with open(args.in_json, "rt", encoding='utf-8') as f: + metadata = json.load(f) + else: + print(f"no metadata / メタデータファイルがありません: {args.in_json}") + return + + # tokenizerを読み込む + print("prepare tokenizer") + tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) + if args.max_token_length is not None: + print(f"update token length in tokenizer: {args.max_token_length}") + + # datasetを用意する + print("prepare dataset") + train_dataset = FineTuningDataset(metadata, args.train_data_dir, args.train_batch_size, + tokenizer, args.max_token_length, args.shuffle_caption, args.dataset_repeats, args.debug_dataset) + + if args.debug_dataset: + print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") + print(f"Total images / 画像数: {train_dataset.images_count}") + train_dataset.show_buckets() + i = 0 + for example in train_dataset: + print(f"image: {example['image_keys']}") + print(f"captions: {example['captions']}") + print(f"latents: {example['latents'].shape}") + print(f"input_ids: {example['input_ids'].shape}") + print(example['input_ids']) + i += 1 + if i >= 8: + break + return + + # acceleratorを準備する + print("prepare accelerator") + accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision) + + # モデルを読み込む + if use_stable_diffusion_format: + print("load StableDiffusion checkpoint") + text_encoder, _, unet = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) + else: + print("load Diffusers pretrained models") + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") + unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") + + # モデルに xformers とか memory efficient attention を組み込む + replace_unet_modules(unet, args.mem_eff_attn, args.xformers) + + if not fine_tuning: + # Hypernetwork + print("import hypernetwork module:", args.hypernetwork_module) + hyp_module = importlib.import_module(args.hypernetwork_module) + + hypernetwork = hyp_module.Hypernetwork() + + if args.hypernetwork_weights is not None: + print("load hypernetwork weights from:", args.hypernetwork_weights) + hyp_sd = torch.load(args.hypernetwork_weights, map_location='cpu') + success = hypernetwork.load_from_state_dict(hyp_sd) + assert success, "hypernetwork weights loading failed." + + print("apply hypernetwork") + hypernetwork.apply_to_diffusers(None, text_encoder, unet) + + # mixed precisionに対応した型を用意しておき適宜castする + weight_dtype = torch.float32 + if args.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif args.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # 学習を準備する + if fine_tuning: + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + unet.requires_grad_(True) # unetは学習しない + net = unet + else: + unet.requires_grad_(False) # unetは学習しない + unet.eval() + + hypernetwork.requires_grad_(True) + net = hypernetwork + + # 学習に必要なクラスを準備する + print("prepare optimizer, data loader etc.") + + # 8-bit Adamを使う + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") + print("use 8-bit Adam optimizer") + optimizer_class = bnb.optim.AdamW8bit + else: + optimizer_class = torch.optim.AdamW + + # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 + optimizer = optimizer_class(net.parameters(), lr=args.learning_rate) + + # dataloaderを準備する + # DataLoaderのプロセス数:0はメインプロセスになる + n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8 + train_dataloader = torch.utils.data.DataLoader( + train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers) + + # lr schedulerを用意する + lr_scheduler = diffusers.optimization.get_scheduler( + "constant", optimizer, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps) + + # acceleratorがなんかよろしくやってくれるらしい + if fine_tuning: + unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) + net = unet + else: + unet, hypernetwork, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, hypernetwork, optimizer, train_dataloader, lr_scheduler) + net = hypernetwork + + text_encoder.to(accelerator.device, dtype=weight_dtype) + text_encoder.requires_grad_(False) # text encoderは学習しない + + # epoch数を計算する + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # 学習する + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + print("running training / 学習開始") + print(f" num examples / サンプル数: {train_dataset.images_count}") + print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") + print(f" num epochs / epoch数: {num_train_epochs}") + print(f" batch size per device / バッチサイズ: {args.train_batch_size}") + print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") + print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") + print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") + + progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") + global_step = 0 + + noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) + + if accelerator.is_main_process: + accelerator.init_trackers("finetuning" if fine_tuning else "hypernetwork") + + # 以下 train_dreambooth.py からほぼコピペ + for epoch in range(num_train_epochs): + print(f"epoch {epoch+1}/{num_train_epochs}") + net.train() + + loss_total = 0 + for step, batch in enumerate(train_dataloader): + with accelerator.accumulate(unet): + latents = batch["latents"].to(accelerator.device) + latents = latents * 0.18215 + b_size = latents.shape[0] + + with torch.no_grad(): + # Get the text embedding for conditioning + input_ids = batch["input_ids"].to(accelerator.device) + input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77 + + if args.clip_skip is None: + encoder_hidden_states = text_encoder(input_ids)[0] + else: + enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True) + encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] + encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) + + encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1])) + + if args.max_token_length is not None: + # ... の三連を ... へ戻す + sts_list = [encoder_hidden_states[:, 0].unsqueeze(1)] + for i in range(1, args.max_token_length, tokenizer.model_max_length): + sts_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2]) + sts_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) + encoder_hidden_states = torch.cat(sts_list, dim=1) + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents, device=latents.device) + + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # Predict the noise residual + noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + + loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="mean") + + accelerator.backward(loss) + if accelerator.sync_gradients: + accelerator.clip_grad_norm_(net.parameters(), 1.0) # args.max_grad_norm) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad(set_to_none=True) + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + current_loss = loss.detach().item() * b_size + loss_total += current_loss + avr_loss = loss_total / (step+1) + logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + # accelerator.log(logs, step=global_step) + + if global_step >= args.max_train_steps: + break + + accelerator.wait_for_everyone() + + if args.save_every_n_epochs is not None: + if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs: + print("saving check point.") + os.makedirs(args.output_dir, exist_ok=True) + ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) + + if fine_tuning: + fine_tuning_utils.save_stable_diffusion_checkpoint( + ckpt_file, text_encoder, accelerator.unwrap_model(net), args.pretrained_model_name_or_path, epoch + 1, global_step) + else: + save_hypernetwork(ckpt_file, accelerator.unwrap_model(net)) + + is_main_process = accelerator.is_main_process + if is_main_process: + net = accelerator.unwrap_model(net) + + accelerator.end_training() + del accelerator # この後メモリを使うのでこれは消す + + if is_main_process: + os.makedirs(args.output_dir, exist_ok=True) + if fine_tuning: + if use_stable_diffusion_format: + ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) + print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}") + fine_tuning_utils.save_stable_diffusion_checkpoint( + ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step) + else: + # Create the pipeline using using the trained modules and save it. + print(f"save trained model as Diffusers to {args.output_dir}") + pipeline = StableDiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=unet, + text_encoder=text_encoder, + ) + pipeline.save_pretrained(args.output_dir) + else: + ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) + print(f"save trained model to {ckpt_file}") + save_hypernetwork(ckpt_file, net) + print("model saved.") + + +# region モジュール入れ替え部 +""" +高速化のためのモジュール入れ替え +""" + +# FlashAttentionを使うCrossAttention +# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py +# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE + +# constants + +EPSILON = 1e-6 + +# helper functions + + +def exists(val): + return val is not None + + +def default(val, d): + return val if exists(val) else d + +# flash attention forwards and backwards + +# https://arxiv.org/abs/2205.14135 + + +class FlashAttentionFunction(torch.autograd.function.Function): + @ staticmethod + @ torch.no_grad() + def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): + """ Algorithm 2 in the paper """ + + device = q.device + dtype = q.dtype + max_neg_value = -torch.finfo(q.dtype).max + qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) + + o = torch.zeros_like(q) + all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) + all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) + + scale = (q.shape[-1] ** -0.5) + + if not exists(mask): + mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) + else: + mask = rearrange(mask, 'b n -> b 1 1 n') + mask = mask.split(q_bucket_size, dim=-1) + + row_splits = zip( + q.split(q_bucket_size, dim=-2), + o.split(q_bucket_size, dim=-2), + mask, + all_row_sums.split(q_bucket_size, dim=-2), + all_row_maxes.split(q_bucket_size, dim=-2), + ) + + for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): + q_start_index = ind * q_bucket_size - qk_len_diff + + col_splits = zip( + k.split(k_bucket_size, dim=-2), + v.split(k_bucket_size, dim=-2), + ) + + for k_ind, (kc, vc) in enumerate(col_splits): + k_start_index = k_ind * k_bucket_size + + attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale + + if exists(row_mask): + attn_weights.masked_fill_(~row_mask, max_neg_value) + + if causal and q_start_index < (k_start_index + k_bucket_size - 1): + causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, + device=device).triu(q_start_index - k_start_index + 1) + attn_weights.masked_fill_(causal_mask, max_neg_value) + + block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) + attn_weights -= block_row_maxes + exp_weights = torch.exp(attn_weights) + + if exists(row_mask): + exp_weights.masked_fill_(~row_mask, 0.) + + block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) + + new_row_maxes = torch.maximum(block_row_maxes, row_maxes) + + exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) + + exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) + exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) + + new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums + + oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) + + row_maxes.copy_(new_row_maxes) + row_sums.copy_(new_row_sums) + + ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) + ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) + + return o + + @ staticmethod + @ torch.no_grad() + def backward(ctx, do): + """ Algorithm 4 in the paper """ + + causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args + q, k, v, o, l, m = ctx.saved_tensors + + device = q.device + + max_neg_value = -torch.finfo(q.dtype).max + qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) + + dq = torch.zeros_like(q) + dk = torch.zeros_like(k) + dv = torch.zeros_like(v) + + row_splits = zip( + q.split(q_bucket_size, dim=-2), + o.split(q_bucket_size, dim=-2), + do.split(q_bucket_size, dim=-2), + mask, + l.split(q_bucket_size, dim=-2), + m.split(q_bucket_size, dim=-2), + dq.split(q_bucket_size, dim=-2) + ) + + for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): + q_start_index = ind * q_bucket_size - qk_len_diff + + col_splits = zip( + k.split(k_bucket_size, dim=-2), + v.split(k_bucket_size, dim=-2), + dk.split(k_bucket_size, dim=-2), + dv.split(k_bucket_size, dim=-2), + ) + + for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): + k_start_index = k_ind * k_bucket_size + + attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale + + if causal and q_start_index < (k_start_index + k_bucket_size - 1): + causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, + device=device).triu(q_start_index - k_start_index + 1) + attn_weights.masked_fill_(causal_mask, max_neg_value) + + exp_attn_weights = torch.exp(attn_weights - mc) + + if exists(row_mask): + exp_attn_weights.masked_fill_(~row_mask, 0.) + + p = exp_attn_weights / lc + + dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) + dp = einsum('... i d, ... j d -> ... i j', doc, vc) + + D = (doc * oc).sum(dim=-1, keepdims=True) + ds = p * scale * (dp - D) + + dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) + dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) + + dqc.add_(dq_chunk) + dkc.add_(dk_chunk) + dvc.add_(dv_chunk) + + return dq, dk, dv, None, None, None, None + + +def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): + if mem_eff_attn: + replace_unet_cross_attn_to_memory_efficient() + elif xformers: + replace_unet_cross_attn_to_xformers() + + +def replace_unet_cross_attn_to_memory_efficient(): + print("Replace CrossAttention.forward to use FlashAttention") + flash_func = FlashAttentionFunction + + def forward_flash_attn(self, x, context=None, mask=None): + q_bucket_size = 512 + k_bucket_size = 1024 + + h = self.heads + q = self.to_q(x) + + context = context if context is not None else x + context = context.to(x.dtype) + + if hasattr(self, 'hypernetwork') and self.hypernetwork is not None: + context_k, context_v = self.hypernetwork.forward(x, context) + context_k = context_k.to(x.dtype) + context_v = context_v.to(x.dtype) + else: + context_k = context + context_v = context + + k = self.to_k(context_k) + v = self.to_v(context_v) + del context, x + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) + + out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) + + out = rearrange(out, 'b h n d -> b n (h d)') + + # diffusers 0.6.0 + if type(self.to_out) is torch.nn.Sequential: + return self.to_out(out) + + # diffusers 0.7.0~ わざわざ変えるなよ (;´Д`) + out = self.to_out[0](out) + out = self.to_out[1](out) + return out + + diffusers.models.attention.CrossAttention.forward = forward_flash_attn + + +def replace_unet_cross_attn_to_xformers(): + print("Replace CrossAttention.forward to use xformers") + try: + import xformers.ops + except ImportError: + raise ImportError("No xformers / xformersがインストールされていないようです") + + def forward_xformers(self, x, context=None, mask=None): + h = self.heads + q_in = self.to_q(x) + + context = default(context, x) + context = context.to(x.dtype) + + if hasattr(self, 'hypernetwork') and self.hypernetwork is not None: + context_k, context_v = self.hypernetwork.forward(x, context) + context_k = context_k.to(x.dtype) + context_v = context_v.to(x.dtype) + else: + context_k = context + context_v = context + + k_in = self.to_k(context_k) + v_in = self.to_v(context_v) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) + del q_in, k_in, v_in + + q = q.contiguous() + k = k.contiguous() + v = v.contiguous() + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる + + out = rearrange(out, 'b n h d -> b n (h d)', h=h) + + # diffusers 0.6.0 + if type(self.to_out) is torch.nn.Sequential: + return self.to_out(out) + + # diffusers 0.7.0~ + out = self.to_out[0](out) + out = self.to_out[1](out) + return out + + diffusers.models.attention.CrossAttention.forward = forward_xformers +# endregion + + +if __name__ == '__main__': + # torch.cuda.set_per_process_memory_fraction(0.48) + parser = argparse.ArgumentParser() + parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, + help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") + parser.add_argument("--in_json", type=str, default=None, help="metadata file to input / 読みこむメタデータファイル") + parser.add_argument("--shuffle_caption", action="store_true", + help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") + parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("--dataset_repeats", type=int, default=None, help="num times to repeat dataset / 学習にデータセットを繰り返す回数") + parser.add_argument("--output_dir", type=str, default=None, + help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") + parser.add_argument("--hypernetwork_module", type=str, default=None, + help='train hypernetwork instead of fine tuning, module to use / fine tuningの代わりにHypernetworkの学習をする場合、そのモジュール') + parser.add_argument("--hypernetwork_weights", type=str, default=None, + help='hypernetwork weights to initialize for additional training / Hypernetworkの学習時に読み込む重み(Hypernetworkの追加学習)') + parser.add_argument("--save_every_n_epochs", type=int, default=None, + help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存する(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") + parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225], + help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)") + parser.add_argument("--train_batch_size", type=int, default=1, + help="batch size for training / 学習時のバッチサイズ") + parser.add_argument("--use_8bit_adam", action="store_true", + help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") + parser.add_argument("--mem_eff_attn", action="store_true", + help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") + parser.add_argument("--xformers", action="store_true", + help="use xformers for CrossAttention / CrossAttentionにxformersを使う") + parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") + parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") + parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") + parser.add_argument("--gradient_checkpointing", action="store_true", + help="enable gradient checkpointing / grandient checkpointingを有効にする") + parser.add_argument("--gradient_accumulation_steps", type=int, default=1, + help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数") + parser.add_argument("--mixed_precision", type=str, default="no", + choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") + parser.add_argument("--clip_skip", type=int, default=None, + help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") + parser.add_argument("--debug_dataset", action="store_true", + help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") + parser.add_argument("--save_half", action="store_true", + help="save ckpt model with fp16 precision") + + args = parser.parse_args() + train(args) diff --git a/diffusers_fine_tuning/fine_tune_v1.py b/diffusers_fine_tuning/fine_tune_v1.py new file mode 100644 index 0000000..78c12cd --- /dev/null +++ b/diffusers_fine_tuning/fine_tune_v1.py @@ -0,0 +1,772 @@ +# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +import argparse +import math +import os +import random +import json +import importlib + +from tqdm import tqdm +import torch +from accelerate import Accelerator +from accelerate.utils import set_seed +from transformers import CLIPTextModel, CLIPTokenizer +import diffusers +from diffusers import DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel +import numpy as np +from einops import rearrange +from torch import einsum + +import fine_tuning_utils + +# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う +TOKENIZER_PATH = "openai/clip-vit-large-patch14" + +# checkpointファイル名 +LAST_CHECKPOINT_NAME = "last.ckpt" +EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" + + +def collate_fn(examples): + return examples[0] + + +class FineTuningDataset(torch.utils.data.Dataset): + def __init__(self, metadata, train_data_dir, batch_size, tokenizer, max_token_length, shuffle_caption, dataset_repeats, debug) -> None: + super().__init__() + + self.metadata = metadata + self.train_data_dir = train_data_dir + self.batch_size = batch_size + self.tokenizer = tokenizer + self.max_token_length = max_token_length + self.shuffle_caption = shuffle_caption + self.debug = debug + + self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2 + + print("make buckets") + + # 最初に数を数える + self.bucket_resos = set() + for img_md in metadata.values(): + if 'train_resolution' in img_md: + self.bucket_resos.add(tuple(img_md['train_resolution'])) + self.bucket_resos = list(self.bucket_resos) + self.bucket_resos.sort() + print(f"number of buckets: {len(self.bucket_resos)}") + + reso_to_index = {} + for i, reso in enumerate(self.bucket_resos): + reso_to_index[reso] = i + + # bucketに割り当てていく + self.buckets = [[] for _ in range(len(self.bucket_resos))] + n = 1 if dataset_repeats is None else dataset_repeats + images_count = 0 + for image_key, img_md in metadata.items(): + if 'train_resolution' not in img_md: + continue + if not os.path.exists(os.path.join(self.train_data_dir, image_key + '.npz')): + continue + + reso = tuple(img_md['train_resolution']) + for _ in range(n): + self.buckets[reso_to_index[reso]].append(image_key) + images_count += n + + # 参照用indexを作る + self.buckets_indices = [] + for bucket_index, bucket in enumerate(self.buckets): + batch_count = int(math.ceil(len(bucket) / self.batch_size)) + for batch_index in range(batch_count): + self.buckets_indices.append((bucket_index, batch_index)) + + self.shuffle_buckets() + self._length = len(self.buckets_indices) + self.images_count = images_count + + def show_buckets(self): + for i, (reso, bucket) in enumerate(zip(self.bucket_resos, self.buckets)): + print(f"bucket {i}: resolution {reso}, count: {len(bucket)}") + + def shuffle_buckets(self): + random.shuffle(self.buckets_indices) + for bucket in self.buckets: + random.shuffle(bucket) + + def load_latent(self, image_key): + return np.load(os.path.join(self.train_data_dir, image_key + '.npz'))['arr_0'] + + def __len__(self): + return self._length + + def __getitem__(self, index): + if index == 0: + self.shuffle_buckets() + + bucket = self.buckets[self.buckets_indices[index][0]] + image_index = self.buckets_indices[index][1] * self.batch_size + + input_ids_list = [] + latents_list = [] + captions = [] + for image_key in bucket[image_index:image_index + self.batch_size]: + img_md = self.metadata[image_key] + caption = img_md.get('caption') + tags = img_md.get('tags') + + if caption is None: + caption = tags + elif tags is not None and len(tags) > 0: + caption = caption + ', ' + tags + assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{image_key}" + + latents = self.load_latent(image_key) + + if self.shuffle_caption: + tokens = caption.strip().split(",") + random.shuffle(tokens) + caption = ",".join(tokens).strip() + + captions.append(caption) + + input_ids = self.tokenizer(caption, padding="max_length", truncation=True, + max_length=self.tokenizer_max_length, return_tensors="pt").input_ids + + # 77以上の時は " .... " でトータル227とかになっているので、"..."の三連に変換する + # 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に + if self.tokenizer_max_length > self.tokenizer.model_max_length: + input_ids = input_ids.squeeze(0) + iids_list = [] + for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2): + iid = (input_ids[0].unsqueeze(0), + input_ids[i:i + self.tokenizer.model_max_length - 2], + input_ids[-1].unsqueeze(0)) + iid = torch.cat(iid) + iids_list.append(iid) + input_ids = torch.stack(iids_list) # 3,77 + + input_ids_list.append(input_ids) + latents_list.append(torch.FloatTensor(latents)) + + example = {} + example['input_ids'] = torch.stack(input_ids_list) + example['latents'] = torch.stack(latents_list) + if self.debug: + example['image_keys'] = bucket[image_index:image_index + self.batch_size] + example['captions'] = captions + return example + + +def save_hypernetwork(output_file, hypernetwork): + state_dict = hypernetwork.get_state_dict() + torch.save(state_dict, output_file) + + +def train(args): + fine_tuning = args.hypernetwork_module is None # fine tuning or hypernetwork training + + # モデル形式のオプション設定を確認する + use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) + if not use_stable_diffusion_format: + assert os.path.exists( + args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}" + + assert not fine_tuning or ( + args.save_every_n_epochs is None or use_stable_diffusion_format), "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" + + if args.seed is not None: + set_seed(args.seed) + + # メタデータを読み込む + if os.path.exists(args.in_json): + print(f"loading existing metadata: {args.in_json}") + with open(args.in_json, "rt", encoding='utf-8') as f: + metadata = json.load(f) + else: + print(f"no metadata / メタデータファイルがありません: {args.in_json}") + return + + # tokenizerを読み込む + print("prepare tokenizer") + tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) + if args.max_token_length is not None: + print(f"update token length in tokenizer: {args.max_token_length}") + + # datasetを用意する + print("prepare dataset") + train_dataset = FineTuningDataset(metadata, args.train_data_dir, args.train_batch_size, + tokenizer, args.max_token_length, args.shuffle_caption, args.dataset_repeats, args.debug_dataset) + + if args.debug_dataset: + print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") + print(f"Total images / 画像数: {train_dataset.images_count}") + train_dataset.show_buckets() + i = 0 + for example in train_dataset: + print(f"image: {example['image_keys']}") + print(f"captions: {example['captions']}") + print(f"latents: {example['latents'].shape}") + print(f"input_ids: {example['input_ids'].shape}") + print(example['input_ids']) + i += 1 + if i >= 8: + break + return + + # acceleratorを準備する + print("prepare accelerator") + accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision) + + # モデルを読み込む + if use_stable_diffusion_format: + print("load StableDiffusion checkpoint") + text_encoder, _, unet = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) + else: + print("load Diffusers pretrained models") + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") + unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") + + # モデルに xformers とか memory efficient attention を組み込む + replace_unet_modules(unet, args.mem_eff_attn, args.xformers) + + if not fine_tuning: + # Hypernetwork + print("import hypernetwork module:", args.hypernetwork_module) + hyp_module = importlib.import_module(args.hypernetwork_module) + + hypernetwork = hyp_module.Hypernetwork() + + if args.hypernetwork_weights is not None: + print("load hypernetwork weights from:", args.hypernetwork_weights) + hyp_sd = torch.load(args.hypernetwork_weights, map_location='cpu') + success = hypernetwork.load_from_state_dict(hyp_sd) + assert success, "hypernetwork weights loading failed." + + print("apply hypernetwork") + hypernetwork.apply_to_diffusers(None, text_encoder, unet) + + # mixed precisionに対応した型を用意しておき適宜castする + weight_dtype = torch.float32 + if args.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif args.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # 学習を準備する + if fine_tuning: + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + unet.requires_grad_(True) # unetは学習しない + net = unet + else: + unet.requires_grad_(False) # unetは学習しない + unet.eval() + + hypernetwork.requires_grad_(True) + net = hypernetwork + + # 学習に必要なクラスを準備する + print("prepare optimizer, data loader etc.") + + # 8-bit Adamを使う + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") + print("use 8-bit Adam optimizer") + optimizer_class = bnb.optim.AdamW8bit + else: + optimizer_class = torch.optim.AdamW + + # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 + optimizer = optimizer_class(net.parameters(), lr=args.learning_rate) + + # dataloaderを準備する + # DataLoaderのプロセス数:0はメインプロセスになる + n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8 + train_dataloader = torch.utils.data.DataLoader( + train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers) + + # lr schedulerを用意する + lr_scheduler = diffusers.optimization.get_scheduler( + "constant", optimizer, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps) + + # acceleratorがなんかよろしくやってくれるらしい + if fine_tuning: + unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) + net = unet + else: + unet, hypernetwork, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, hypernetwork, optimizer, train_dataloader, lr_scheduler) + net = hypernetwork + + text_encoder.to(accelerator.device, dtype=weight_dtype) + text_encoder.requires_grad_(False) # text encoderは学習しない + + # epoch数を計算する + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # 学習する + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + print("running training / 学習開始") + print(f" num examples / サンプル数: {train_dataset.images_count}") + print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") + print(f" num epochs / epoch数: {num_train_epochs}") + print(f" batch size per device / バッチサイズ: {args.train_batch_size}") + print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") + print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") + print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") + + progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") + global_step = 0 + + noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) + + if accelerator.is_main_process: + accelerator.init_trackers("finetuning" if fine_tuning else "hypernetwork") + + # 以下 train_dreambooth.py からほぼコピペ + for epoch in range(num_train_epochs): + print(f"epoch {epoch+1}/{num_train_epochs}") + net.train() + + loss_total = 0 + for step, batch in enumerate(train_dataloader): + with accelerator.accumulate(unet): + latents = batch["latents"].to(accelerator.device) + latents = latents * 0.18215 + b_size = latents.shape[0] + + with torch.no_grad(): + # Get the text embedding for conditioning + input_ids = batch["input_ids"].to(accelerator.device) + input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77 + + if args.clip_skip is None: + encoder_hidden_states = text_encoder(input_ids)[0] + else: + enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True) + encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] + encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) + + encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1])) + + if args.max_token_length is not None: + # ... の三連を ... へ戻す + sts_list = [encoder_hidden_states[:, 0].unsqueeze(1)] + for i in range(1, args.max_token_length, tokenizer.model_max_length): + sts_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2]) + sts_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) + encoder_hidden_states = torch.cat(sts_list, dim=1) + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents, device=latents.device) + + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # Predict the noise residual + noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + + loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="mean") + + accelerator.backward(loss) + if accelerator.sync_gradients: + accelerator.clip_grad_norm_(net.parameters(), 1.0) # args.max_grad_norm) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad(set_to_none=True) + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + current_loss = loss.detach().item() * b_size + loss_total += current_loss + avr_loss = loss_total / (step+1) + logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + # accelerator.log(logs, step=global_step) + + if global_step >= args.max_train_steps: + break + + accelerator.wait_for_everyone() + + if args.save_every_n_epochs is not None: + if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs: + print("saving check point.") + os.makedirs(args.output_dir, exist_ok=True) + ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) + + if fine_tuning: + fine_tuning_utils.save_stable_diffusion_checkpoint( + ckpt_file, text_encoder, accelerator.unwrap_model(net), args.pretrained_model_name_or_path, epoch + 1, global_step) + else: + save_hypernetwork(ckpt_file, accelerator.unwrap_model(net)) + + is_main_process = accelerator.is_main_process + if is_main_process: + net = accelerator.unwrap_model(net) + + accelerator.end_training() + del accelerator # この後メモリを使うのでこれは消す + + if is_main_process: + os.makedirs(args.output_dir, exist_ok=True) + if fine_tuning: + if use_stable_diffusion_format: + ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) + print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}") + fine_tuning_utils.save_stable_diffusion_checkpoint( + ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step) + else: + # Create the pipeline using using the trained modules and save it. + print(f"save trained model as Diffusers to {args.output_dir}") + pipeline = StableDiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=unet, + text_encoder=text_encoder, + ) + pipeline.save_pretrained(args.output_dir) + else: + ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) + print(f"save trained model to {ckpt_file}") + save_hypernetwork(ckpt_file, net) + print("model saved.") + + +# region モジュール入れ替え部 +""" +高速化のためのモジュール入れ替え +""" + +# FlashAttentionを使うCrossAttention +# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py +# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE + +# constants + +EPSILON = 1e-6 + +# helper functions + + +def exists(val): + return val is not None + + +def default(val, d): + return val if exists(val) else d + +# flash attention forwards and backwards + +# https://arxiv.org/abs/2205.14135 + + +class FlashAttentionFunction(torch.autograd.function.Function): + @ staticmethod + @ torch.no_grad() + def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): + """ Algorithm 2 in the paper """ + + device = q.device + dtype = q.dtype + max_neg_value = -torch.finfo(q.dtype).max + qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) + + o = torch.zeros_like(q) + all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) + all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) + + scale = (q.shape[-1] ** -0.5) + + if not exists(mask): + mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) + else: + mask = rearrange(mask, 'b n -> b 1 1 n') + mask = mask.split(q_bucket_size, dim=-1) + + row_splits = zip( + q.split(q_bucket_size, dim=-2), + o.split(q_bucket_size, dim=-2), + mask, + all_row_sums.split(q_bucket_size, dim=-2), + all_row_maxes.split(q_bucket_size, dim=-2), + ) + + for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): + q_start_index = ind * q_bucket_size - qk_len_diff + + col_splits = zip( + k.split(k_bucket_size, dim=-2), + v.split(k_bucket_size, dim=-2), + ) + + for k_ind, (kc, vc) in enumerate(col_splits): + k_start_index = k_ind * k_bucket_size + + attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale + + if exists(row_mask): + attn_weights.masked_fill_(~row_mask, max_neg_value) + + if causal and q_start_index < (k_start_index + k_bucket_size - 1): + causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, + device=device).triu(q_start_index - k_start_index + 1) + attn_weights.masked_fill_(causal_mask, max_neg_value) + + block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) + attn_weights -= block_row_maxes + exp_weights = torch.exp(attn_weights) + + if exists(row_mask): + exp_weights.masked_fill_(~row_mask, 0.) + + block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) + + new_row_maxes = torch.maximum(block_row_maxes, row_maxes) + + exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) + + exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) + exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) + + new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums + + oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) + + row_maxes.copy_(new_row_maxes) + row_sums.copy_(new_row_sums) + + ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) + ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) + + return o + + @ staticmethod + @ torch.no_grad() + def backward(ctx, do): + """ Algorithm 4 in the paper """ + + causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args + q, k, v, o, l, m = ctx.saved_tensors + + device = q.device + + max_neg_value = -torch.finfo(q.dtype).max + qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) + + dq = torch.zeros_like(q) + dk = torch.zeros_like(k) + dv = torch.zeros_like(v) + + row_splits = zip( + q.split(q_bucket_size, dim=-2), + o.split(q_bucket_size, dim=-2), + do.split(q_bucket_size, dim=-2), + mask, + l.split(q_bucket_size, dim=-2), + m.split(q_bucket_size, dim=-2), + dq.split(q_bucket_size, dim=-2) + ) + + for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): + q_start_index = ind * q_bucket_size - qk_len_diff + + col_splits = zip( + k.split(k_bucket_size, dim=-2), + v.split(k_bucket_size, dim=-2), + dk.split(k_bucket_size, dim=-2), + dv.split(k_bucket_size, dim=-2), + ) + + for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): + k_start_index = k_ind * k_bucket_size + + attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale + + if causal and q_start_index < (k_start_index + k_bucket_size - 1): + causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, + device=device).triu(q_start_index - k_start_index + 1) + attn_weights.masked_fill_(causal_mask, max_neg_value) + + exp_attn_weights = torch.exp(attn_weights - mc) + + if exists(row_mask): + exp_attn_weights.masked_fill_(~row_mask, 0.) + + p = exp_attn_weights / lc + + dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) + dp = einsum('... i d, ... j d -> ... i j', doc, vc) + + D = (doc * oc).sum(dim=-1, keepdims=True) + ds = p * scale * (dp - D) + + dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) + dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) + + dqc.add_(dq_chunk) + dkc.add_(dk_chunk) + dvc.add_(dv_chunk) + + return dq, dk, dv, None, None, None, None + + +def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): + if mem_eff_attn: + replace_unet_cross_attn_to_memory_efficient() + elif xformers: + replace_unet_cross_attn_to_xformers() + + +def replace_unet_cross_attn_to_memory_efficient(): + print("Replace CrossAttention.forward to use FlashAttention") + flash_func = FlashAttentionFunction + + def forward_flash_attn(self, x, context=None, mask=None): + q_bucket_size = 512 + k_bucket_size = 1024 + + h = self.heads + q = self.to_q(x) + + context = context if context is not None else x + context = context.to(x.dtype) + + if hasattr(self, 'hypernetwork') and self.hypernetwork is not None: + context_k, context_v = self.hypernetwork.forward(x, context) + context_k = context_k.to(x.dtype) + context_v = context_v.to(x.dtype) + else: + context_k = context + context_v = context + + k = self.to_k(context_k) + v = self.to_v(context_v) + del context, x + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) + + out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) + + out = rearrange(out, 'b h n d -> b n (h d)') + + # diffusers 0.6.0 + if type(self.to_out) is torch.nn.Sequential: + return self.to_out(out) + + # diffusers 0.7.0~ わざわざ変えるなよ (;´Д`) + out = self.to_out[0](out) + out = self.to_out[1](out) + return out + + diffusers.models.attention.CrossAttention.forward = forward_flash_attn + + +def replace_unet_cross_attn_to_xformers(): + print("Replace CrossAttention.forward to use xformers") + try: + import xformers.ops + except ImportError: + raise ImportError("No xformers / xformersがインストールされていないようです") + + def forward_xformers(self, x, context=None, mask=None): + h = self.heads + q_in = self.to_q(x) + + context = default(context, x) + context = context.to(x.dtype) + + if hasattr(self, 'hypernetwork') and self.hypernetwork is not None: + context_k, context_v = self.hypernetwork.forward(x, context) + context_k = context_k.to(x.dtype) + context_v = context_v.to(x.dtype) + else: + context_k = context + context_v = context + + k_in = self.to_k(context_k) + v_in = self.to_v(context_v) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) + del q_in, k_in, v_in + + q = q.contiguous() + k = k.contiguous() + v = v.contiguous() + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる + + out = rearrange(out, 'b n h d -> b n (h d)', h=h) + + # diffusers 0.6.0 + if type(self.to_out) is torch.nn.Sequential: + return self.to_out(out) + + # diffusers 0.7.0~ + out = self.to_out[0](out) + out = self.to_out[1](out) + return out + + diffusers.models.attention.CrossAttention.forward = forward_xformers +# endregion + + +if __name__ == '__main__': + # torch.cuda.set_per_process_memory_fraction(0.48) + parser = argparse.ArgumentParser() + parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, + help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") + parser.add_argument("--in_json", type=str, default=None, help="metadata file to input / 読みこむメタデータファイル") + parser.add_argument("--shuffle_caption", action="store_true", + help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") + parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("--dataset_repeats", type=int, default=None, help="num times to repeat dataset / 学習にデータセットを繰り返す回数") + parser.add_argument("--output_dir", type=str, default=None, + help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") + parser.add_argument("--hypernetwork_module", type=str, default=None, + help='train hypernetwork instead of fine tuning, module to use / fine tuningの代わりにHypernetworkの学習をする場合、そのモジュール') + parser.add_argument("--hypernetwork_weights", type=str, default=None, + help='hypernetwork weights to initialize for additional training / Hypernetworkの学習時に読み込む重み(Hypernetworkの追加学習)') + parser.add_argument("--save_every_n_epochs", type=int, default=None, + help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存する(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") + parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225], + help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)") + parser.add_argument("--train_batch_size", type=int, default=1, + help="batch size for training / 学習時のバッチサイズ") + parser.add_argument("--use_8bit_adam", action="store_true", + help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") + parser.add_argument("--mem_eff_attn", action="store_true", + help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") + parser.add_argument("--xformers", action="store_true", + help="use xformers for CrossAttention / CrossAttentionにxformersを使う") + parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") + parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") + parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") + parser.add_argument("--gradient_checkpointing", action="store_true", + help="enable gradient checkpointing / grandient checkpointingを有効にする") + parser.add_argument("--gradient_accumulation_steps", type=int, default=1, + help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数") + parser.add_argument("--mixed_precision", type=str, default="no", + choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") + parser.add_argument("--clip_skip", type=int, default=None, + help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") + parser.add_argument("--debug_dataset", action="store_true", + help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") + + args = parser.parse_args() + train(args) diff --git a/diffusers_fine_tuning/fine_tuning_utils.py b/diffusers_fine_tuning/fine_tuning_utils.py new file mode 100644 index 0000000..e478fc0 --- /dev/null +++ b/diffusers_fine_tuning/fine_tuning_utils.py @@ -0,0 +1,763 @@ +import math +import torch +from transformers import CLIPTextModel +from diffusers import AutoencoderKL, UNet2DConditionModel + +# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う +TOKENIZER_PATH = "openai/clip-vit-large-patch14" + +# StableDiffusionのモデルパラメータ +NUM_TRAIN_TIMESTEPS = 1000 +BETA_START = 0.00085 +BETA_END = 0.0120 + +UNET_PARAMS_MODEL_CHANNELS = 320 +UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] +UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] +UNET_PARAMS_IMAGE_SIZE = 32 # unused +UNET_PARAMS_IN_CHANNELS = 4 +UNET_PARAMS_OUT_CHANNELS = 4 +UNET_PARAMS_NUM_RES_BLOCKS = 2 +UNET_PARAMS_CONTEXT_DIM = 768 +UNET_PARAMS_NUM_HEADS = 8 + +VAE_PARAMS_Z_CHANNELS = 4 +VAE_PARAMS_RESOLUTION = 256 +VAE_PARAMS_IN_CHANNELS = 3 +VAE_PARAMS_OUT_CH = 3 +VAE_PARAMS_CH = 128 +VAE_PARAMS_CH_MULT = [1, 2, 4, 4] +VAE_PARAMS_NUM_RES_BLOCKS = 2 + + +# region conversion +# checkpoint変換など ############################### + +# region StableDiffusion->Diffusersの変換コード +# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) + +def shave_segments(path, n_shave_prefix_segments=1): + """ + Removes segments. Positive values shave the first segments, negative shave the last segments. + """ + if n_shave_prefix_segments >= 0: + return ".".join(path.split(".")[n_shave_prefix_segments:]) + else: + return ".".join(path.split(".")[:n_shave_prefix_segments]) + + +def renew_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item.replace("in_layers.0", "norm1") + new_item = new_item.replace("in_layers.2", "conv1") + + new_item = new_item.replace("out_layers.0", "norm2") + new_item = new_item.replace("out_layers.3", "conv2") + + new_item = new_item.replace("emb_layers.1", "time_emb_proj") + new_item = new_item.replace("skip_connection", "conv_shortcut") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("nin_shortcut", "conv_shortcut") + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + # new_item = new_item.replace('norm.weight', 'group_norm.weight') + # new_item = new_item.replace('norm.bias', 'group_norm.bias') + + # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') + # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') + + # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("norm.weight", "group_norm.weight") + new_item = new_item.replace("norm.bias", "group_norm.bias") + + new_item = new_item.replace("q.weight", "query.weight") + new_item = new_item.replace("q.bias", "query.bias") + + new_item = new_item.replace("k.weight", "key.weight") + new_item = new_item.replace("k.bias", "key.bias") + + new_item = new_item.replace("v.weight", "value.weight") + new_item = new_item.replace("v.bias", "value.bias") + + new_item = new_item.replace("proj_out.weight", "proj_attn.weight") + new_item = new_item.replace("proj_out.bias", "proj_attn.bias") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def assign_to_checkpoint( + paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None +): + """ + This does the final conversion step: take locally converted weights and apply a global renaming + to them. It splits attention layers, and takes into account additional replacements + that may arise. + + Assigns the weights to the new checkpoint. + """ + assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." + + # Splits the attention layers into three variables. + if attention_paths_to_split is not None: + for path, path_map in attention_paths_to_split.items(): + old_tensor = old_checkpoint[path] + channels = old_tensor.shape[0] // 3 + + target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) + + num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 + + old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) + query, key, value = old_tensor.split(channels // num_heads, dim=1) + + checkpoint[path_map["query"]] = query.reshape(target_shape) + checkpoint[path_map["key"]] = key.reshape(target_shape) + checkpoint[path_map["value"]] = value.reshape(target_shape) + + for path in paths: + new_path = path["new"] + + # These have already been assigned + if attention_paths_to_split is not None and new_path in attention_paths_to_split: + continue + + # Global renaming happens here + new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") + new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") + new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") + + if additional_replacements is not None: + for replacement in additional_replacements: + new_path = new_path.replace(replacement["old"], replacement["new"]) + + # proj_attn.weight has to be converted from conv 1D to linear + if "proj_attn.weight" in new_path: + checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] + else: + checkpoint[new_path] = old_checkpoint[path["old"]] + + +def conv_attn_to_linear(checkpoint): + keys = list(checkpoint.keys()) + attn_keys = ["query.weight", "key.weight", "value.weight"] + for key in keys: + if ".".join(key.split(".")[-2:]) in attn_keys: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0, 0] + elif "proj_attn.weight" in key: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0] + + +def convert_ldm_unet_checkpoint(checkpoint, config): + """ + Takes a state dict and a config, and returns a converted checkpoint. + """ + + # extract state_dict for UNet + unet_state_dict = {} + unet_key = "model.diffusion_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(unet_key): + unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) + + new_checkpoint = {} + + new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] + new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] + new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] + new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] + + new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] + new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] + + new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] + new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] + new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] + new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] + + # Retrieves the keys for the input blocks only + num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) + input_blocks = { + layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] + for layer_id in range(num_input_blocks) + } + + # Retrieves the keys for the middle blocks only + num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) + middle_blocks = { + layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] + for layer_id in range(num_middle_blocks) + } + + # Retrieves the keys for the output blocks only + num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) + output_blocks = { + layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] + for layer_id in range(num_output_blocks) + } + + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config["layers_per_block"] + 1) + layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) + + resnets = [ + key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key + ] + attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] + + if f"input_blocks.{i}.0.op.weight" in unet_state_dict: + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.weight" + ) + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.bias" + ) + + paths = renew_resnet_paths(resnets) + meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + resnet_0 = middle_blocks[0] + attentions = middle_blocks[1] + resnet_1 = middle_blocks[2] + + resnet_0_paths = renew_resnet_paths(resnet_0) + assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) + + resnet_1_paths = renew_resnet_paths(resnet_1) + assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) + + attentions_paths = renew_attention_paths(attentions) + meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} + assign_to_checkpoint( + attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + for i in range(num_output_blocks): + block_id = i // (config["layers_per_block"] + 1) + layer_in_block_id = i % (config["layers_per_block"] + 1) + output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] + output_block_list = {} + + for layer in output_block_layers: + layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) + if layer_id in output_block_list: + output_block_list[layer_id].append(layer_name) + else: + output_block_list[layer_id] = [layer_name] + + if len(output_block_list) > 1: + resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] + attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] + + resnet_0_paths = renew_resnet_paths(resnets) + paths = renew_resnet_paths(resnets) + + meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if ["conv.weight", "conv.bias"] in output_block_list.values(): + index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.weight" + ] + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.bias" + ] + + # Clear attentions as they have been attributed above. + if len(attentions) == 2: + attentions = [] + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = { + "old": f"output_blocks.{i}.1", + "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + else: + resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) + for path in resnet_0_paths: + old_path = ".".join(["output_blocks", str(i), path["old"]]) + new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) + + new_checkpoint[new_path] = unet_state_dict[old_path] + + return new_checkpoint + + +def convert_ldm_vae_checkpoint(checkpoint, config): + # extract state dict for VAE + vae_state_dict = {} + vae_key = "first_stage_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(vae_key): + vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) + + new_checkpoint = {} + + new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] + new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] + new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] + new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] + new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] + new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] + + new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] + new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] + new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] + new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] + new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] + new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] + + new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] + new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] + new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] + new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] + + # Retrieves the keys for the encoder down blocks only + num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) + down_blocks = { + layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) + } + + # Retrieves the keys for the decoder up blocks only + num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) + up_blocks = { + layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) + } + + for i in range(num_down_blocks): + resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] + + if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.weight" + ) + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.bias" + ) + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + + for i in range(num_up_blocks): + block_id = num_up_blocks - 1 - i + resnets = [ + key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key + ] + + if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.weight" + ] + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.bias" + ] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + return new_checkpoint + + +def create_unet_diffusers_config(): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + # unet_params = original_config.model.params.unet_config.params + + block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] + + down_block_types = [] + resolution = 1 + for i in range(len(block_out_channels)): + block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" + down_block_types.append(block_type) + if i != len(block_out_channels) - 1: + resolution *= 2 + + up_block_types = [] + for i in range(len(block_out_channels)): + block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" + up_block_types.append(block_type) + resolution //= 2 + + config = dict( + sample_size=UNET_PARAMS_IMAGE_SIZE, + in_channels=UNET_PARAMS_IN_CHANNELS, + out_channels=UNET_PARAMS_OUT_CHANNELS, + down_block_types=tuple(down_block_types), + up_block_types=tuple(up_block_types), + block_out_channels=tuple(block_out_channels), + layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, + cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, + attention_head_dim=UNET_PARAMS_NUM_HEADS, + ) + + return config + + +def create_vae_diffusers_config(): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + # vae_params = original_config.model.params.first_stage_config.params.ddconfig + # _ = original_config.model.params.first_stage_config.params.embed_dim + block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] + down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) + up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) + + config = dict( + sample_size=VAE_PARAMS_RESOLUTION, + in_channels=VAE_PARAMS_IN_CHANNELS, + out_channels=VAE_PARAMS_OUT_CH, + down_block_types=tuple(down_block_types), + up_block_types=tuple(up_block_types), + block_out_channels=tuple(block_out_channels), + latent_channels=VAE_PARAMS_Z_CHANNELS, + layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, + ) + return config + + +def convert_ldm_clip_checkpoint(checkpoint): + text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") + + keys = list(checkpoint.keys()) + + text_model_dict = {} + + for key in keys: + if key.startswith("cond_stage_model.transformer"): + text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] + + text_model.load_state_dict(text_model_dict) + + return text_model + +# endregion + + +# region Diffusers->StableDiffusion の変換コード +# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) + +def convert_unet_state_dict(unet_state_dict): + unet_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), + ] + + unet_conversion_map_resnet = [ + # (stable-diffusion, HF Diffusers) + ("in_layers.0", "norm1"), + ("in_layers.2", "conv1"), + ("out_layers.0", "norm2"), + ("out_layers.3", "conv2"), + ("emb_layers.1", "time_emb_proj"), + ("skip_connection", "conv_shortcut"), + ] + + unet_conversion_map_layer = [] + for i in range(4): + # loop over downblocks/upblocks + + for j in range(2): + # loop over resnets/attentions for downblocks + hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." + sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." + unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) + + if i < 3: + # no attention layers in down_blocks.3 + hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." + sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." + unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) + + for j in range(3): + # loop over resnets/attentions for upblocks + hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." + sd_up_res_prefix = f"output_blocks.{3*i + j}.0." + unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) + + if i > 0: + # no attention layers in up_blocks.0 + hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." + sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." + unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) + + if i < 3: + # no downsample in down_blocks.3 + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." + sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." + unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) + + # no upsample in up_blocks.3 + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." + unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) + + hf_mid_atn_prefix = "mid_block.attentions.0." + sd_mid_atn_prefix = "middle_block.1." + unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) + + for j in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{j}." + sd_mid_res_prefix = f"middle_block.{2*j}." + unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) + + # buyer beware: this is a *brittle* function, + # and correct output requires that all of these pieces interact in + # the exact order in which I have arranged them. + mapping = {k: k for k in unet_state_dict.keys()} + for sd_name, hf_name in unet_conversion_map: + mapping[hf_name] = sd_name + for k, v in mapping.items(): + if "resnets" in k: + for sd_part, hf_part in unet_conversion_map_resnet: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + for sd_part, hf_part in unet_conversion_map_layer: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} + return new_state_dict + +# endregion + + +def load_checkpoint_with_conversion(ckpt_path): + # text encoderの格納形式が違うモデルに対応する ('text_model'がない) + TEXT_ENCODER_KEY_REPLACEMENTS = [ + ('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'), + ('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'), + ('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.') + ] + + checkpoint = torch.load(ckpt_path, map_location="cpu") + state_dict = checkpoint["state_dict"] + + key_reps = [] + for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: + for key in state_dict.keys(): + if key.startswith(rep_from): + new_key = rep_to + key[len(rep_from):] + key_reps.append((key, new_key)) + + for key, new_key in key_reps: + state_dict[new_key] = state_dict[key] + del state_dict[key] + + return checkpoint + + +def load_models_from_stable_diffusion_checkpoint(ckpt_path): + checkpoint = load_checkpoint_with_conversion(ckpt_path) + state_dict = checkpoint["state_dict"] + + # Convert the UNet2DConditionModel model. + unet_config = create_unet_diffusers_config() + converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config) + + unet = UNet2DConditionModel(**unet_config) + unet.load_state_dict(converted_unet_checkpoint) + + # Convert the VAE model. + vae_config = create_vae_diffusers_config() + converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config) + + vae = AutoencoderKL(**vae_config) + vae.load_state_dict(converted_vae_checkpoint) + + # convert text_model + text_model = convert_ldm_clip_checkpoint(state_dict) + + return text_model, vae, unet + + +def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path, epochs, steps): + # VAEがメモリ上にないので、もう一度VAEを含めて読み込む + checkpoint = load_checkpoint_with_conversion(ckpt_path) + state_dict = checkpoint["state_dict"] + + # Convert the UNet model + unet_state_dict = convert_unet_state_dict(unet.state_dict()) + for k, v in unet_state_dict.items(): + key = "model.diffusion_model." + k + assert key in state_dict, f"Illegal key in save SD: {key}" + state_dict[key] = v + + # Convert the text encoder model + text_enc_dict = text_encoder.state_dict() # 変換不要 + for k, v in text_enc_dict.items(): + key = "cond_stage_model.transformer." + k + assert key in state_dict, f"Illegal key in save SD: {key}" + state_dict[key] = v + + # Put together new checkpoint + new_ckpt = {'state_dict': state_dict} + + if 'epoch' in checkpoint: + epochs += checkpoint['epoch'] + if 'global_step' in checkpoint: + steps += checkpoint['global_step'] + + new_ckpt['epoch'] = epochs + new_ckpt['global_step'] = steps + + torch.save(new_ckpt, output_file) +# endregion + + +def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64): + max_width, max_height = max_reso + max_area = (max_width // divisible) * (max_height // divisible) + + resos = set() + + size = int(math.sqrt(max_area)) * divisible + resos.add((size, size)) + + size = min_size + while size <= max_size: + width = size + height = min(max_size, (max_area // (width // divisible)) * divisible) + resos.add((width, height)) + resos.add((height, width)) + + # # make additional resos + # if width >= height and width - divisible >= min_size: + # resos.add((width - divisible, height)) + # resos.add((height, width - divisible)) + # if height >= width and height - divisible >= min_size: + # resos.add((width, height - divisible)) + # resos.add((height - divisible, width)) + + size += divisible + + resos = list(resos) + resos.sort() + + aspect_ratios = [w / h for w, h in resos] + return resos, aspect_ratios + + +if __name__ == '__main__': + resos, aspect_ratios = make_bucket_resolutions((512, 768)) + print(len(resos)) + print(resos) + print(aspect_ratios) + + ars = set() + for ar in aspect_ratios: + if ar in ars: + print("error! duplicate ar:", ar) + ars.add(ar) diff --git a/diffusers_fine_tuning/fine_tuning_utils_ber.py b/diffusers_fine_tuning/fine_tuning_utils_ber.py new file mode 100644 index 0000000..ef51847 --- /dev/null +++ b/diffusers_fine_tuning/fine_tuning_utils_ber.py @@ -0,0 +1,771 @@ +import math +import torch +from transformers import CLIPTextModel +from diffusers import AutoencoderKL, UNet2DConditionModel + +# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う +TOKENIZER_PATH = "openai/clip-vit-large-patch14" + +# StableDiffusionのモデルパラメータ +NUM_TRAIN_TIMESTEPS = 1000 +BETA_START = 0.00085 +BETA_END = 0.0120 + +UNET_PARAMS_MODEL_CHANNELS = 320 +UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] +UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] +UNET_PARAMS_IMAGE_SIZE = 32 # unused +UNET_PARAMS_IN_CHANNELS = 4 +UNET_PARAMS_OUT_CHANNELS = 4 +UNET_PARAMS_NUM_RES_BLOCKS = 2 +UNET_PARAMS_CONTEXT_DIM = 768 +UNET_PARAMS_NUM_HEADS = 8 + +VAE_PARAMS_Z_CHANNELS = 4 +VAE_PARAMS_RESOLUTION = 256 +VAE_PARAMS_IN_CHANNELS = 3 +VAE_PARAMS_OUT_CH = 3 +VAE_PARAMS_CH = 128 +VAE_PARAMS_CH_MULT = [1, 2, 4, 4] +VAE_PARAMS_NUM_RES_BLOCKS = 2 + + +# region conversion +# checkpoint変換など ############################### + +# region StableDiffusion->Diffusersの変換コード +# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) + +def shave_segments(path, n_shave_prefix_segments=1): + """ + Removes segments. Positive values shave the first segments, negative shave the last segments. + """ + if n_shave_prefix_segments >= 0: + return ".".join(path.split(".")[n_shave_prefix_segments:]) + else: + return ".".join(path.split(".")[:n_shave_prefix_segments]) + + +def renew_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item.replace("in_layers.0", "norm1") + new_item = new_item.replace("in_layers.2", "conv1") + + new_item = new_item.replace("out_layers.0", "norm2") + new_item = new_item.replace("out_layers.3", "conv2") + + new_item = new_item.replace("emb_layers.1", "time_emb_proj") + new_item = new_item.replace("skip_connection", "conv_shortcut") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("nin_shortcut", "conv_shortcut") + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + # new_item = new_item.replace('norm.weight', 'group_norm.weight') + # new_item = new_item.replace('norm.bias', 'group_norm.bias') + + # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') + # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') + + # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("norm.weight", "group_norm.weight") + new_item = new_item.replace("norm.bias", "group_norm.bias") + + new_item = new_item.replace("q.weight", "query.weight") + new_item = new_item.replace("q.bias", "query.bias") + + new_item = new_item.replace("k.weight", "key.weight") + new_item = new_item.replace("k.bias", "key.bias") + + new_item = new_item.replace("v.weight", "value.weight") + new_item = new_item.replace("v.bias", "value.bias") + + new_item = new_item.replace("proj_out.weight", "proj_attn.weight") + new_item = new_item.replace("proj_out.bias", "proj_attn.bias") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def assign_to_checkpoint( + paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None +): + """ + This does the final conversion step: take locally converted weights and apply a global renaming + to them. It splits attention layers, and takes into account additional replacements + that may arise. + + Assigns the weights to the new checkpoint. + """ + assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." + + # Splits the attention layers into three variables. + if attention_paths_to_split is not None: + for path, path_map in attention_paths_to_split.items(): + old_tensor = old_checkpoint[path] + channels = old_tensor.shape[0] // 3 + + target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) + + num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 + + old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) + query, key, value = old_tensor.split(channels // num_heads, dim=1) + + checkpoint[path_map["query"]] = query.reshape(target_shape) + checkpoint[path_map["key"]] = key.reshape(target_shape) + checkpoint[path_map["value"]] = value.reshape(target_shape) + + for path in paths: + new_path = path["new"] + + # These have already been assigned + if attention_paths_to_split is not None and new_path in attention_paths_to_split: + continue + + # Global renaming happens here + new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") + new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") + new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") + + if additional_replacements is not None: + for replacement in additional_replacements: + new_path = new_path.replace(replacement["old"], replacement["new"]) + + # proj_attn.weight has to be converted from conv 1D to linear + if "proj_attn.weight" in new_path: + checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] + else: + checkpoint[new_path] = old_checkpoint[path["old"]] + + +def conv_attn_to_linear(checkpoint): + keys = list(checkpoint.keys()) + attn_keys = ["query.weight", "key.weight", "value.weight"] + for key in keys: + if ".".join(key.split(".")[-2:]) in attn_keys: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0, 0] + elif "proj_attn.weight" in key: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0] + + +def convert_ldm_unet_checkpoint(checkpoint, config): + """ + Takes a state dict and a config, and returns a converted checkpoint. + """ + + # extract state_dict for UNet + unet_state_dict = {} + unet_key = "model.diffusion_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(unet_key): + unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) + + new_checkpoint = {} + + new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] + new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] + new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] + new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] + + new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] + new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] + + new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] + new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] + new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] + new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] + + # Retrieves the keys for the input blocks only + num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) + input_blocks = { + layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] + for layer_id in range(num_input_blocks) + } + + # Retrieves the keys for the middle blocks only + num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) + middle_blocks = { + layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] + for layer_id in range(num_middle_blocks) + } + + # Retrieves the keys for the output blocks only + num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) + output_blocks = { + layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] + for layer_id in range(num_output_blocks) + } + + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config["layers_per_block"] + 1) + layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) + + resnets = [ + key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key + ] + attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] + + if f"input_blocks.{i}.0.op.weight" in unet_state_dict: + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.weight" + ) + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.bias" + ) + + paths = renew_resnet_paths(resnets) + meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + resnet_0 = middle_blocks[0] + attentions = middle_blocks[1] + resnet_1 = middle_blocks[2] + + resnet_0_paths = renew_resnet_paths(resnet_0) + assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) + + resnet_1_paths = renew_resnet_paths(resnet_1) + assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) + + attentions_paths = renew_attention_paths(attentions) + meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} + assign_to_checkpoint( + attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + for i in range(num_output_blocks): + block_id = i // (config["layers_per_block"] + 1) + layer_in_block_id = i % (config["layers_per_block"] + 1) + output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] + output_block_list = {} + + for layer in output_block_layers: + layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) + if layer_id in output_block_list: + output_block_list[layer_id].append(layer_name) + else: + output_block_list[layer_id] = [layer_name] + + if len(output_block_list) > 1: + resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] + attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] + + resnet_0_paths = renew_resnet_paths(resnets) + paths = renew_resnet_paths(resnets) + + meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if ["conv.weight", "conv.bias"] in output_block_list.values(): + index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.weight" + ] + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.bias" + ] + + # Clear attentions as they have been attributed above. + if len(attentions) == 2: + attentions = [] + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = { + "old": f"output_blocks.{i}.1", + "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + else: + resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) + for path in resnet_0_paths: + old_path = ".".join(["output_blocks", str(i), path["old"]]) + new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) + + new_checkpoint[new_path] = unet_state_dict[old_path] + + return new_checkpoint + + +def convert_ldm_vae_checkpoint(checkpoint, config): + # extract state dict for VAE + vae_state_dict = {} + vae_key = "first_stage_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(vae_key): + vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) + + new_checkpoint = {} + + new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] + new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] + new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] + new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] + new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] + new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] + + new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] + new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] + new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] + new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] + new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] + new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] + + new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] + new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] + new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] + new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] + + # Retrieves the keys for the encoder down blocks only + num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) + down_blocks = { + layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) + } + + # Retrieves the keys for the decoder up blocks only + num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) + up_blocks = { + layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) + } + + for i in range(num_down_blocks): + resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] + + if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.weight" + ) + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.bias" + ) + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + + for i in range(num_up_blocks): + block_id = num_up_blocks - 1 - i + resnets = [ + key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key + ] + + if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.weight" + ] + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.bias" + ] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + return new_checkpoint + + +def create_unet_diffusers_config(): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + # unet_params = original_config.model.params.unet_config.params + + block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] + + down_block_types = [] + resolution = 1 + for i in range(len(block_out_channels)): + block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" + down_block_types.append(block_type) + if i != len(block_out_channels) - 1: + resolution *= 2 + + up_block_types = [] + for i in range(len(block_out_channels)): + block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" + up_block_types.append(block_type) + resolution //= 2 + + config = dict( + sample_size=UNET_PARAMS_IMAGE_SIZE, + in_channels=UNET_PARAMS_IN_CHANNELS, + out_channels=UNET_PARAMS_OUT_CHANNELS, + down_block_types=tuple(down_block_types), + up_block_types=tuple(up_block_types), + block_out_channels=tuple(block_out_channels), + layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, + cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, + attention_head_dim=UNET_PARAMS_NUM_HEADS, + ) + + return config + + +def create_vae_diffusers_config(): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + # vae_params = original_config.model.params.first_stage_config.params.ddconfig + # _ = original_config.model.params.first_stage_config.params.embed_dim + block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] + down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) + up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) + + config = dict( + sample_size=VAE_PARAMS_RESOLUTION, + in_channels=VAE_PARAMS_IN_CHANNELS, + out_channels=VAE_PARAMS_OUT_CH, + down_block_types=tuple(down_block_types), + up_block_types=tuple(up_block_types), + block_out_channels=tuple(block_out_channels), + latent_channels=VAE_PARAMS_Z_CHANNELS, + layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, + ) + return config + + +def convert_ldm_clip_checkpoint(checkpoint): + text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") + + keys = list(checkpoint.keys()) + + text_model_dict = {} + + for key in keys: + if key.startswith("cond_stage_model.transformer"): + text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] + + text_model.load_state_dict(text_model_dict) + + return text_model + +# endregion + + +# region Diffusers->StableDiffusion の変換コード +# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) + +def convert_unet_state_dict(unet_state_dict): + unet_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), + ] + + unet_conversion_map_resnet = [ + # (stable-diffusion, HF Diffusers) + ("in_layers.0", "norm1"), + ("in_layers.2", "conv1"), + ("out_layers.0", "norm2"), + ("out_layers.3", "conv2"), + ("emb_layers.1", "time_emb_proj"), + ("skip_connection", "conv_shortcut"), + ] + + unet_conversion_map_layer = [] + for i in range(4): + # loop over downblocks/upblocks + + for j in range(2): + # loop over resnets/attentions for downblocks + hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." + sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." + unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) + + if i < 3: + # no attention layers in down_blocks.3 + hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." + sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." + unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) + + for j in range(3): + # loop over resnets/attentions for upblocks + hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." + sd_up_res_prefix = f"output_blocks.{3*i + j}.0." + unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) + + if i > 0: + # no attention layers in up_blocks.0 + hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." + sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." + unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) + + if i < 3: + # no downsample in down_blocks.3 + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." + sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." + unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) + + # no upsample in up_blocks.3 + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." + unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) + + hf_mid_atn_prefix = "mid_block.attentions.0." + sd_mid_atn_prefix = "middle_block.1." + unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) + + for j in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{j}." + sd_mid_res_prefix = f"middle_block.{2*j}." + unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) + + # buyer beware: this is a *brittle* function, + # and correct output requires that all of these pieces interact in + # the exact order in which I have arranged them. + mapping = {k: k for k in unet_state_dict.keys()} + for sd_name, hf_name in unet_conversion_map: + mapping[hf_name] = sd_name + for k, v in mapping.items(): + if "resnets" in k: + for sd_part, hf_part in unet_conversion_map_resnet: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + for sd_part, hf_part in unet_conversion_map_layer: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} + return new_state_dict + +# endregion + + +def load_checkpoint_with_conversion(ckpt_path): + # text encoderの格納形式が違うモデルに対応する ('text_model'がない) + TEXT_ENCODER_KEY_REPLACEMENTS = [ + ('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'), + ('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'), + ('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.') + ] + + checkpoint = torch.load(ckpt_path, map_location="cpu") + state_dict = checkpoint["state_dict"] + + key_reps = [] + for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: + for key in state_dict.keys(): + if key.startswith(rep_from): + new_key = rep_to + key[len(rep_from):] + key_reps.append((key, new_key)) + + for key, new_key in key_reps: + state_dict[new_key] = state_dict[key] + del state_dict[key] + + return checkpoint + + +def load_models_from_stable_diffusion_checkpoint(ckpt_path): + checkpoint = load_checkpoint_with_conversion(ckpt_path) + state_dict = checkpoint["state_dict"] + + # Convert the UNet2DConditionModel model. + unet_config = create_unet_diffusers_config() + converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config) + + unet = UNet2DConditionModel(**unet_config) + unet.load_state_dict(converted_unet_checkpoint) + + # Convert the VAE model. + vae_config = create_vae_diffusers_config() + converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config) + + vae = AutoencoderKL(**vae_config) + vae.load_state_dict(converted_vae_checkpoint) + + # convert text_model + text_model = convert_ldm_clip_checkpoint(state_dict) + + return text_model, vae, unet + + +def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path, epochs, steps): + # VAEがメモリ上にないので、もう一度VAEを含めて読み込む + checkpoint = load_checkpoint_with_conversion(ckpt_path) + state_dict = checkpoint["state_dict"] + + # Convert the UNet model + unet_state_dict = convert_unet_state_dict(unet.state_dict()) + for k, v in unet_state_dict.items(): + key = "model.diffusion_model." + k + assert key in state_dict, f"Illegal key in save SD: {key}" + # if args.save_half: + # state_dict[key] = v.half() # save to fp16 + # else: + # state_dict[key] = v + state_dict[key] = v.half() # save to fp16 + + # Convert the text encoder model + text_enc_dict = text_encoder.state_dict() # 変換不要 + for k, v in text_enc_dict.items(): + key = "cond_stage_model.transformer." + k + assert key in state_dict, f"Illegal key in save SD: {key}" + # if args.save_half: + # state_dict[key] = v.half() # save to fp16 + # else: + # state_dict[key] = v + state_dict[key] = v.half() # save to fp16 + + # Put together new checkpoint + new_ckpt = {'state_dict': state_dict} + + if 'epoch' in checkpoint: + epochs += checkpoint['epoch'] + if 'global_step' in checkpoint: + steps += checkpoint['global_step'] + + new_ckpt['epoch'] = epochs + new_ckpt['global_step'] = steps + + torch.save(new_ckpt, output_file) +# endregion + + +def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64): + max_width, max_height = max_reso + max_area = (max_width // divisible) * (max_height // divisible) + + resos = set() + + size = int(math.sqrt(max_area)) * divisible + resos.add((size, size)) + + size = min_size + while size <= max_size: + width = size + height = min(max_size, (max_area // (width // divisible)) * divisible) + resos.add((width, height)) + resos.add((height, width)) + + # # make additional resos + # if width >= height and width - divisible >= min_size: + # resos.add((width - divisible, height)) + # resos.add((height, width - divisible)) + # if height >= width and height - divisible >= min_size: + # resos.add((width, height - divisible)) + # resos.add((height - divisible, width)) + + size += divisible + + resos = list(resos) + resos.sort() + + aspect_ratios = [w / h for w, h in resos] + return resos, aspect_ratios + + +if __name__ == '__main__': + resos, aspect_ratios = make_bucket_resolutions((512, 768)) + print(len(resos)) + print(resos) + print(aspect_ratios) + + ars = set() + for ar in aspect_ratios: + if ar in ars: + print("error! duplicate ar:", ar) + ars.add(ar) diff --git a/diffusers_fine_tuning/hypernetwork_nai.py b/diffusers_fine_tuning/hypernetwork_nai.py new file mode 100644 index 0000000..dcaaa71 --- /dev/null +++ b/diffusers_fine_tuning/hypernetwork_nai.py @@ -0,0 +1,96 @@ +# NAI compatible + +import torch + + +class HypernetworkModule(torch.nn.Module): + def __init__(self, dim, multiplier=1.0): + super().__init__() + + linear1 = torch.nn.Linear(dim, dim * 2) + linear2 = torch.nn.Linear(dim * 2, dim) + linear1.weight.data.normal_(mean=0.0, std=0.01) + linear1.bias.data.zero_() + linear2.weight.data.normal_(mean=0.0, std=0.01) + linear2.bias.data.zero_() + linears = [linear1, linear2] + + self.linear = torch.nn.Sequential(*linears) + self.multiplier = multiplier + + def forward(self, x): + return x + self.linear(x) * self.multiplier + + +class Hypernetwork(torch.nn.Module): + enable_sizes = [320, 640, 768, 1280] + # return self.modules[Hypernetwork.enable_sizes.index(size)] + + def __init__(self, multiplier=1.0) -> None: + super().__init__() + self.modules = [] + for size in Hypernetwork.enable_sizes: + self.modules.append((HypernetworkModule(size, multiplier), HypernetworkModule(size, multiplier))) + self.register_module(f"{size}_0", self.modules[-1][0]) + self.register_module(f"{size}_1", self.modules[-1][1]) + + def apply_to_stable_diffusion(self, text_encoder, vae, unet): + blocks = unet.input_blocks + [unet.middle_block] + unet.output_blocks + for block in blocks: + for subblk in block: + if 'SpatialTransformer' in str(type(subblk)): + for tf_block in subblk.transformer_blocks: + for attn in [tf_block.attn1, tf_block.attn2]: + size = attn.context_dim + if size in Hypernetwork.enable_sizes: + attn.hypernetwork = self + else: + attn.hypernetwork = None + + def apply_to_diffusers(self, text_encoder, vae, unet): + blocks = unet.down_blocks + [unet.mid_block] + unet.up_blocks + for block in blocks: + if hasattr(block, 'attentions'): + for subblk in block.attentions: + if 'SpatialTransformer' in str(type(subblk)) or 'Transformer2DModel' in str(type(subblk)): # 0.6.0 and 0.7~ + for tf_block in subblk.transformer_blocks: + for attn in [tf_block.attn1, tf_block.attn2]: + size = attn.to_k.in_features + if size in Hypernetwork.enable_sizes: + attn.hypernetwork = self + else: + attn.hypernetwork = None + return True # TODO error checking + + def forward(self, x, context): + size = context.shape[-1] + assert size in Hypernetwork.enable_sizes + module = self.modules[Hypernetwork.enable_sizes.index(size)] + return module[0].forward(context), module[1].forward(context) + + def load_from_state_dict(self, state_dict): + # old ver to new ver + changes = { + 'linear1.bias': 'linear.0.bias', + 'linear1.weight': 'linear.0.weight', + 'linear2.bias': 'linear.1.bias', + 'linear2.weight': 'linear.1.weight', + } + for key_from, key_to in changes.items(): + if key_from in state_dict: + state_dict[key_to] = state_dict[key_from] + del state_dict[key_from] + + for size, sd in state_dict.items(): + if type(size) == int: + self.modules[Hypernetwork.enable_sizes.index(size)][0].load_state_dict(sd[0], strict=True) + self.modules[Hypernetwork.enable_sizes.index(size)][1].load_state_dict(sd[1], strict=True) + return True + + def get_state_dict(self): + state_dict = {} + for i, size in enumerate(Hypernetwork.enable_sizes): + sd0 = self.modules[i][0].state_dict() + sd1 = self.modules[i][1].state_dict() + state_dict[size] = [sd0, sd1] + return state_dict diff --git a/diffusers_fine_tuning/make_captions.py b/diffusers_fine_tuning/make_captions.py new file mode 100644 index 0000000..d3e42fd --- /dev/null +++ b/diffusers_fine_tuning/make_captions.py @@ -0,0 +1,90 @@ +# このスクリプトのライセンスは、Apache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +import argparse +import glob +import os +import json + +from PIL import Image +from tqdm import tqdm +import numpy as np +import torch +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode +from models.blip import blip_decoder +# from Salesforce_BLIP.models.blip import blip_decoder + +DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + + +def main(args): + image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png")) + print(f"found {len(image_paths)} images.") + + print(f"loading BLIP caption: {args.caption_weights}") + image_size = 384 + model = blip_decoder(pretrained=args.caption_weights, image_size=image_size, vit='large') + model.eval() + model = model.to(DEVICE) + print("BLIP loaded") + + # 正方形でいいのか? という気がするがソースがそうなので + transform = transforms.Compose([ + transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor(), + transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) + ]) + + # captioningする + def run_batch(path_imgs): + imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE) + + with torch.no_grad(): + if args.beam_search: + captions = model.generate(imgs, sample=False, num_beams=args.num_beams, + max_length=args.max_length, min_length=args.min_length) + else: + captions = model.generate(imgs, sample=True, top_p=args.top_p, max_length=args.max_length, min_length=args.min_length) + + for (image_path, _), caption in zip(path_imgs, captions): + with open(os.path.splitext(image_path)[0] + args.caption_extention, "wt", encoding='utf-8') as f: + f.write(caption + "\n") + if args.debug: + print(image_path, caption) + + b_imgs = [] + for image_path in tqdm(image_paths): + raw_image = Image.open(image_path) + if raw_image.mode != "RGB": + print(f"convert image mode {raw_image.mode} to RGB: {image_path}") + raw_image = raw_image.convert("RGB") + + image = transform(raw_image) + b_imgs.append((image_path, image)) + if len(b_imgs) >= args.batch_size: + run_batch(b_imgs) + b_imgs.clear() + if len(b_imgs) > 0: + run_batch(b_imgs) + + print("done!") + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("caption_weights", type=str, + help="BLIP caption weights (model_large_caption.pth) / BLIP captionの重みファイル(model_large_caption.pth)") + parser.add_argument("--caption_extention", type=str, default=".caption", help="extention of caption file / 出力されるキャプションファイルの拡張子") + parser.add_argument("--beam_search", action="store_true", + help="use beam search (default Nucleus sampling) / beam searchを使う(このオプション未指定時はNucleus sampling)") + parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") + parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数(多いと精度が上がるが時間がかかる)") + parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p") + parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長") + parser.add_argument("--min_length", type=int, default=5, help="min length of caption / captionの最小長") + parser.add_argument("--debug", action="store_true", help="debug mode") + + args = parser.parse_args() + main(args) diff --git a/diffusers_fine_tuning/merge_captions_to_metadata.py b/diffusers_fine_tuning/merge_captions_to_metadata.py new file mode 100644 index 0000000..cfc97e1 --- /dev/null +++ b/diffusers_fine_tuning/merge_captions_to_metadata.py @@ -0,0 +1,61 @@ +# このスクリプトのライセンスは、Apache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +import argparse +import glob +import os +import json + +from tqdm import tqdm + + +def main(args): + image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png")) + print(f"found {len(image_paths)} images.") + + if args.in_json is not None: + print(f"loading existing metadata: {args.in_json}") + with open(args.in_json, "rt", encoding='utf-8') as f: + metadata = json.load(f) + print("captions for existing images will be overwritten / 既存の画像のキャプションは上書きされます") + else: + print("new metadata will be created / 新しいメタデータファイルが作成されます") + metadata = {} + + print("merge caption texts to metadata json.") + for image_path in tqdm(image_paths): + caption_path = os.path.splitext(image_path)[0] + args.caption_extention + with open(caption_path, "rt", encoding='utf-8') as f: + caption = f.readlines()[0].strip() + + image_key = os.path.splitext(os.path.basename(image_path))[0] + if image_key not in metadata: + # if args.verify_caption: + # print(f"image not in metadata / メタデータに画像がありません: {image_path}") + # return + metadata[image_key] = {} + # elif args.verify_caption and 'caption' not in metadata[image_key]: + # print(f"no caption in metadata / メタデータにcaptionがありません: {image_path}") + # return + + metadata[image_key]['caption'] = caption + if args.debug: + print(image_key, caption) + + # metadataを書き出して終わり + print(f"writing metadata: {args.out_json}") + with open(args.out_json, "wt", encoding='utf-8') as f: + json.dump(metadata, f, indent=2) + print("done!") + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") + parser.add_argument("--in_json", type=str, help="metadata file to input / 読み込むメタデータファイル") + parser.add_argument("--caption_extention", type=str, default=".caption", help="extention of caption file / 読み込むキャプションファイルの拡張子") + parser.add_argument("--debug", action="store_true", help="debug mode") + + args = parser.parse_args() + main(args) diff --git a/diffusers_fine_tuning/merge_dd_tags_to_metadata.py b/diffusers_fine_tuning/merge_dd_tags_to_metadata.py new file mode 100644 index 0000000..6436e6a --- /dev/null +++ b/diffusers_fine_tuning/merge_dd_tags_to_metadata.py @@ -0,0 +1,61 @@ +# このスクリプトのライセンスは、Apache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +import argparse +import glob +import os +import json + +from tqdm import tqdm + + +def main(args): + image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png")) + print(f"found {len(image_paths)} images.") + + if args.in_json is not None: + print(f"loading existing metadata: {args.in_json}") + with open(args.in_json, "rt", encoding='utf-8') as f: + metadata = json.load(f) + print("tags data for existing images will be overwritten / 既存の画像のタグは上書きされます") + else: + print("new metadata will be created / 新しいメタデータファイルが作成されます") + metadata = {} + + print("merge tags to metadata json.") + for image_path in tqdm(image_paths): + tags_path = os.path.splitext(image_path)[0] + '.txt' + with open(tags_path, "rt", encoding='utf-8') as f: + tags = f.readlines()[0].strip() + + image_key = os.path.splitext(os.path.basename(image_path))[0] + if image_key not in metadata: + # if args.verify_caption: + # print(f"image not in metadata / メタデータに画像がありません: {image_path}") + # return + metadata[image_key] = {} + # elif args.verify_caption and 'caption' not in metadata[image_key]: + # print(f"no caption in metadata / メタデータにcaptionがありません: {image_path}") + # return + + metadata[image_key]['tags'] = tags + if args.debug: + print(image_key, tags) + + # metadataを書き出して終わり + print(f"writing metadata: {args.out_json}") + with open(args.out_json, "wt", encoding='utf-8') as f: + json.dump(metadata, f, indent=2) + print("done!") + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") + parser.add_argument("--in_json", type=str, help="metadata file to input / 読み込むメタデータファイル") + # parser.add_argument("--verify_caption", action="store_true", help="verify caption exists / メタデータにすでにcaptionが存在することを確認する") + parser.add_argument("--debug", action="store_true", help="debug mode") + + args = parser.parse_args() + main(args) diff --git a/diffusers_fine_tuning/prepare_buckets_latents.py b/diffusers_fine_tuning/prepare_buckets_latents.py new file mode 100644 index 0000000..864205a --- /dev/null +++ b/diffusers_fine_tuning/prepare_buckets_latents.py @@ -0,0 +1,172 @@ +# このスクリプトのライセンスは、Apache License 2.0とします +# (c) 2022 Kohya S. @kohya_ss + +import argparse +import glob +import os +import json + +from tqdm import tqdm +import numpy as np +from diffusers import AutoencoderKL +from PIL import Image +import cv2 +import torch +from torchvision import transforms + +import fine_tuning_utils + +DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + +IMAGE_TRANSFORMS = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] +) + + +def get_latents(vae, images, weight_dtype): + img_tensors = [IMAGE_TRANSFORMS(image) for image in images] + img_tensors = torch.stack(img_tensors) + img_tensors = img_tensors.to(DEVICE, weight_dtype) + with torch.no_grad(): + latents = vae.encode(img_tensors).latent_dist.sample().float().to("cpu").numpy() + return latents + + +def main(args): + image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png")) + print(f"found {len(image_paths)} images.") + + if os.path.exists(args.in_json): + print(f"loading existing metadata: {args.in_json}") + with open(args.in_json, "rt", encoding='utf-8') as f: + metadata = json.load(f) + else: + print(f"no metadata / メタデータファイルがありません: {args.in_json}") + return + + # モデル形式のオプション設定を確認する + use_stable_diffusion_format = os.path.isfile(args.model_name_or_path) + if not use_stable_diffusion_format: + assert os.path.exists(args.model_name_or_path), f"no model / モデルがありません : {args.model_name_or_path}" + + # モデルを読み込む + if use_stable_diffusion_format: + print("load StableDiffusion checkpoint") + _, vae, _ = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.model_name_or_path) + else: + print("load Diffusers pretrained models") + vae = AutoencoderKL.from_pretrained(args.model_name_or_path, subfolder="vae") + + weight_dtype = torch.float32 + if args.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif args.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + vae.eval() + vae.to(DEVICE, dtype=weight_dtype) + + # bucketのサイズを計算する + max_reso = tuple([int(t) for t in args.max_resolution.split(',')]) + assert len(max_reso) == 2, f"illegal resolution (not 'width,height') / 画像サイズに誤りがあります。'幅,高さ'で指定してください: {args.max_resolution}" + + bucket_resos, bucket_aspect_ratios = fine_tuning_utils.make_bucket_resolutions(max_reso) + + # 画像をひとつずつ適切なbucketに割り当てながらlatentを計算する + bucket_aspect_ratios = np.array(bucket_aspect_ratios) + buckets_imgs = [[] for _ in range(len(bucket_resos))] + bucket_counts = [0 for _ in range(len(bucket_resos))] + img_ar_errors = [] + for i, image_path in enumerate(tqdm(image_paths)): + image_key = os.path.splitext(os.path.basename(image_path))[0] + if image_key not in metadata: + metadata[image_key] = {} + + image = Image.open(image_path) + if image.mode != 'RGB': + image = image.convert("RGB") + + aspect_ratio = image.width / image.height + ar_errors = bucket_aspect_ratios - aspect_ratio + bucket_id = np.abs(ar_errors).argmin() + reso = bucket_resos[bucket_id] + ar_error = ar_errors[bucket_id] + img_ar_errors.append(abs(ar_error)) + + # どのサイズにリサイズするか→トリミングする方向で + if ar_error <= 0: # 横が長い→縦を合わせる + scale = reso[1] / image.height + else: + scale = reso[0] / image.width + + resized_size = (int(image.width * scale + .5), int(image.height * scale + .5)) + + # print(image.width, image.height, bucket_id, bucket_resos[bucket_id], ar_errors[bucket_id], resized_size, + # bucket_resos[bucket_id][0] - resized_size[0], bucket_resos[bucket_id][1] - resized_size[1]) + + assert resized_size[0] == reso[0] or resized_size[1] == reso[ + 1], f"internal error, resized size not match: {reso}, {resized_size}, {image.width}, {image.height}" + assert resized_size[0] >= reso[0] and resized_size[1] >= reso[ + 1], f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}" + + # 画像をリサイズしてトリミングする + # PILにinter_areaがないのでcv2で…… + image = np.array(image) + image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA) + if resized_size[0] > reso[0]: + trim_size = resized_size[0] - reso[0] + image = image[:, trim_size//2:trim_size//2 + reso[0]] + elif resized_size[1] > reso[1]: + trim_size = resized_size[1] - reso[1] + image = image[trim_size//2:trim_size//2 + reso[1]] + assert image.shape[0] == reso[1] and image.shape[1] == reso[0], f"internal error, illegal trimmed size: {image.shape}, {reso}" + + # # debug + # cv2.imwrite(f"r:\\test\\img_{i:05d}.jpg", image[:, :, ::-1]) + + # バッチへ追加 + buckets_imgs[bucket_id].append((image_key, reso, image)) + bucket_counts[bucket_id] += 1 + metadata[image_key]['train_resolution'] = reso + + # バッチを推論するか判定して推論する + is_last = i == len(image_paths) - 1 + for j in range(len(buckets_imgs)): + bucket = buckets_imgs[j] + if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size: + latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype) + + for (image_key, reso, _), latent in zip(bucket, latents): + np.savez(os.path.join(args.train_data_dir, image_key), latent) + + bucket.clear() + + for i, (reso, count) in enumerate(zip(bucket_resos, bucket_counts)): + print(f"bucket {i} {reso}: {count}") + img_ar_errors = np.array(img_ar_errors) + print(f"mean ar error: {np.mean(img_ar_errors)}") + + # metadataを書き出して終わり + print(f"writing metadata: {args.out_json}") + with open(args.out_json, "wt", encoding='utf-8') as f: + json.dump(metadata, f, indent=2) + print("done!") + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") + parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル") + parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") + parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル") + parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") + parser.add_argument("--max_resolution", type=str, default="512,512", + help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)") + parser.add_argument("--mixed_precision", type=str, default="no", + choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") + + args = parser.parse_args() + main(args) diff --git a/diffusers_fine_tuning/requirements.txt b/diffusers_fine_tuning/requirements.txt new file mode 100644 index 0000000..a4e603c --- /dev/null +++ b/diffusers_fine_tuning/requirements.txt @@ -0,0 +1,6 @@ +transformers>=4.21.0 +ftfy +albumentations +opencv-python +einops +pytorch_lightning diff --git a/train_db_fixed_v7-ber.py b/train_db_fixed-ber.py similarity index 99% rename from train_db_fixed_v7-ber.py rename to train_db_fixed-ber.py index a37c204..3b9536d 100644 --- a/train_db_fixed_v7-ber.py +++ b/train_db_fixed-ber.py @@ -3,6 +3,7 @@ # v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images, # enable reg images in fine-tuning, add dataset_repeats option +# v8: supports Diffusers 0.7.2 from torch.autograd.function import Function import argparse @@ -1555,7 +1556,14 @@ def replace_unet_cross_attn_to_xformers(): out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる out = rearrange(out, 'b n h d -> b n (h d)', h=h) - return self.to_out(out) + # diffusers 0.6.0 + if type(self.to_out) is torch.nn.Sequential: + return self.to_out(out) + + # diffusers 0.7.0~ + out = self.to_out[0](out) + out = self.to_out[1](out) + return out diffusers.models.attention.CrossAttention.forward = forward_xformers # endregion diff --git a/train_db_fixed_v7.py b/train_db_fixed.py similarity index 99% rename from train_db_fixed_v7.py rename to train_db_fixed.py index b19b6ab..142e510 100644 --- a/train_db_fixed_v7.py +++ b/train_db_fixed.py @@ -1,8 +1,9 @@ # このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします # (c) 2022 Kohya S. @kohya_ss -# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images, +# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images, # enable reg images in fine-tuning, add dataset_repeats option +# v8: supports Diffusers 0.7.2 from torch.autograd.function import Function import argparse @@ -1522,7 +1523,15 @@ def replace_unet_cross_attn_to_memory_efficient(): out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) out = rearrange(out, 'b h n d -> b n (h d)') - return self.to_out(out) + + # diffusers 0.6.0 + if type(self.to_out) is torch.nn.Sequential: + return self.to_out(out) + + # diffusers 0.7.0~ + out = self.to_out[0](out) + out = self.to_out[1](out) + return out diffusers.models.attention.CrossAttention.forward = forward_flash_attn @@ -1549,7 +1558,15 @@ def replace_unet_cross_attn_to_xformers(): out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる out = rearrange(out, 'b n h d -> b n (h d)', h=h) - return self.to_out(out) + + # diffusers 0.6.0 + if type(self.to_out) is torch.nn.Sequential: + return self.to_out(out) + + # diffusers 0.7.0~ + out = self.to_out[0](out) + out = self.to_out[1](out) + return out diffusers.models.attention.CrossAttention.forward = forward_xformers # endregion diff --git a/train_db_fixed_v4.py b/train_db_fixed_v4.py deleted file mode 100644 index c0fc417..0000000 --- a/train_db_fixed_v4.py +++ /dev/null @@ -1,1538 +0,0 @@ -# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします -# (c) 2022 Kohya S. @kohya_ss - -from torch.autograd.function import Function -import argparse -import glob -import itertools -import math -import os -import random - -from tqdm import tqdm -import torch -from torchvision import transforms -from accelerate import Accelerator -from accelerate.utils import set_seed -from transformers import CLIPTextModel, CLIPTokenizer -import diffusers -from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel -import albumentations as albu -import numpy as np -from PIL import Image -import cv2 -from einops import rearrange -from torch import einsum - -# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う -TOKENIZER_PATH = "openai/clip-vit-large-patch14" - -# StableDiffusionのモデルパラメータ -NUM_TRAIN_TIMESTEPS = 1000 -BETA_START = 0.00085 -BETA_END = 0.0120 - -UNET_PARAMS_MODEL_CHANNELS = 320 -UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] -UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] -UNET_PARAMS_IMAGE_SIZE = 32 # unused -UNET_PARAMS_IN_CHANNELS = 4 -UNET_PARAMS_OUT_CHANNELS = 4 -UNET_PARAMS_NUM_RES_BLOCKS = 2 -UNET_PARAMS_CONTEXT_DIM = 768 -UNET_PARAMS_NUM_HEADS = 8 - -VAE_PARAMS_Z_CHANNELS = 4 -VAE_PARAMS_RESOLUTION = 256 -VAE_PARAMS_IN_CHANNELS = 3 -VAE_PARAMS_OUT_CH = 3 -VAE_PARAMS_CH = 128 -VAE_PARAMS_CH_MULT = [1, 2, 4, 4] -VAE_PARAMS_NUM_RES_BLOCKS = 2 - -# checkpointファイル名 -LAST_CHECKPOINT_NAME = "last.ckpt" -EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" - - -class DreamBoothOrFineTuningDataset(torch.utils.data.Dataset): - def __init__(self, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, flip_aug, color_aug, face_crop_aug_range, random_crop, shuffle_caption, debug_dataset) -> None: - super().__init__() - - self.fine_tuning = fine_tuning - self.train_img_path_captions = train_img_path_captions - self.reg_img_path_captions = reg_img_path_captions - self.tokenizer = tokenizer - self.width, self.height = resolution - self.size = min(self.width, self.height) # 短いほう - self.face_crop_aug_range = face_crop_aug_range - self.random_crop = random_crop - self.debug_dataset = debug_dataset - self.shuffle_caption = shuffle_caption - - # augmentation - flip_p = 0.5 if flip_aug else 0.0 - if color_aug: - # わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hue/saturationあたりを触る - self.aug = albu.Compose([ - albu.OneOf([ - # albu.RandomBrightnessContrast(0.05, 0.05, p=.2), - albu.HueSaturationValue(5, 8, 0, p=.2), - # albu.RGBShift(5, 5, 5, p=.1), - albu.RandomGamma((95, 105), p=.5), - ], p=.33), - albu.HorizontalFlip(p=flip_p) - ], p=1.) - elif flip_aug: - self.aug = albu.Compose([ - albu.HorizontalFlip(p=flip_p) - ], p=1.) - else: - self.aug = None - - if self.fine_tuning: - self._length = len(self.train_img_path_captions) - else: - # 学習データの倍として、奇数ならtrain - self._length = len(self.train_img_path_captions) * 2 - if self._length // 2 < len(self.reg_img_path_captions): - print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります") - - self.image_transforms = transforms.Compose( - [ - transforms.ToTensor(), - transforms.Normalize([0.5], [0.5]), - ] - ) - - def load_image(self, image_path): - image = Image.open(image_path) - if not image.mode == "RGB": - image = image.convert("RGB") - img = np.array(image, np.uint8) - - face_cx = face_cy = face_w = face_h = 0 - if self.face_crop_aug_range is not None: - tokens = os.path.splitext(os.path.basename(image_path))[0].split('_') - if len(tokens) >= 5: - face_cx = int(tokens[-4]) - face_cy = int(tokens[-3]) - face_w = int(tokens[-2]) - face_h = int(tokens[-1]) - - return img, face_cx, face_cy, face_w, face_h - - # いい感じに切り出す - def crop_target(self, image, face_cx, face_cy, face_w, face_h): - height, width = image.shape[0:2] - if height == self.height and width == self.width: - return image - - # 画像サイズはsizeより大きいのでリサイズする - face_size = max(face_w, face_h) - min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率) - min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ - max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ - if min_scale >= max_scale: # range指定がmin==max - scale = min_scale - else: - scale = random.uniform(min_scale, max_scale) - - nh = int(height * scale + .5) - nw = int(width * scale + .5) - assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}" - image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA) - face_cx = int(face_cx * scale + .5) - face_cy = int(face_cy * scale + .5) - height, width = nh, nw - - # 顔を中心として448*640とかへを切り出す - for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))): - p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置 - - if self.random_crop: - # 背景も含めるために顔を中心に置く確率を高めつつずらす - range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう - p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数 - else: - # すこしだけランダムに(わりと適当) - if face_size > self.size // 10 and face_size >= 40: - p1 = p1 + random.randint(-face_size // 20, +face_size // 20) - - p1 = max(0, min(p1, length - target_size)) - - if axis == 0: - image = image[p1:p1 + target_size, :] - else: - image = image[:, p1:p1 + target_size] - - return image - - def __len__(self): - return self._length - - def __getitem__(self, index_arg): - example = {} - - if self.fine_tuning or len(self.reg_img_path_captions) == 0: - index = index_arg - img_path_captions = self.train_img_path_captions - reg = False - else: - # 偶数ならtrain、奇数ならregを返す - if index_arg % 2 == 0: - img_path_captions = self.train_img_path_captions - reg = False - else: - img_path_captions = self.reg_img_path_captions - reg = True - index = index_arg // 2 - example['reg'] = reg - - index = index % len(img_path_captions) - image_path, caption = img_path_captions[index] - example['image_path'] = image_path - - # 画像を読み込み必要ならcropする - img, face_cx, face_cy, face_w, face_h = self.load_image(image_path) - im_h, im_w = img.shape[0:2] - if face_cx > 0: # 顔位置情報あり - img = self.crop_target(img, face_cx, face_cy, face_w, face_h) - elif im_h > self.height or im_w > self.width: - assert self.random_crop, f"image too large, and face_crop_aug_range and random_crop are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_cropを有効にしてください" - if im_h > self.height: - p = random.randint(0, im_h - self.height) - img = img[p:p + self.height] - if im_w > self.width: - p = random.randint(0, im_w - self.width) - img = img[:, p:p + self.width] - - im_h, im_w = img.shape[0:2] - assert im_h == self.height and im_w == self.width, f"image too small / 画像サイズが小さいようです: {image_path}" - - # augmentation - if self.aug is not None: - img = self.aug(image=img)['image'] - - example['image'] = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる - - # captionを処理する - if self.fine_tuning and self.shuffle_caption: # fine tuning時にcaptionのshuffleをする - tokens = caption.strip().split(",") - random.shuffle(tokens) - caption = ",".join(tokens).strip() - - example['caption_ids'] = self.tokenizer(caption, padding="do_not_pad", truncation=True, - max_length=self.tokenizer.model_max_length).input_ids - if self.debug_dataset: - example['caption'] = caption - return example - - -class LatentsCachedDataset(torch.utils.data.Dataset): - def __init__(self, latents_cache, examples): - self.latents_cache = latents_cache - self.examples = examples - - def __len__(self): - return len(self.examples) - - def __getitem__(self, index): - example = self.examples[index] - return {'latents': self.latents_cache[example['image_path']], **example} - - -# checkpoint変換など ############################### - -# region StableDiffusion->Diffusersの変換コード -# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) - -def shave_segments(path, n_shave_prefix_segments=1): - """ - Removes segments. Positive values shave the first segments, negative shave the last segments. - """ - if n_shave_prefix_segments >= 0: - return ".".join(path.split(".")[n_shave_prefix_segments:]) - else: - return ".".join(path.split(".")[:n_shave_prefix_segments]) - - -def renew_resnet_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside resnets to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item.replace("in_layers.0", "norm1") - new_item = new_item.replace("in_layers.2", "conv1") - - new_item = new_item.replace("out_layers.0", "norm2") - new_item = new_item.replace("out_layers.3", "conv2") - - new_item = new_item.replace("emb_layers.1", "time_emb_proj") - new_item = new_item.replace("skip_connection", "conv_shortcut") - - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside resnets to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - new_item = new_item.replace("nin_shortcut", "conv_shortcut") - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_attention_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside attentions to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - # new_item = new_item.replace('norm.weight', 'group_norm.weight') - # new_item = new_item.replace('norm.bias', 'group_norm.bias') - - # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') - # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') - - # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside attentions to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - new_item = new_item.replace("norm.weight", "group_norm.weight") - new_item = new_item.replace("norm.bias", "group_norm.bias") - - new_item = new_item.replace("q.weight", "query.weight") - new_item = new_item.replace("q.bias", "query.bias") - - new_item = new_item.replace("k.weight", "key.weight") - new_item = new_item.replace("k.bias", "key.bias") - - new_item = new_item.replace("v.weight", "value.weight") - new_item = new_item.replace("v.bias", "value.bias") - - new_item = new_item.replace("proj_out.weight", "proj_attn.weight") - new_item = new_item.replace("proj_out.bias", "proj_attn.bias") - - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def assign_to_checkpoint( - paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None -): - """ - This does the final conversion step: take locally converted weights and apply a global renaming - to them. It splits attention layers, and takes into account additional replacements - that may arise. - - Assigns the weights to the new checkpoint. - """ - assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." - - # Splits the attention layers into three variables. - if attention_paths_to_split is not None: - for path, path_map in attention_paths_to_split.items(): - old_tensor = old_checkpoint[path] - channels = old_tensor.shape[0] // 3 - - target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) - - num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 - - old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) - query, key, value = old_tensor.split(channels // num_heads, dim=1) - - checkpoint[path_map["query"]] = query.reshape(target_shape) - checkpoint[path_map["key"]] = key.reshape(target_shape) - checkpoint[path_map["value"]] = value.reshape(target_shape) - - for path in paths: - new_path = path["new"] - - # These have already been assigned - if attention_paths_to_split is not None and new_path in attention_paths_to_split: - continue - - # Global renaming happens here - new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") - new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") - new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") - - if additional_replacements is not None: - for replacement in additional_replacements: - new_path = new_path.replace(replacement["old"], replacement["new"]) - - # proj_attn.weight has to be converted from conv 1D to linear - if "proj_attn.weight" in new_path: - checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] - else: - checkpoint[new_path] = old_checkpoint[path["old"]] - - -def conv_attn_to_linear(checkpoint): - keys = list(checkpoint.keys()) - attn_keys = ["query.weight", "key.weight", "value.weight"] - for key in keys: - if ".".join(key.split(".")[-2:]) in attn_keys: - if checkpoint[key].ndim > 2: - checkpoint[key] = checkpoint[key][:, :, 0, 0] - elif "proj_attn.weight" in key: - if checkpoint[key].ndim > 2: - checkpoint[key] = checkpoint[key][:, :, 0] - - -def convert_ldm_unet_checkpoint(checkpoint, config): - """ - Takes a state dict and a config, and returns a converted checkpoint. - """ - - # extract state_dict for UNet - unet_state_dict = {} - unet_key = "model.diffusion_model." - keys = list(checkpoint.keys()) - for key in keys: - if key.startswith(unet_key): - unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) - - new_checkpoint = {} - - new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] - new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] - new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] - new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] - - new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] - new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] - - new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] - new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] - new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] - new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] - - # Retrieves the keys for the input blocks only - num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) - input_blocks = { - layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] - for layer_id in range(num_input_blocks) - } - - # Retrieves the keys for the middle blocks only - num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) - middle_blocks = { - layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] - for layer_id in range(num_middle_blocks) - } - - # Retrieves the keys for the output blocks only - num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) - output_blocks = { - layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] - for layer_id in range(num_output_blocks) - } - - for i in range(1, num_input_blocks): - block_id = (i - 1) // (config["layers_per_block"] + 1) - layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) - - resnets = [ - key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key - ] - attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] - - if f"input_blocks.{i}.0.op.weight" in unet_state_dict: - new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( - f"input_blocks.{i}.0.op.weight" - ) - new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( - f"input_blocks.{i}.0.op.bias" - ) - - paths = renew_resnet_paths(resnets) - meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - if len(attentions): - paths = renew_attention_paths(attentions) - meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - resnet_0 = middle_blocks[0] - attentions = middle_blocks[1] - resnet_1 = middle_blocks[2] - - resnet_0_paths = renew_resnet_paths(resnet_0) - assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) - - resnet_1_paths = renew_resnet_paths(resnet_1) - assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) - - attentions_paths = renew_attention_paths(attentions) - meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} - assign_to_checkpoint( - attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - for i in range(num_output_blocks): - block_id = i // (config["layers_per_block"] + 1) - layer_in_block_id = i % (config["layers_per_block"] + 1) - output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] - output_block_list = {} - - for layer in output_block_layers: - layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) - if layer_id in output_block_list: - output_block_list[layer_id].append(layer_name) - else: - output_block_list[layer_id] = [layer_name] - - if len(output_block_list) > 1: - resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] - attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] - - resnet_0_paths = renew_resnet_paths(resnets) - paths = renew_resnet_paths(resnets) - - meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - if ["conv.weight", "conv.bias"] in output_block_list.values(): - index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) - new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ - f"output_blocks.{i}.{index}.conv.weight" - ] - new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ - f"output_blocks.{i}.{index}.conv.bias" - ] - - # Clear attentions as they have been attributed above. - if len(attentions) == 2: - attentions = [] - - if len(attentions): - paths = renew_attention_paths(attentions) - meta_path = { - "old": f"output_blocks.{i}.1", - "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", - } - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - else: - resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) - for path in resnet_0_paths: - old_path = ".".join(["output_blocks", str(i), path["old"]]) - new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) - - new_checkpoint[new_path] = unet_state_dict[old_path] - - return new_checkpoint - - -def convert_ldm_vae_checkpoint(checkpoint, config): - # extract state dict for VAE - vae_state_dict = {} - vae_key = "first_stage_model." - keys = list(checkpoint.keys()) - for key in keys: - if key.startswith(vae_key): - vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) - - new_checkpoint = {} - - new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] - new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] - new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] - new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] - new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] - new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] - - new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] - new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] - new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] - new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] - new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] - new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] - - new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] - new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] - new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] - new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] - - # Retrieves the keys for the encoder down blocks only - num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) - down_blocks = { - layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) - } - - # Retrieves the keys for the decoder up blocks only - num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) - up_blocks = { - layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) - } - - for i in range(num_down_blocks): - resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] - - if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: - new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( - f"encoder.down.{i}.downsample.conv.weight" - ) - new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( - f"encoder.down.{i}.downsample.conv.bias" - ) - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] - num_mid_res_blocks = 2 - for i in range(1, num_mid_res_blocks + 1): - resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] - paths = renew_vae_attention_paths(mid_attentions) - meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - conv_attn_to_linear(new_checkpoint) - - for i in range(num_up_blocks): - block_id = num_up_blocks - 1 - i - resnets = [ - key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key - ] - - if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: - new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ - f"decoder.up.{block_id}.upsample.conv.weight" - ] - new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ - f"decoder.up.{block_id}.upsample.conv.bias" - ] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] - num_mid_res_blocks = 2 - for i in range(1, num_mid_res_blocks + 1): - resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] - paths = renew_vae_attention_paths(mid_attentions) - meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - conv_attn_to_linear(new_checkpoint) - return new_checkpoint - - -def create_unet_diffusers_config(): - """ - Creates a config for the diffusers based on the config of the LDM model. - """ - # unet_params = original_config.model.params.unet_config.params - - block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] - - down_block_types = [] - resolution = 1 - for i in range(len(block_out_channels)): - block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" - down_block_types.append(block_type) - if i != len(block_out_channels) - 1: - resolution *= 2 - - up_block_types = [] - for i in range(len(block_out_channels)): - block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" - up_block_types.append(block_type) - resolution //= 2 - - config = dict( - sample_size=UNET_PARAMS_IMAGE_SIZE, - in_channels=UNET_PARAMS_IN_CHANNELS, - out_channels=UNET_PARAMS_OUT_CHANNELS, - down_block_types=tuple(down_block_types), - up_block_types=tuple(up_block_types), - block_out_channels=tuple(block_out_channels), - layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, - cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, - attention_head_dim=UNET_PARAMS_NUM_HEADS, - ) - - return config - - -def create_vae_diffusers_config(): - """ - Creates a config for the diffusers based on the config of the LDM model. - """ - # vae_params = original_config.model.params.first_stage_config.params.ddconfig - # _ = original_config.model.params.first_stage_config.params.embed_dim - block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] - down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) - up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) - - config = dict( - sample_size=VAE_PARAMS_RESOLUTION, - in_channels=VAE_PARAMS_IN_CHANNELS, - out_channels=VAE_PARAMS_OUT_CH, - down_block_types=tuple(down_block_types), - up_block_types=tuple(up_block_types), - block_out_channels=tuple(block_out_channels), - latent_channels=VAE_PARAMS_Z_CHANNELS, - layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, - ) - return config - - -def convert_ldm_clip_checkpoint(checkpoint): - text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") - - keys = list(checkpoint.keys()) - - text_model_dict = {} - - for key in keys: - if key.startswith("cond_stage_model.transformer"): - text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] - - text_model.load_state_dict(text_model_dict) - - return text_model - -# endregion - - -# region Diffusers->StableDiffusion の変換コード -# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) - -def convert_unet_state_dict(unet_state_dict): - unet_conversion_map = [ - # (stable-diffusion, HF Diffusers) - ("time_embed.0.weight", "time_embedding.linear_1.weight"), - ("time_embed.0.bias", "time_embedding.linear_1.bias"), - ("time_embed.2.weight", "time_embedding.linear_2.weight"), - ("time_embed.2.bias", "time_embedding.linear_2.bias"), - ("input_blocks.0.0.weight", "conv_in.weight"), - ("input_blocks.0.0.bias", "conv_in.bias"), - ("out.0.weight", "conv_norm_out.weight"), - ("out.0.bias", "conv_norm_out.bias"), - ("out.2.weight", "conv_out.weight"), - ("out.2.bias", "conv_out.bias"), - ] - - unet_conversion_map_resnet = [ - # (stable-diffusion, HF Diffusers) - ("in_layers.0", "norm1"), - ("in_layers.2", "conv1"), - ("out_layers.0", "norm2"), - ("out_layers.3", "conv2"), - ("emb_layers.1", "time_emb_proj"), - ("skip_connection", "conv_shortcut"), - ] - - unet_conversion_map_layer = [] - for i in range(4): - # loop over downblocks/upblocks - - for j in range(2): - # loop over resnets/attentions for downblocks - hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." - sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." - unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) - - if i < 3: - # no attention layers in down_blocks.3 - hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." - sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." - unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) - - for j in range(3): - # loop over resnets/attentions for upblocks - hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." - sd_up_res_prefix = f"output_blocks.{3*i + j}.0." - unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) - - if i > 0: - # no attention layers in up_blocks.0 - hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." - sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." - unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) - - if i < 3: - # no downsample in down_blocks.3 - hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." - sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." - unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) - - # no upsample in up_blocks.3 - hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." - sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." - unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) - - hf_mid_atn_prefix = "mid_block.attentions.0." - sd_mid_atn_prefix = "middle_block.1." - unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) - - for j in range(2): - hf_mid_res_prefix = f"mid_block.resnets.{j}." - sd_mid_res_prefix = f"middle_block.{2*j}." - unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) - - # buyer beware: this is a *brittle* function, - # and correct output requires that all of these pieces interact in - # the exact order in which I have arranged them. - mapping = {k: k for k in unet_state_dict.keys()} - for sd_name, hf_name in unet_conversion_map: - mapping[hf_name] = sd_name - for k, v in mapping.items(): - if "resnets" in k: - for sd_part, hf_part in unet_conversion_map_resnet: - v = v.replace(hf_part, sd_part) - mapping[k] = v - for k, v in mapping.items(): - for sd_part, hf_part in unet_conversion_map_layer: - v = v.replace(hf_part, sd_part) - mapping[k] = v - new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} - return new_state_dict - -# endregion - - -def load_stable_diffusion_checkpoint(ckpt_path): - checkpoint = torch.load(ckpt_path, map_location="cpu")["state_dict"] - - # Convert the UNet2DConditionModel model. - unet_config = create_unet_diffusers_config() - converted_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config) - - unet = UNet2DConditionModel(**unet_config) - unet.load_state_dict(converted_unet_checkpoint) - - # Convert the VAE model. - vae_config = create_vae_diffusers_config() - converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) - - vae = AutoencoderKL(**vae_config) - vae.load_state_dict(converted_vae_checkpoint) - - # convert text_model - text_model = convert_ldm_clip_checkpoint(checkpoint) - - return text_model, vae, unet - - -def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path): - # VAEがメモリ上にないので、もう一度VAEを含めて読み込む - state_dict = torch.load(ckpt_path, map_location="cpu")['state_dict'] - - # Convert the UNet model - unet_state_dict = convert_unet_state_dict(unet.state_dict()) - for k, v in unet_state_dict.items(): - key = "model.diffusion_model." + k - assert key in state_dict, f"Illegal key in save SD: {key}" - state_dict[key] = v - - # Convert the text encoder model - text_enc_dict = text_encoder.state_dict() # 変換不要 - for k, v in text_enc_dict.items(): - key = "cond_stage_model.transformer." + k - assert key in state_dict, f"Illegal key in save SD: {key}" - state_dict[key] = v - - # Put together new checkpoint - state_dict = {"state_dict": state_dict} - torch.save(state_dict, output_file) - - -def train(args): - fine_tuning = args.fine_tuning - cache_latents = args.cache_latents - - # latentsをキャッシュする場合のオプション設定を確認する - if cache_latents: - assert args.face_crop_aug_range is None and not args.random_crop, "when caching latents, crop aug cannot be used / latentをキャッシュするときは切り出しは使えません" - assert not args.flip_aug and not args.color_aug, "when caching latents, augmentation cannot be used / latentをキャッシュするときはaugmentationは使えません" - - # モデル形式のオプション設定を確認する - use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) - assert args.save_every_n_epochs is None or use_stable_diffusion_format, "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" - - if args.seed is not None: - set_seed(args.seed) - - # 学習データを用意する - def load_dreambooth_dir(dir): - tokens = os.path.basename(dir).split('_') - try: - n_repeats = int(tokens[0]) - except ValueError as e: - print(f"no 'n_repeats' in directory name / DreamBoothのディレクトリ名に繰り返し回数がないようです: {dir}") - raise e - - caption = '_'.join(tokens[1:]) - - img_paths = glob.glob(os.path.join(dir, "*.png")) + glob.glob(os.path.join(dir, "*.jpg")) - return n_repeats, [(ip, caption) for ip in img_paths] - - print("prepare train images.") - train_img_path_captions = [] - - if fine_tuning: - img_paths = glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.jpg")) - for img_path in tqdm(img_paths): - # captionの候補ファイル名を作る - base_name = os.path.splitext(img_path)[0] - base_name_face_det = base_name - tokens = base_name.split("_") - if len(tokens) >= 5: - base_name_face_det = "_".join(tokens[:-4]) - cap_paths = [base_name + '.txt', base_name + '.caption', base_name_face_det+'.txt', base_name_face_det+'.caption'] - - caption = None - for cap_path in cap_paths: - if os.path.isfile(cap_path): - with open(cap_path, "rt", encoding='utf-8') as f: - caption = f.readlines()[0].strip() - break - - assert caption is not None and len(caption) > 0, f"no caption / キャプションファイルが見つからないか、captionが空です: {cap_paths}" - - train_img_path_captions.append((img_path, caption)) - - else: - train_dirs = os.listdir(args.train_data_dir) - for dir in train_dirs: - n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.train_data_dir, dir)) - for _ in range(n_repeats): - train_img_path_captions.extend(img_caps) - print(f"{len(train_img_path_captions)} train images.") - - if fine_tuning: - reg_img_path_captions = [] - else: - print("prepare reg images.") - reg_img_path_captions = [] - if args.reg_data_dir: - reg_dirs = os.listdir(args.reg_data_dir) - for dir in reg_dirs: - n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.reg_data_dir, dir)) - for _ in range(n_repeats): - reg_img_path_captions.extend(img_caps) - print(f"{len(reg_img_path_captions)} reg images.") - - if args.debug_dataset: - # デバッグ時はshuffleして実際のデータセット使用時に近づける(学習時はdata loaderでshuffleする) - random.shuffle(train_img_path_captions) - random.shuffle(reg_img_path_captions) - - # データセットを準備する - resolution = tuple([int(r) for r in args.resolution.split(',')]) - if len(resolution) == 1: - resolution = (resolution[0], resolution[0]) - assert len( - resolution) == 2, f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}" - - if args.face_crop_aug_range is not None: - face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')]) - assert len( - face_crop_aug_range) == 2, f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}" - else: - face_crop_aug_range = None - - # tokenizerを読み込む - print("prepare tokenizer") - tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) - - print("prepare dataset") - train_dataset = DreamBoothOrFineTuningDataset(fine_tuning, train_img_path_captions, - reg_img_path_captions, tokenizer, resolution, args.flip_aug, args.color_aug, face_crop_aug_range, args.random_crop, args.shuffle_caption, args.debug_dataset) - - if args.debug_dataset: - print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") - print("Escape for exit. / Escキーで中断、終了します") - for example in train_dataset: - im = example['image'] - im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8) - im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c - im = im[:, :, ::-1] # RGB -> BGR (OpenCV) - print(f'caption: "{example["caption"]}", reg: {example["reg"]}') - cv2.imshow("img", im) - k = cv2.waitKey() - cv2.destroyAllWindows() - if k == 27: - break - return - - # acceleratorを準備する - # gradient accumulationは複数モデルを学習する場合には対応していないとのことなので、1固定にする - print("prepare accelerator") - accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision) - - # モデルを読み込む - if use_stable_diffusion_format: - print("load StableDiffusion checkpoint") - text_encoder, vae, unet = load_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) - else: - print("load Diffusers pretrained models") - text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") - vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") - unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") - - # モデルに xformers とか memory efficient attention を組み込む - replace_unet_modules(unet, args.mem_eff_attn, args.xformers) - - # mixed precisionに対応した型を用意しておき適宜castする - weight_dtype = torch.float32 - if args.mixed_precision == "fp16": - weight_dtype = torch.float16 - elif args.mixed_precision == "bf16": - weight_dtype = torch.bfloat16 - - # 学習を準備する - if cache_latents: - # latentをcacheする - print("caching latents.") - vae.to(accelerator.device, dtype=weight_dtype) - - latents_cache = {} - examples = [] - for i in tqdm(range(len(train_dataset))): - # 画像を何度も読み込むのは無駄だが、面倒なので - example = train_dataset[i] - image_path = example['image_path'] - if image_path not in latents_cache: - with torch.no_grad(): - pixel_values = example["image"].unsqueeze(0).to(device=accelerator.device, dtype=weight_dtype) - latents = vae.encode(pixel_values).latent_dist.sample().to("cpu") - latents_cache[image_path] = latents.squeeze(0) - del example['image'] - examples.append(example) - - train_dataset = LatentsCachedDataset(latents_cache, examples) - del vae - if torch.cuda.is_available(): - torch.cuda.empty_cache() - else: - vae.requires_grad_(False) - - if args.gradient_checkpointing: - unet.enable_gradient_checkpointing() - text_encoder.gradient_checkpointing_enable() - - # 学習に必要なクラスを準備する - print("prepare optimizer, data loader etc.") - - # 8-bit Adamを使う - if args.use_8bit_adam: - try: - import bitsandbytes as bnb - except ImportError: - raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") - print("use 8-bit Adma optimizer") - optimizer_class = bnb.optim.AdamW8bit - else: - optimizer_class = torch.optim.AdamW - - trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters())) - - # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 - optimizer = optimizer_class(trainable_params, lr=args.learning_rate) - - # dataloaderを準備する - disable_padding = args.no_token_padding - - def collate_fn(examples): - input_ids = [e['caption_ids'] for e in examples] - regs = [e['reg'] for e in examples] # waitを変えたい - - if cache_latents: - pixel_values = None - latents = [e['latents'] for e in examples] - latents = torch.stack(latents) - else: - pixel_values = [e['image'] for e in examples] - pixel_values = torch.stack(pixel_values) - pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() - latents = None - - # padしてTensor変換 - if disable_padding: - # paddingしない:padding==Trueはバッチの中の最大長に合わせるが、バッチサイズ1なので(やはりバグでは……?) - input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids - else: - # paddingする - input_ids = tokenizer.pad({"input_ids": input_ids}, padding='max_length', max_length=tokenizer.model_max_length, - return_tensors='pt').input_ids - - loss_weights = [(1.0 if not reg else args.prior_loss_weight) for reg in regs] - loss_weights = torch.FloatTensor(loss_weights) - - batch = {"input_ids": input_ids, "pixel_values": pixel_values, "latents": latents, "loss_weights": loss_weights} - return batch - - train_dataloader = torch.utils.data.DataLoader( - train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn) - - # lr schedulerを用意する - lr_scheduler = diffusers.optimization.get_scheduler("constant", optimizer, num_training_steps=args.max_train_steps) - - # acceleratorがなんかよろしくやってくれるらしい - unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( - unet, text_encoder, optimizer, train_dataloader, lr_scheduler) - - if not cache_latents: - vae.to(accelerator.device, dtype=weight_dtype) - - # epoch数を計算する - num_train_epochs = math.ceil(args.max_train_steps / len(train_dataloader)) - - # 学習する - total_batch_size = args.train_batch_size # * accelerator.num_processes - print("running training / 学習開始") - print(f" num examples / サンプル数: {len(train_dataset)}") - print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") - print(f" num epochs / epoch数: {num_train_epochs}") - print(f" batch size per device / バッチサイズ: {args.train_batch_size}") - print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") - print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") - - progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") - global_step = 0 - - noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) - - if accelerator.is_main_process: - accelerator.init_trackers("dreambooth") - - # 以下 train_dreambooth.py からほぼコピペ - for epoch in range(num_train_epochs): - print(f"epoch {epoch+1}/{num_train_epochs}") - unet.train() - text_encoder.train() # なんかunetだけでいいらしい?→最新版で修正されてた(;´Д`) いろいろ雑だな - - for step, batch in enumerate(train_dataloader): - with accelerator.accumulate(unet): - with torch.no_grad(): - # latentに変換 - if cache_latents: - latents = batch["latents"].to(accelerator.device) - else: - latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() - latents = latents * 0.18215 - - # Sample noise that we'll add to the latents - noise = torch.randn_like(latents, device=latents.device) - b_size = latents.shape[0] - - # Sample a random timestep for each image - timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) - timesteps = timesteps.long() - - # Add noise to the latents according to the noise magnitude at each timestep - # (this is the forward diffusion process) - noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) - - # Get the text embedding for conditioning - encoder_hidden_states = text_encoder(batch["input_ids"])[0] - - # Predict the noise residual - noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample - - loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="none") - loss = loss.mean([1, 2, 3]) - - loss_weights = batch["loss_weights"] # 各sampleごとのweight - loss = loss * loss_weights - - loss = loss.mean() - - accelerator.backward(loss) - if accelerator.sync_gradients: - params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())) - accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) - - optimizer.step() - lr_scheduler.step() - optimizer.zero_grad(set_to_none=True) - - # Checks if the accelerator has performed an optimization step behind the scenes - if accelerator.sync_gradients: - progress_bar.update(1) - global_step += 1 - - logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]} - progress_bar.set_postfix(**logs) - # accelerator.log(logs, step=global_step) - - if global_step >= args.max_train_steps: - break - - accelerator.wait_for_everyone() - - if use_stable_diffusion_format and args.save_every_n_epochs is not None: - if (epoch + 1) % args.save_every_n_epochs == 0: - print("saving check point.") - os.makedirs(args.output_dir, exist_ok=True) - ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) - save_stable_diffusion_checkpoint(ckpt_file, accelerator.unwrap_model( - text_encoder), accelerator.unwrap_model(unet), args.pretrained_model_name_or_path) - - # Create the pipeline using using the trained modules and save it. - is_main_process = accelerator.is_main_process - if is_main_process: - unet = accelerator.unwrap_model(unet) - text_encoder = accelerator.unwrap_model(text_encoder) - - accelerator.end_training() - del accelerator # この後メモリを使うのでこれは消す - - if is_main_process: - os.makedirs(args.output_dir, exist_ok=True) - if use_stable_diffusion_format: - print(f"save trained model as StableDiffusion checkpoint to {args.output_dir}") - ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) - save_stable_diffusion_checkpoint(ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path) - else: - print(f"save trained model as Diffusers to {args.output_dir}") - pipeline = StableDiffusionPipeline.from_pretrained( - args.pretrained_model_name_or_path, - unet=unet, - text_encoder=text_encoder, - ) - pipeline.save_pretrained(args.output_dir) - print("model saved.") - - -# region モジュール入れ替え部 -""" -高速化のためのモジュール入れ替え -""" - -# FlashAttentionを使うCrossAttention -# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py -# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE - -# constants - -EPSILON = 1e-6 - -# helper functions - - -def exists(val): - return val is not None - - -def default(val, d): - return val if exists(val) else d - -# flash attention forwards and backwards - -# https://arxiv.org/abs/2205.14135 - - -class FlashAttentionFunction(Function): - @ staticmethod - @ torch.no_grad() - def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): - """ Algorithm 2 in the paper """ - - device = q.device - dtype = q.dtype - max_neg_value = -torch.finfo(q.dtype).max - qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) - - o = torch.zeros_like(q) - all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) - all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) - - scale = (q.shape[-1] ** -0.5) - - if not exists(mask): - mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) - else: - mask = rearrange(mask, 'b n -> b 1 1 n') - mask = mask.split(q_bucket_size, dim=-1) - - row_splits = zip( - q.split(q_bucket_size, dim=-2), - o.split(q_bucket_size, dim=-2), - mask, - all_row_sums.split(q_bucket_size, dim=-2), - all_row_maxes.split(q_bucket_size, dim=-2), - ) - - for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): - q_start_index = ind * q_bucket_size - qk_len_diff - - col_splits = zip( - k.split(k_bucket_size, dim=-2), - v.split(k_bucket_size, dim=-2), - ) - - for k_ind, (kc, vc) in enumerate(col_splits): - k_start_index = k_ind * k_bucket_size - - attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale - - if exists(row_mask): - attn_weights.masked_fill_(~row_mask, max_neg_value) - - if causal and q_start_index < (k_start_index + k_bucket_size - 1): - causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, - device=device).triu(q_start_index - k_start_index + 1) - attn_weights.masked_fill_(causal_mask, max_neg_value) - - block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) - attn_weights -= block_row_maxes - exp_weights = torch.exp(attn_weights) - - if exists(row_mask): - exp_weights.masked_fill_(~row_mask, 0.) - - block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) - - new_row_maxes = torch.maximum(block_row_maxes, row_maxes) - - exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) - - exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) - exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) - - new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums - - oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) - - row_maxes.copy_(new_row_maxes) - row_sums.copy_(new_row_sums) - - ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) - ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) - - return o - - @ staticmethod - @ torch.no_grad() - def backward(ctx, do): - """ Algorithm 4 in the paper """ - - causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args - q, k, v, o, l, m = ctx.saved_tensors - - device = q.device - - max_neg_value = -torch.finfo(q.dtype).max - qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) - - dq = torch.zeros_like(q) - dk = torch.zeros_like(k) - dv = torch.zeros_like(v) - - row_splits = zip( - q.split(q_bucket_size, dim=-2), - o.split(q_bucket_size, dim=-2), - do.split(q_bucket_size, dim=-2), - mask, - l.split(q_bucket_size, dim=-2), - m.split(q_bucket_size, dim=-2), - dq.split(q_bucket_size, dim=-2) - ) - - for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): - q_start_index = ind * q_bucket_size - qk_len_diff - - col_splits = zip( - k.split(k_bucket_size, dim=-2), - v.split(k_bucket_size, dim=-2), - dk.split(k_bucket_size, dim=-2), - dv.split(k_bucket_size, dim=-2), - ) - - for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): - k_start_index = k_ind * k_bucket_size - - attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale - - if causal and q_start_index < (k_start_index + k_bucket_size - 1): - causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, - device=device).triu(q_start_index - k_start_index + 1) - attn_weights.masked_fill_(causal_mask, max_neg_value) - - exp_attn_weights = torch.exp(attn_weights - mc) - - if exists(row_mask): - exp_attn_weights.masked_fill_(~row_mask, 0.) - - p = exp_attn_weights / lc - - dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) - dp = einsum('... i d, ... j d -> ... i j', doc, vc) - - D = (doc * oc).sum(dim=-1, keepdims=True) - ds = p * scale * (dp - D) - - dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) - dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) - - dqc.add_(dq_chunk) - dkc.add_(dk_chunk) - dvc.add_(dv_chunk) - - return dq, dk, dv, None, None, None, None - - -def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): - if mem_eff_attn: - replace_unet_cross_attn_to_memory_efficient() - elif xformers: - replace_unet_cross_attn_to_xformers() - - -def replace_unet_cross_attn_to_memory_efficient(): - print("Replace CrossAttention.forward to use FlashAttention") - flash_func = FlashAttentionFunction - - def forward_flash_attn(self, x, context=None, mask=None): - q_bucket_size = 512 - k_bucket_size = 1024 - - h = self.heads - q = self.to_q(x) - - context = context if context is not None else x - context = context.to(x.dtype) - k = self.to_k(context) - v = self.to_v(context) - del context, x - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) - - out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) - - out = rearrange(out, 'b h n d -> b n (h d)') - return self.to_out(out) - - diffusers.models.attention.CrossAttention.forward = forward_flash_attn - - -def replace_unet_cross_attn_to_xformers(): - print("Replace CrossAttention.forward to use xformers") - try: - import xformers.ops - except ImportError: - raise ImportError("No xformers / xformersがインストールされていないようです") - - def forward_xformers(self, x, context=None, mask=None): - h = self.heads - q_in = self.to_q(x) - - context = default(context, x) - k_in = self.to_k(context) - v_in = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) - del q_in, k_in, v_in - out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる - - out = rearrange(out, 'b n h d -> b n (h d)', h=h) - return self.to_out(out) - - diffusers.models.attention.CrossAttention.forward = forward_xformers -# endregion - - -if __name__ == '__main__': - # torch.cuda.set_per_process_memory_fraction(0.48) - parser = argparse.ArgumentParser() - parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, - help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") - parser.add_argument("--fine_tuning", action="store_true", - help="fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする") - parser.add_argument("--shuffle_caption", action="store_true", - help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") - parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") - parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ") - parser.add_argument("--output_dir", type=str, default=None, - help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") - parser.add_argument("--save_every_n_epochs", type=int, default=None, - help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存します(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") - parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み") - parser.add_argument("--no_token_padding", action="store_true", - help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)") - parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする") - parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする") - parser.add_argument("--face_crop_aug_range", type=str, default=None, - help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)") - parser.add_argument("--random_crop", action="store_true", - help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)") - parser.add_argument("--debug_dataset", action="store_true", - help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") - parser.add_argument("--resolution", type=str, default=None, - help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)") - parser.add_argument("--train_batch_size", type=int, default=1, - help="batch size for training (1 means one train or reg data, not train/reg pair) / 学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)") - parser.add_argument("--use_8bit_adam", action="store_true", - help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") - parser.add_argument("--mem_eff_attn", action="store_true", - help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") - parser.add_argument("--xformers", action="store_true", - help="use xformers for CrossAttention / CrossAttentionにxformersを使う") - parser.add_argument("--cache_latents", action="store_true", - help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)") - parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") - parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") - parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") - parser.add_argument("--gradient_checkpointing", action="store_true", - help="enable gradient checkpointing / grandient checkpointingを有効にする") - parser.add_argument("--mixed_precision", type=str, default="no", - choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") - - args = parser.parse_args() - train(args) diff --git a/train_db_fixed_v6-ber.py b/train_db_fixed_v6-ber.py deleted file mode 100644 index 80696fc..0000000 --- a/train_db_fixed_v6-ber.py +++ /dev/null @@ -1,1580 +0,0 @@ -# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします -# The license of this script, like train_dreambooth.py, is Apache License 2.0 -# (c) 2022 Kohya S. @kohya_ss - -# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images, -# enable reg images in fine-tuning, add dataset_repeats option - -from torch.autograd.function import Function -import argparse -import glob -import itertools -import math -import os -import random - -from tqdm import tqdm -import torch -from torchvision import transforms -from accelerate import Accelerator -from accelerate.utils import set_seed -from transformers import CLIPTextModel, CLIPTokenizer -import diffusers -from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel -import albumentations as albu -import numpy as np -from PIL import Image -import cv2 -from einops import rearrange -from torch import einsum - -# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う -# Tokenizer: use the one provided beforehand instead of reading from checkpoints -TOKENIZER_PATH = "openai/clip-vit-large-patch14" - -# StableDiffusionのモデルパラメータ -# StableDiffusion model parameters -NUM_TRAIN_TIMESTEPS = 1000 -BETA_START = 0.00085 -BETA_END = 0.0120 - -UNET_PARAMS_MODEL_CHANNELS = 320 -UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] -UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] -UNET_PARAMS_IMAGE_SIZE = 32 # unused -UNET_PARAMS_IN_CHANNELS = 4 -UNET_PARAMS_OUT_CHANNELS = 4 -UNET_PARAMS_NUM_RES_BLOCKS = 2 -UNET_PARAMS_CONTEXT_DIM = 768 -UNET_PARAMS_NUM_HEADS = 8 - -VAE_PARAMS_Z_CHANNELS = 4 -VAE_PARAMS_RESOLUTION = 256 -VAE_PARAMS_IN_CHANNELS = 3 -VAE_PARAMS_OUT_CH = 3 -VAE_PARAMS_CH = 128 -VAE_PARAMS_CH_MULT = [1, 2, 4, 4] -VAE_PARAMS_NUM_RES_BLOCKS = 2 - -# checkpointファイル名 -# checkpoint filename -LAST_CHECKPOINT_NAME = "last.ckpt" -EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" - - -class DreamBoothOrFineTuningDataset(torch.utils.data.Dataset): - def __init__(self, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, prior_loss_weight, flip_aug, color_aug, face_crop_aug_range, random_crop, shuffle_caption, disable_padding, debug_dataset) -> None: - super().__init__() - - self.fine_tuning = fine_tuning - self.train_img_path_captions = train_img_path_captions - self.reg_img_path_captions = reg_img_path_captions - self.tokenizer = tokenizer - self.width, self.height = resolution - self.size = min(self.width, self.height) # 短いほう - self.prior_loss_weight = prior_loss_weight - self.face_crop_aug_range = face_crop_aug_range - self.random_crop = random_crop - self.debug_dataset = debug_dataset - self.shuffle_caption = shuffle_caption - self.disable_padding = disable_padding - self.latents_cache = None - - # augmentation - flip_p = 0.5 if flip_aug else 0.0 - if color_aug: - # わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hue/saturationあたりを触る - # Weak tint augmentation: touch gamma/hue/saturation on the assumption that brightness/contrast is not good because it changes the maximum and minimum pixel value of the image. - self.aug = albu.Compose([ - albu.OneOf([ - # albu.RandomBrightnessContrast(0.05, 0.05, p=.2), - albu.HueSaturationValue(5, 8, 0, p=.2), - # albu.RGBShift(5, 5, 5, p=.1), - albu.RandomGamma((95, 105), p=.5), - ], p=.33), - albu.HorizontalFlip(p=flip_p) - ], p=1.) - elif flip_aug: - self.aug = albu.Compose([ - albu.HorizontalFlip(p=flip_p) - ], p=1.) - else: - self.aug = None - - if self.fine_tuning: - self._length = len(self.train_img_path_captions) * args.fine_tuning_repeat - else: - # 学習データの倍として、奇数ならtrain - # train as double the training data, train if odd - self._length = len(self.train_img_path_captions) * 2 - if self._length // 2 < len(self.reg_img_path_captions): - print("some of reg images are not used / Due to the large number of regularized images, some regularized images are not used") - - self.image_transforms = transforms.Compose( - [ - transforms.ToTensor(), - transforms.Normalize([0.5], [0.5]), - ] - ) - - def load_image(self, image_path): - image = Image.open(image_path) - if not image.mode == "RGB": - image = image.convert("RGB") - img = np.array(image, np.uint8) - - face_cx = face_cy = face_w = face_h = 0 - if self.face_crop_aug_range is not None: - tokens = os.path.splitext(os.path.basename(image_path))[0].split('_') - if len(tokens) >= 5: - face_cx = int(tokens[-4]) - face_cy = int(tokens[-3]) - face_w = int(tokens[-2]) - face_h = int(tokens[-1]) - - return img, face_cx, face_cy, face_w, face_h - - # いい感じに切り出す - # Cutting it out for good - def crop_target(self, image, face_cx, face_cy, face_w, face_h): - height, width = image.shape[0:2] - if height == self.height and width == self.width: - return image - - # 画像サイズはsizeより大きいのでリサイズする - # Resize the image size because it is larger than size - face_size = max(face_w, face_h) - min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率)# Magnification at which the image exactly matches the model input size (minimum magnification) - min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ # Minimum size of the specified face - max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ # Minimum size of the specified face - if min_scale >= max_scale: # range指定がmin==max - scale = min_scale - else: - scale = random.uniform(min_scale, max_scale) - - nh = int(height * scale + .5) - nw = int(width * scale + .5) - assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}" - image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA) - face_cx = int(face_cx * scale + .5) - face_cy = int(face_cy * scale + .5) - height, width = nh, nw - - # Cut out 448*640 or so centered on the face. - for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))): - p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置 # Cutout position to bring the face to the center - - if self.random_crop: - # 背景も含めるために顔を中心に置く確率を高めつつずらす - # Shift while increasing the probability of centering the face to include the background - range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう # Longer distance from the edge of the image to the center of the face - p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数 # nice random numbers from -range to +range - else: - # range指定があるときのみ、すこしだけランダムに(わりと適当) - # Only when a range is specified, a little bit random (rather appropriate) - if self.face_crop_aug_range[0] != self.face_crop_aug_range[1]: - if face_size > self.size // 10 and face_size >= 40: - p1 = p1 + random.randint(-face_size // 20, +face_size // 20) - - p1 = max(0, min(p1, length - target_size)) - - if axis == 0: - image = image[p1:p1 + target_size, :] - else: - image = image[:, p1:p1 + target_size] - - return image - - def __len__(self): - return self._length - - def set_cached_latents(self, image_path, latents): - if self.latents_cache is None: - self.latents_cache = {} - self.latents_cache[image_path] = latents - - def __getitem__(self, index_arg): - example = {} - - if self.fine_tuning or len(self.reg_img_path_captions) == 0: - index = index_arg - img_path_captions = self.train_img_path_captions - reg = False - else: - # 偶数ならtrain、奇数ならregを返す - # Return train for even numbers, reg for odd numbers - if index_arg % 2 == 0: - img_path_captions = self.train_img_path_captions - reg = False - else: - img_path_captions = self.reg_img_path_captions - reg = True - index = index_arg // 2 - example['loss_weight'] = 1.0 if (not reg or self.fine_tuning) else self.prior_loss_weight - - index = index % len(img_path_captions) - image_path, caption = img_path_captions[index] - example['image_path'] = image_path - - # image/latentsを処理する - # process images/latents - if self.latents_cache is not None and image_path in self.latents_cache: - # latentsはキャッシュ済み - example['latents'] = self.latents_cache[image_path] - else: - # 画像を読み込み必要ならcropする - # load images and crop if necessary - img, face_cx, face_cy, face_w, face_h = self.load_image(image_path) - im_h, im_w = img.shape[0:2] - if face_cx > 0: # 顔位置情報あり # With face location information - img = self.crop_target(img, face_cx, face_cy, face_w, face_h) - elif im_h > self.height or im_w > self.width: - assert self.random_crop, f"image too large, and face_crop_aug_range and random_crop are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_cropを有効にしてください" - if im_h > self.height: - p = random.randint(0, im_h - self.height) - img = img[p:p + self.height] - if im_w > self.width: - p = random.randint(0, im_w - self.width) - img = img[:, p:p + self.width] - - im_h, im_w = img.shape[0:2] - assert im_h == self.height and im_w == self.width, f"image too small / 画像サイズが小さいようです: {image_path}" - - # augmentation - if self.aug is not None: - img = self.aug(image=img)['image'] - - example['image'] = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる - - # captionを処理する - if self.fine_tuning and self.shuffle_caption: # fine tuning時にcaptionのshuffleをする - tokens = caption.strip().split(",") - random.shuffle(tokens) - caption = ",".join(tokens).strip() - - input_ids = self.tokenizer(caption, padding="do_not_pad", truncation=True, - max_length=self.tokenizer.model_max_length).input_ids - - # padしてTensor変換 - if self.disable_padding: - # paddingしない:padding==Trueはバッチの中の最大長に合わせるだけ(やはりバグでは……?) - input_ids = self.tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids - else: - # paddingする - input_ids = self.tokenizer.pad({"input_ids": input_ids}, padding='max_length', max_length=self.tokenizer.model_max_length, - return_tensors='pt').input_ids - - example['input_ids'] = input_ids - - if self.debug_dataset: - example['caption'] = caption - return example - - -# checkpoint変換など ############################### - -# region StableDiffusion->Diffusersの変換コード -# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) - -def shave_segments(path, n_shave_prefix_segments=1): - """ - Removes segments. Positive values shave the first segments, negative shave the last segments. - """ - if n_shave_prefix_segments >= 0: - return ".".join(path.split(".")[n_shave_prefix_segments:]) - else: - return ".".join(path.split(".")[:n_shave_prefix_segments]) - - -def renew_resnet_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside resnets to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item.replace("in_layers.0", "norm1") - new_item = new_item.replace("in_layers.2", "conv1") - - new_item = new_item.replace("out_layers.0", "norm2") - new_item = new_item.replace("out_layers.3", "conv2") - - new_item = new_item.replace("emb_layers.1", "time_emb_proj") - new_item = new_item.replace("skip_connection", "conv_shortcut") - - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside resnets to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - new_item = new_item.replace("nin_shortcut", "conv_shortcut") - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_attention_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside attentions to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - # new_item = new_item.replace('norm.weight', 'group_norm.weight') - # new_item = new_item.replace('norm.bias', 'group_norm.bias') - - # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') - # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') - - # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside attentions to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - new_item = new_item.replace("norm.weight", "group_norm.weight") - new_item = new_item.replace("norm.bias", "group_norm.bias") - - new_item = new_item.replace("q.weight", "query.weight") - new_item = new_item.replace("q.bias", "query.bias") - - new_item = new_item.replace("k.weight", "key.weight") - new_item = new_item.replace("k.bias", "key.bias") - - new_item = new_item.replace("v.weight", "value.weight") - new_item = new_item.replace("v.bias", "value.bias") - - new_item = new_item.replace("proj_out.weight", "proj_attn.weight") - new_item = new_item.replace("proj_out.bias", "proj_attn.bias") - - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def assign_to_checkpoint( - paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None -): - """ - This does the final conversion step: take locally converted weights and apply a global renaming - to them. It splits attention layers, and takes into account additional replacements - that may arise. - - Assigns the weights to the new checkpoint. - """ - assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." - - # Splits the attention layers into three variables. - if attention_paths_to_split is not None: - for path, path_map in attention_paths_to_split.items(): - old_tensor = old_checkpoint[path] - channels = old_tensor.shape[0] // 3 - - target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) - - num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 - - old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) - query, key, value = old_tensor.split(channels // num_heads, dim=1) - - checkpoint[path_map["query"]] = query.reshape(target_shape) - checkpoint[path_map["key"]] = key.reshape(target_shape) - checkpoint[path_map["value"]] = value.reshape(target_shape) - - for path in paths: - new_path = path["new"] - - # These have already been assigned - if attention_paths_to_split is not None and new_path in attention_paths_to_split: - continue - - # Global renaming happens here - new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") - new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") - new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") - - if additional_replacements is not None: - for replacement in additional_replacements: - new_path = new_path.replace(replacement["old"], replacement["new"]) - - # proj_attn.weight has to be converted from conv 1D to linear - if "proj_attn.weight" in new_path: - checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] - else: - checkpoint[new_path] = old_checkpoint[path["old"]] - - -def conv_attn_to_linear(checkpoint): - keys = list(checkpoint.keys()) - attn_keys = ["query.weight", "key.weight", "value.weight"] - for key in keys: - if ".".join(key.split(".")[-2:]) in attn_keys: - if checkpoint[key].ndim > 2: - checkpoint[key] = checkpoint[key][:, :, 0, 0] - elif "proj_attn.weight" in key: - if checkpoint[key].ndim > 2: - checkpoint[key] = checkpoint[key][:, :, 0] - - -def convert_ldm_unet_checkpoint(checkpoint, config): - """ - Takes a state dict and a config, and returns a converted checkpoint. - """ - - # extract state_dict for UNet - unet_state_dict = {} - unet_key = "model.diffusion_model." - keys = list(checkpoint.keys()) - for key in keys: - if key.startswith(unet_key): - unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) - - new_checkpoint = {} - - new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] - new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] - new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] - new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] - - new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] - new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] - - new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] - new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] - new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] - new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] - - # Retrieves the keys for the input blocks only - num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) - input_blocks = { - layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] - for layer_id in range(num_input_blocks) - } - - # Retrieves the keys for the middle blocks only - num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) - middle_blocks = { - layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] - for layer_id in range(num_middle_blocks) - } - - # Retrieves the keys for the output blocks only - num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) - output_blocks = { - layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] - for layer_id in range(num_output_blocks) - } - - for i in range(1, num_input_blocks): - block_id = (i - 1) // (config["layers_per_block"] + 1) - layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) - - resnets = [ - key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key - ] - attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] - - if f"input_blocks.{i}.0.op.weight" in unet_state_dict: - new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( - f"input_blocks.{i}.0.op.weight" - ) - new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( - f"input_blocks.{i}.0.op.bias" - ) - - paths = renew_resnet_paths(resnets) - meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - if len(attentions): - paths = renew_attention_paths(attentions) - meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - resnet_0 = middle_blocks[0] - attentions = middle_blocks[1] - resnet_1 = middle_blocks[2] - - resnet_0_paths = renew_resnet_paths(resnet_0) - assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) - - resnet_1_paths = renew_resnet_paths(resnet_1) - assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) - - attentions_paths = renew_attention_paths(attentions) - meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} - assign_to_checkpoint( - attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - for i in range(num_output_blocks): - block_id = i // (config["layers_per_block"] + 1) - layer_in_block_id = i % (config["layers_per_block"] + 1) - output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] - output_block_list = {} - - for layer in output_block_layers: - layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) - if layer_id in output_block_list: - output_block_list[layer_id].append(layer_name) - else: - output_block_list[layer_id] = [layer_name] - - if len(output_block_list) > 1: - resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] - attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] - - resnet_0_paths = renew_resnet_paths(resnets) - paths = renew_resnet_paths(resnets) - - meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - if ["conv.weight", "conv.bias"] in output_block_list.values(): - index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) - new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ - f"output_blocks.{i}.{index}.conv.weight" - ] - new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ - f"output_blocks.{i}.{index}.conv.bias" - ] - - # Clear attentions as they have been attributed above. - if len(attentions) == 2: - attentions = [] - - if len(attentions): - paths = renew_attention_paths(attentions) - meta_path = { - "old": f"output_blocks.{i}.1", - "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", - } - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - else: - resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) - for path in resnet_0_paths: - old_path = ".".join(["output_blocks", str(i), path["old"]]) - new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) - - new_checkpoint[new_path] = unet_state_dict[old_path] - - return new_checkpoint - - -def convert_ldm_vae_checkpoint(checkpoint, config): - # extract state dict for VAE - vae_state_dict = {} - vae_key = "first_stage_model." - keys = list(checkpoint.keys()) - for key in keys: - if key.startswith(vae_key): - vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) - - new_checkpoint = {} - - new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] - new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] - new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] - new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] - new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] - new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] - - new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] - new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] - new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] - new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] - new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] - new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] - - new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] - new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] - new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] - new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] - - # Retrieves the keys for the encoder down blocks only - num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) - down_blocks = { - layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) - } - - # Retrieves the keys for the decoder up blocks only - num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) - up_blocks = { - layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) - } - - for i in range(num_down_blocks): - resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] - - if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: - new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( - f"encoder.down.{i}.downsample.conv.weight" - ) - new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( - f"encoder.down.{i}.downsample.conv.bias" - ) - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] - num_mid_res_blocks = 2 - for i in range(1, num_mid_res_blocks + 1): - resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] - paths = renew_vae_attention_paths(mid_attentions) - meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - conv_attn_to_linear(new_checkpoint) - - for i in range(num_up_blocks): - block_id = num_up_blocks - 1 - i - resnets = [ - key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key - ] - - if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: - new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ - f"decoder.up.{block_id}.upsample.conv.weight" - ] - new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ - f"decoder.up.{block_id}.upsample.conv.bias" - ] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] - num_mid_res_blocks = 2 - for i in range(1, num_mid_res_blocks + 1): - resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] - paths = renew_vae_attention_paths(mid_attentions) - meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - conv_attn_to_linear(new_checkpoint) - return new_checkpoint - - -def create_unet_diffusers_config(): - """ - Creates a config for the diffusers based on the config of the LDM model. - """ - # unet_params = original_config.model.params.unet_config.params - - block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] - - down_block_types = [] - resolution = 1 - for i in range(len(block_out_channels)): - block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" - down_block_types.append(block_type) - if i != len(block_out_channels) - 1: - resolution *= 2 - - up_block_types = [] - for i in range(len(block_out_channels)): - block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" - up_block_types.append(block_type) - resolution //= 2 - - config = dict( - sample_size=UNET_PARAMS_IMAGE_SIZE, - in_channels=UNET_PARAMS_IN_CHANNELS, - out_channels=UNET_PARAMS_OUT_CHANNELS, - down_block_types=tuple(down_block_types), - up_block_types=tuple(up_block_types), - block_out_channels=tuple(block_out_channels), - layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, - cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, - attention_head_dim=UNET_PARAMS_NUM_HEADS, - ) - - return config - - -def create_vae_diffusers_config(): - """ - Creates a config for the diffusers based on the config of the LDM model. - """ - # vae_params = original_config.model.params.first_stage_config.params.ddconfig - # _ = original_config.model.params.first_stage_config.params.embed_dim - block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] - down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) - up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) - - config = dict( - sample_size=VAE_PARAMS_RESOLUTION, - in_channels=VAE_PARAMS_IN_CHANNELS, - out_channels=VAE_PARAMS_OUT_CH, - down_block_types=tuple(down_block_types), - up_block_types=tuple(up_block_types), - block_out_channels=tuple(block_out_channels), - latent_channels=VAE_PARAMS_Z_CHANNELS, - layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, - ) - return config - - -def convert_ldm_clip_checkpoint(checkpoint): - text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") - - keys = list(checkpoint.keys()) - - text_model_dict = {} - - for key in keys: - if key.startswith("cond_stage_model.transformer"): - text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] - - text_model.load_state_dict(text_model_dict) - - return text_model - -# endregion - - -# region Diffusers->StableDiffusion の変換コード -# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) - -def convert_unet_state_dict(unet_state_dict): - unet_conversion_map = [ - # (stable-diffusion, HF Diffusers) - ("time_embed.0.weight", "time_embedding.linear_1.weight"), - ("time_embed.0.bias", "time_embedding.linear_1.bias"), - ("time_embed.2.weight", "time_embedding.linear_2.weight"), - ("time_embed.2.bias", "time_embedding.linear_2.bias"), - ("input_blocks.0.0.weight", "conv_in.weight"), - ("input_blocks.0.0.bias", "conv_in.bias"), - ("out.0.weight", "conv_norm_out.weight"), - ("out.0.bias", "conv_norm_out.bias"), - ("out.2.weight", "conv_out.weight"), - ("out.2.bias", "conv_out.bias"), - ] - - unet_conversion_map_resnet = [ - # (stable-diffusion, HF Diffusers) - ("in_layers.0", "norm1"), - ("in_layers.2", "conv1"), - ("out_layers.0", "norm2"), - ("out_layers.3", "conv2"), - ("emb_layers.1", "time_emb_proj"), - ("skip_connection", "conv_shortcut"), - ] - - unet_conversion_map_layer = [] - for i in range(4): - # loop over downblocks/upblocks - - for j in range(2): - # loop over resnets/attentions for downblocks - hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." - sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." - unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) - - if i < 3: - # no attention layers in down_blocks.3 - hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." - sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." - unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) - - for j in range(3): - # loop over resnets/attentions for upblocks - hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." - sd_up_res_prefix = f"output_blocks.{3*i + j}.0." - unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) - - if i > 0: - # no attention layers in up_blocks.0 - hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." - sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." - unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) - - if i < 3: - # no downsample in down_blocks.3 - hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." - sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." - unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) - - # no upsample in up_blocks.3 - hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." - sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." - unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) - - hf_mid_atn_prefix = "mid_block.attentions.0." - sd_mid_atn_prefix = "middle_block.1." - unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) - - for j in range(2): - hf_mid_res_prefix = f"mid_block.resnets.{j}." - sd_mid_res_prefix = f"middle_block.{2*j}." - unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) - - # buyer beware: this is a *brittle* function, - # and correct output requires that all of these pieces interact in - # the exact order in which I have arranged them. - mapping = {k: k for k in unet_state_dict.keys()} - for sd_name, hf_name in unet_conversion_map: - mapping[hf_name] = sd_name - for k, v in mapping.items(): - if "resnets" in k: - for sd_part, hf_part in unet_conversion_map_resnet: - v = v.replace(hf_part, sd_part) - mapping[k] = v - for k, v in mapping.items(): - for sd_part, hf_part in unet_conversion_map_layer: - v = v.replace(hf_part, sd_part) - mapping[k] = v - new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} - return new_state_dict - -# endregion - - -def load_stable_diffusion_checkpoint(ckpt_path): - checkpoint = torch.load(ckpt_path, map_location="cpu")["state_dict"] - - # Convert the UNet2DConditionModel model. - unet_config = create_unet_diffusers_config() - converted_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config) - - unet = UNet2DConditionModel(**unet_config) - unet.load_state_dict(converted_unet_checkpoint) - - # Convert the VAE model. - vae_config = create_vae_diffusers_config() - converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) - - vae = AutoencoderKL(**vae_config) - vae.load_state_dict(converted_vae_checkpoint) - - # convert text_model - text_model = convert_ldm_clip_checkpoint(checkpoint) - - return text_model, vae, unet - - -def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path): - # VAEがメモリ上にないので、もう一度VAEを含めて読み込む - state_dict = torch.load(ckpt_path, map_location="cpu")['state_dict'] - - # Convert the UNet model - unet_state_dict = convert_unet_state_dict(unet.state_dict()) - for k, v in unet_state_dict.items(): - key = "model.diffusion_model." + k - assert key in state_dict, f"Illegal key in save SD: {key}" - if args.save_half: - state_dict[key] = v.half() # save to fp16 - else: - state_dict[key] = v - - # Convert the text encoder model - text_enc_dict = text_encoder.state_dict() # 変換不要 - for k, v in text_enc_dict.items(): - key = "cond_stage_model.transformer." + k - assert key in state_dict, f"Illegal key in save SD: {key}" - if args.save_half: - state_dict[key] = v.half() # save to fp16 - else: - state_dict[key] = v - - # Put together new checkpoint - state_dict = {"state_dict": state_dict} - torch.save(state_dict, output_file) - - -def collate_fn(examples): - input_ids = [e['input_ids'] for e in examples] - input_ids = torch.stack(input_ids) - - if 'latents' in examples[0]: - pixel_values = None - latents = [e['latents'] for e in examples] - latents = torch.stack(latents) - else: - pixel_values = [e['image'] for e in examples] - pixel_values = torch.stack(pixel_values) - pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() - latents = None - - loss_weights = [e['loss_weight'] for e in examples] - loss_weights = torch.FloatTensor(loss_weights) - - batch = {"input_ids": input_ids, "pixel_values": pixel_values, "latents": latents, "loss_weights": loss_weights} - return batch - - -def train(args): - fine_tuning = args.fine_tuning - cache_latents = args.cache_latents - - # latentsをキャッシュする場合のオプション設定を確認する - if cache_latents: - # assert args.face_crop_aug_range is None and not args.random_crop, "when caching latents, crop aug cannot be used / latentをキャッシュするときは切り出しは使えません" - # →使えるようにしておく(初期イメージの切り出しになる) - assert not args.flip_aug and not args.color_aug, "when caching latents, augmentation cannot be used / latentをキャッシュするときはaugmentationは使えません" - - # モデル形式のオプション設定を確認する - use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) - if not use_stable_diffusion_format: - assert os.path.exists( - args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}" - - assert args.save_every_n_epochs is None or use_stable_diffusion_format, "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" - - if args.seed is not None: - set_seed(args.seed) - - # 学習データを用意する - def load_dreambooth_dir(dir): - tokens = os.path.basename(dir).split('_') - try: - n_repeats = int(tokens[0]) - except ValueError as e: - print(f"no 'n_repeats' in directory name / DreamBoothのディレクトリ名に繰り返し回数がないようです: {dir}") - raise e - - caption = '_'.join(tokens[1:]) - - img_paths = glob.glob(os.path.join(dir, "*.png")) + glob.glob(os.path.join(dir, "*.jpg")) - return n_repeats, [(ip, caption) for ip in img_paths] - - print("prepare train images.") - train_img_path_captions = [] - - if fine_tuning: - img_paths = glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.jpg")) - for img_path in tqdm(img_paths): - # captionの候補ファイル名を作る - base_name = os.path.splitext(img_path)[0] - base_name_face_det = base_name - tokens = base_name.split("_") - if len(tokens) >= 5: - base_name_face_det = "_".join(tokens[:-4]) - cap_paths = [base_name + '.txt', base_name + '.caption', base_name_face_det+'.txt', base_name_face_det+'.caption'] - - caption = None - for cap_path in cap_paths: - if os.path.isfile(cap_path): - with open(cap_path, "rt", encoding='utf-8') as f: - caption = f.readlines()[0].strip() - break - - assert caption is not None and len(caption) > 0, f"no caption / キャプションファイルが見つからないか、captionが空です: {cap_paths}" - - train_img_path_captions.append((img_path, caption)) - - else: - train_dirs = os.listdir(args.train_data_dir) - for dir in train_dirs: - n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.train_data_dir, dir)) - for _ in range(n_repeats): - train_img_path_captions.extend(img_caps) - print(f"{len(train_img_path_captions)} train images.") - - if fine_tuning: - reg_img_path_captions = [] - else: - print("prepare reg images.") - reg_img_path_captions = [] - if args.reg_data_dir: - reg_dirs = os.listdir(args.reg_data_dir) - for dir in reg_dirs: - n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.reg_data_dir, dir)) - for _ in range(n_repeats): - reg_img_path_captions.extend(img_caps) - print(f"{len(reg_img_path_captions)} reg images.") - - if args.debug_dataset: - # デバッグ時はshuffleして実際のデータセット使用時に近づける(学習時はdata loaderでshuffleする) - random.shuffle(train_img_path_captions) - random.shuffle(reg_img_path_captions) - - # データセットを準備する - resolution = tuple([int(r) for r in args.resolution.split(',')]) - if len(resolution) == 1: - resolution = (resolution[0], resolution[0]) - assert len( - resolution) == 2, f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}" - - if args.face_crop_aug_range is not None: - face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')]) - assert len( - face_crop_aug_range) == 2, f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}" - else: - face_crop_aug_range = None - - # tokenizerを読み込む - print("prepare tokenizer") - tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) - - print("prepare dataset") - train_dataset = DreamBoothOrFineTuningDataset(fine_tuning, train_img_path_captions, - reg_img_path_captions, tokenizer, resolution, args.prior_loss_weight, args.flip_aug, args.color_aug, face_crop_aug_range, args.random_crop, args.shuffle_caption, args.no_token_padding, args.debug_dataset) - - if args.debug_dataset: - print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") - print("Escape for exit. / Escキーで中断、終了します") - for example in train_dataset: - im = example['image'] - im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8) - im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c - im = im[:, :, ::-1] # RGB -> BGR (OpenCV) - print(f'caption: "{example["caption"]}", loss weight: {example["loss_weight"]}') - cv2.imshow("img", im) - k = cv2.waitKey() - cv2.destroyAllWindows() - if k == 27: - break - return - - # acceleratorを準備する - # gradient accumulationは複数モデルを学習する場合には対応していないとのことなので、1固定にする - print("prepare accelerator") - accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision) - - # モデルを読み込む - if use_stable_diffusion_format: - print("load StableDiffusion checkpoint") - text_encoder, vae, unet = load_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) - else: - print("load Diffusers pretrained models") - text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") - vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") - unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") - - # モデルに xformers とか memory efficient attention を組み込む - replace_unet_modules(unet, args.mem_eff_attn, args.xformers) - - # mixed precisionに対応した型を用意しておき適宜castする - weight_dtype = torch.float32 - if args.mixed_precision == "fp16": - weight_dtype = torch.float16 - elif args.mixed_precision == "bf16": - weight_dtype = torch.bfloat16 - - # 学習を準備する - if cache_latents: - # latentをcacheする→新しいDatasetを作るとcaptionのshuffleが効かないので元のDatasetにcacheを持つ(cascadeする手もあるが) - print("caching latents.") - vae.to(accelerator.device, dtype=weight_dtype) - - for i in tqdm(range(len(train_dataset))): - example = train_dataset[i] - if 'latents' not in example: - image_path = example['image_path'] - with torch.no_grad(): - pixel_values = example["image"].unsqueeze(0).to(device=accelerator.device, dtype=weight_dtype) - latents = vae.encode(pixel_values).latent_dist.sample().squeeze(0).to("cpu") - train_dataset.set_cached_latents(image_path, latents) - # assertion - for i in range(len(train_dataset)): - assert 'latents' in train_dataset[i], "internal error: latents not cached" - - del vae - if torch.cuda.is_available(): - torch.cuda.empty_cache() - else: - vae.requires_grad_(False) - - if args.gradient_checkpointing: - unet.enable_gradient_checkpointing() - text_encoder.gradient_checkpointing_enable() - - # 学習に必要なクラスを準備する - print("prepare optimizer, data loader etc.") - - # 8-bit Adamを使う - if args.use_8bit_adam: - try: - import bitsandbytes as bnb - except ImportError: - raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") - print("use 8-bit Adma optimizer") - optimizer_class = bnb.optim.AdamW8bit - else: - optimizer_class = torch.optim.AdamW - - trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters())) - - # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 - optimizer = optimizer_class(trainable_params, lr=args.learning_rate) - - # dataloaderを準備する - # DataLoaderのプロセス数:0はメインプロセスになる - n_workers = min(4, os.cpu_count() - 1) # cpu_count-1 ただし最大4 - train_dataloader = torch.utils.data.DataLoader( - train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=n_workers) - - # lr schedulerを用意する - lr_scheduler = diffusers.optimization.get_scheduler("constant", optimizer, num_training_steps=args.max_train_steps) - - # acceleratorがなんかよろしくやってくれるらしい - unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( - unet, text_encoder, optimizer, train_dataloader, lr_scheduler) - - if not cache_latents: - vae.to(accelerator.device, dtype=weight_dtype) - - # epoch数を計算する - num_train_epochs = math.ceil(args.max_train_steps / len(train_dataloader)) - - # 学習する - total_batch_size = args.train_batch_size # * accelerator.num_processes - print("running training / 学習開始") - print(f" num examples / サンプル数: {len(train_dataset)}") - print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") - print(f" num epochs / epoch数: {num_train_epochs}") - print(f" batch size per device / バッチサイズ: {args.train_batch_size}") - print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") - print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") - - progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") - global_step = 0 - - noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) - - if accelerator.is_main_process: - accelerator.init_trackers("dreambooth") - - # 以下 train_dreambooth.py からほぼコピペ - for epoch in range(num_train_epochs): - print(f"epoch {epoch+1}/{num_train_epochs}") - unet.train() - text_encoder.train() # なんかunetだけでいいらしい?→最新版で修正されてた(;´Д`) いろいろ雑だな - - for step, batch in enumerate(train_dataloader): - with accelerator.accumulate(unet): - with torch.no_grad(): - # latentに変換 - if cache_latents: - latents = batch["latents"].to(accelerator.device) - else: - latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() - latents = latents * 0.18215 - - # Sample noise that we'll add to the latents - noise = torch.randn_like(latents, device=latents.device) - b_size = latents.shape[0] - - # Sample a random timestep for each image - timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) - timesteps = timesteps.long() - - # Add noise to the latents according to the noise magnitude at each timestep - # (this is the forward diffusion process) - noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) - - # Get the text embedding for conditioning - if args.clip_skip is None: - encoder_hidden_states = text_encoder(batch["input_ids"])[0] - else: - enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True) - encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] - encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) - - # Predict the noise residual - noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample - - loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="none") - loss = loss.mean([1, 2, 3]) - - loss_weights = batch["loss_weights"] # 各sampleごとのweight - loss = loss * loss_weights - - loss = loss.mean() - - accelerator.backward(loss) - if accelerator.sync_gradients: - params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())) - accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) - - optimizer.step() - lr_scheduler.step() - optimizer.zero_grad(set_to_none=True) - - # Checks if the accelerator has performed an optimization step behind the scenes - if accelerator.sync_gradients: - progress_bar.update(1) - global_step += 1 - - logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]} - progress_bar.set_postfix(**logs) - # accelerator.log(logs, step=global_step) - - if global_step >= args.max_train_steps: - break - - accelerator.wait_for_everyone() - - if use_stable_diffusion_format and args.save_every_n_epochs is not None: - if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs: - print("saving check point.") - os.makedirs(args.output_dir, exist_ok=True) - ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) - save_stable_diffusion_checkpoint(ckpt_file, accelerator.unwrap_model( - text_encoder), accelerator.unwrap_model(unet), args.pretrained_model_name_or_path) - - is_main_process = accelerator.is_main_process - if is_main_process: - unet = accelerator.unwrap_model(unet) - text_encoder = accelerator.unwrap_model(text_encoder) - - accelerator.end_training() - del accelerator # この後メモリを使うのでこれは消す - - if is_main_process: - os.makedirs(args.output_dir, exist_ok=True) - if use_stable_diffusion_format: - print(f"save trained model as StableDiffusion checkpoint to {args.output_dir}") - ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) - save_stable_diffusion_checkpoint(ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path) - else: - # Create the pipeline using using the trained modules and save it. - print(f"save trained model as Diffusers to {args.output_dir}") - pipeline = StableDiffusionPipeline.from_pretrained( - args.pretrained_model_name_or_path, - unet=unet, - text_encoder=text_encoder, - ) - pipeline.save_pretrained(args.output_dir) - print("model saved.") - - -# region モジュール入れ替え部 -""" -高速化のためのモジュール入れ替え -""" - -# FlashAttentionを使うCrossAttention -# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py -# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE - -# constants - -EPSILON = 1e-6 - -# helper functions - - -def exists(val): - return val is not None - - -def default(val, d): - return val if exists(val) else d - -# flash attention forwards and backwards - -# https://arxiv.org/abs/2205.14135 - - -class FlashAttentionFunction(Function): - @ staticmethod - @ torch.no_grad() - def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): - """ Algorithm 2 in the paper """ - - device = q.device - dtype = q.dtype - max_neg_value = -torch.finfo(q.dtype).max - qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) - - o = torch.zeros_like(q) - all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) - all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) - - scale = (q.shape[-1] ** -0.5) - - if not exists(mask): - mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) - else: - mask = rearrange(mask, 'b n -> b 1 1 n') - mask = mask.split(q_bucket_size, dim=-1) - - row_splits = zip( - q.split(q_bucket_size, dim=-2), - o.split(q_bucket_size, dim=-2), - mask, - all_row_sums.split(q_bucket_size, dim=-2), - all_row_maxes.split(q_bucket_size, dim=-2), - ) - - for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): - q_start_index = ind * q_bucket_size - qk_len_diff - - col_splits = zip( - k.split(k_bucket_size, dim=-2), - v.split(k_bucket_size, dim=-2), - ) - - for k_ind, (kc, vc) in enumerate(col_splits): - k_start_index = k_ind * k_bucket_size - - attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale - - if exists(row_mask): - attn_weights.masked_fill_(~row_mask, max_neg_value) - - if causal and q_start_index < (k_start_index + k_bucket_size - 1): - causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, - device=device).triu(q_start_index - k_start_index + 1) - attn_weights.masked_fill_(causal_mask, max_neg_value) - - block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) - attn_weights -= block_row_maxes - exp_weights = torch.exp(attn_weights) - - if exists(row_mask): - exp_weights.masked_fill_(~row_mask, 0.) - - block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) - - new_row_maxes = torch.maximum(block_row_maxes, row_maxes) - - exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) - - exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) - exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) - - new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums - - oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) - - row_maxes.copy_(new_row_maxes) - row_sums.copy_(new_row_sums) - - ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) - ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) - - return o - - @ staticmethod - @ torch.no_grad() - def backward(ctx, do): - """ Algorithm 4 in the paper """ - - causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args - q, k, v, o, l, m = ctx.saved_tensors - - device = q.device - - max_neg_value = -torch.finfo(q.dtype).max - qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) - - dq = torch.zeros_like(q) - dk = torch.zeros_like(k) - dv = torch.zeros_like(v) - - row_splits = zip( - q.split(q_bucket_size, dim=-2), - o.split(q_bucket_size, dim=-2), - do.split(q_bucket_size, dim=-2), - mask, - l.split(q_bucket_size, dim=-2), - m.split(q_bucket_size, dim=-2), - dq.split(q_bucket_size, dim=-2) - ) - - for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): - q_start_index = ind * q_bucket_size - qk_len_diff - - col_splits = zip( - k.split(k_bucket_size, dim=-2), - v.split(k_bucket_size, dim=-2), - dk.split(k_bucket_size, dim=-2), - dv.split(k_bucket_size, dim=-2), - ) - - for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): - k_start_index = k_ind * k_bucket_size - - attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale - - if causal and q_start_index < (k_start_index + k_bucket_size - 1): - causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, - device=device).triu(q_start_index - k_start_index + 1) - attn_weights.masked_fill_(causal_mask, max_neg_value) - - exp_attn_weights = torch.exp(attn_weights - mc) - - if exists(row_mask): - exp_attn_weights.masked_fill_(~row_mask, 0.) - - p = exp_attn_weights / lc - - dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) - dp = einsum('... i d, ... j d -> ... i j', doc, vc) - - D = (doc * oc).sum(dim=-1, keepdims=True) - ds = p * scale * (dp - D) - - dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) - dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) - - dqc.add_(dq_chunk) - dkc.add_(dk_chunk) - dvc.add_(dv_chunk) - - return dq, dk, dv, None, None, None, None - - -def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): - if mem_eff_attn: - replace_unet_cross_attn_to_memory_efficient() - elif xformers: - replace_unet_cross_attn_to_xformers() - - -def replace_unet_cross_attn_to_memory_efficient(): - print("Replace CrossAttention.forward to use FlashAttention") - flash_func = FlashAttentionFunction - - def forward_flash_attn(self, x, context=None, mask=None): - q_bucket_size = 512 - k_bucket_size = 1024 - - h = self.heads - q = self.to_q(x) - - context = context if context is not None else x - context = context.to(x.dtype) - k = self.to_k(context) - v = self.to_v(context) - del context, x - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) - - out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) - - out = rearrange(out, 'b h n d -> b n (h d)') - return self.to_out(out) - - diffusers.models.attention.CrossAttention.forward = forward_flash_attn - - -def replace_unet_cross_attn_to_xformers(): - print("Replace CrossAttention.forward to use xformers") - try: - import xformers.ops - except ImportError: - raise ImportError("No xformers / xformersがインストールされていないようです") - - def forward_xformers(self, x, context=None, mask=None): - h = self.heads - q_in = self.to_q(x) - - context = default(context, x) - context = context.to(x.dtype) - - k_in = self.to_k(context) - v_in = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) - del q_in, k_in, v_in - out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる - - out = rearrange(out, 'b n h d -> b n (h d)', h=h) - return self.to_out(out) - - diffusers.models.attention.CrossAttention.forward = forward_xformers -# endregion - - -if __name__ == '__main__': - # torch.cuda.set_per_process_memory_fraction(0.48) - parser = argparse.ArgumentParser() - parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, - help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") - parser.add_argument("--fine_tuning", action="store_true", - help="fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする") - parser.add_argument("--fine_tuning_repeat", type=int, default=50, - help="Number of time each images will be repeated in each epoc") - parser.add_argument("--shuffle_caption", action="store_true", - help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") - parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") - parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ") - parser.add_argument("--output_dir", type=str, default=None, - help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") - parser.add_argument("--save_every_n_epochs", type=int, default=None, - help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存します(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") - parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み") - parser.add_argument("--no_token_padding", action="store_true", - help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)") - parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする") - parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする") - parser.add_argument("--face_crop_aug_range", type=str, default=None, - help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)") - parser.add_argument("--random_crop", action="store_true", - help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)") - parser.add_argument("--debug_dataset", action="store_true", - help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") - parser.add_argument("--resolution", type=str, default=None, - help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)") - parser.add_argument("--train_batch_size", type=int, default=1, - help="batch size for training (1 means one train or reg data, not train/reg pair) / 学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)") - parser.add_argument("--use_8bit_adam", action="store_true", - help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") - parser.add_argument("--mem_eff_attn", action="store_true", - help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") - parser.add_argument("--xformers", action="store_true", - help="use xformers for CrossAttention / CrossAttentionにxformersを使う") - parser.add_argument("--cache_latents", action="store_true", - help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)") - parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") - parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") - parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") - parser.add_argument("--gradient_checkpointing", action="store_true", - help="enable gradient checkpointing / grandient checkpointingを有効にする") - parser.add_argument("--mixed_precision", type=str, default="no", - choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") - parser.add_argument("--clip_skip", type=int, default=None, - help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") - parser.add_argument("--save_half", action="store_true", - help="save ckpt model with fp16 precision") - - args = parser.parse_args() - train(args) diff --git a/train_db_fixed_v6.py b/train_db_fixed_v6.py deleted file mode 100644 index a66a8a9..0000000 --- a/train_db_fixed_v6.py +++ /dev/null @@ -1,1567 +0,0 @@ -# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします -# The license of this script, like train_dreambooth.py, is Apache License 2.0 -# (c) 2022 Kohya S. @kohya_ss - -from torch.autograd.function import Function -import argparse -import glob -import itertools -import math -import os -import random - -from tqdm import tqdm -import torch -from torchvision import transforms -from accelerate import Accelerator -from accelerate.utils import set_seed -from transformers import CLIPTextModel, CLIPTokenizer -import diffusers -from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel -import albumentations as albu -import numpy as np -from PIL import Image -import cv2 -from einops import rearrange -from torch import einsum - -# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う -# Tokenizer: use the one provided beforehand instead of reading from checkpoints -TOKENIZER_PATH = "openai/clip-vit-large-patch14" - -# StableDiffusionのモデルパラメータ -# StableDiffusion model parameters -NUM_TRAIN_TIMESTEPS = 1000 -BETA_START = 0.00085 -BETA_END = 0.0120 - -UNET_PARAMS_MODEL_CHANNELS = 320 -UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] -UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] -UNET_PARAMS_IMAGE_SIZE = 32 # unused -UNET_PARAMS_IN_CHANNELS = 4 -UNET_PARAMS_OUT_CHANNELS = 4 -UNET_PARAMS_NUM_RES_BLOCKS = 2 -UNET_PARAMS_CONTEXT_DIM = 768 -UNET_PARAMS_NUM_HEADS = 8 - -VAE_PARAMS_Z_CHANNELS = 4 -VAE_PARAMS_RESOLUTION = 256 -VAE_PARAMS_IN_CHANNELS = 3 -VAE_PARAMS_OUT_CH = 3 -VAE_PARAMS_CH = 128 -VAE_PARAMS_CH_MULT = [1, 2, 4, 4] -VAE_PARAMS_NUM_RES_BLOCKS = 2 - -# checkpointファイル名 -# checkpoint filename -LAST_CHECKPOINT_NAME = "last.ckpt" -EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" - - -class DreamBoothOrFineTuningDataset(torch.utils.data.Dataset): - def __init__(self, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, prior_loss_weight, flip_aug, color_aug, face_crop_aug_range, random_crop, shuffle_caption, disable_padding, debug_dataset) -> None: - super().__init__() - - self.fine_tuning = fine_tuning - self.train_img_path_captions = train_img_path_captions - self.reg_img_path_captions = reg_img_path_captions - self.tokenizer = tokenizer - self.width, self.height = resolution - self.size = min(self.width, self.height) # 短いほう - self.prior_loss_weight = prior_loss_weight - self.face_crop_aug_range = face_crop_aug_range - self.random_crop = random_crop - self.debug_dataset = debug_dataset - self.shuffle_caption = shuffle_caption - self.disable_padding = disable_padding - self.latents_cache = None - - # augmentation - flip_p = 0.5 if flip_aug else 0.0 - if color_aug: - # わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hue/saturationあたりを触る - # Weak tint augmentation: touch gamma/hue/saturation on the assumption that brightness/contrast is not good because it changes the maximum and minimum pixel value of the image. - self.aug = albu.Compose([ - albu.OneOf([ - # albu.RandomBrightnessContrast(0.05, 0.05, p=.2), - albu.HueSaturationValue(5, 8, 0, p=.2), - # albu.RGBShift(5, 5, 5, p=.1), - albu.RandomGamma((95, 105), p=.5), - ], p=.33), - albu.HorizontalFlip(p=flip_p) - ], p=1.) - elif flip_aug: - self.aug = albu.Compose([ - albu.HorizontalFlip(p=flip_p) - ], p=1.) - else: - self.aug = None - - if self.fine_tuning: - self._length = len(self.train_img_path_captions) - else: - # 学習データの倍として、奇数ならtrain - # train as double the training data, train if odd - self._length = len(self.train_img_path_captions) * 2 - if self._length // 2 < len(self.reg_img_path_captions): - print("some of reg images are not used / Due to the large number of regularized images, some regularized images are not used") - - self.image_transforms = transforms.Compose( - [ - transforms.ToTensor(), - transforms.Normalize([0.5], [0.5]), - ] - ) - - def load_image(self, image_path): - image = Image.open(image_path) - if not image.mode == "RGB": - image = image.convert("RGB") - img = np.array(image, np.uint8) - - face_cx = face_cy = face_w = face_h = 0 - if self.face_crop_aug_range is not None: - tokens = os.path.splitext(os.path.basename(image_path))[0].split('_') - if len(tokens) >= 5: - face_cx = int(tokens[-4]) - face_cy = int(tokens[-3]) - face_w = int(tokens[-2]) - face_h = int(tokens[-1]) - - return img, face_cx, face_cy, face_w, face_h - - # いい感じに切り出す - # Cutting it out for good - def crop_target(self, image, face_cx, face_cy, face_w, face_h): - height, width = image.shape[0:2] - if height == self.height and width == self.width: - return image - - # 画像サイズはsizeより大きいのでリサイズする - # Resize the image size because it is larger than size - face_size = max(face_w, face_h) - min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率)# Magnification at which the image exactly matches the model input size (minimum magnification) - min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ # Minimum size of the specified face - max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ # Minimum size of the specified face - if min_scale >= max_scale: # range指定がmin==max - scale = min_scale - else: - scale = random.uniform(min_scale, max_scale) - - nh = int(height * scale + .5) - nw = int(width * scale + .5) - assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}" - image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA) - face_cx = int(face_cx * scale + .5) - face_cy = int(face_cy * scale + .5) - height, width = nh, nw - - # Cut out 448*640 or so centered on the face. - for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))): - p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置 # Cutout position to bring the face to the center - - if self.random_crop: - # 背景も含めるために顔を中心に置く確率を高めつつずらす - # Shift while increasing the probability of centering the face to include the background - range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう # Longer distance from the edge of the image to the center of the face - p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数 # nice random numbers from -range to +range - else: - # range指定があるときのみ、すこしだけランダムに(わりと適当) - # Only when a range is specified, a little bit random (rather appropriate) - if self.face_crop_aug_range[0] != self.face_crop_aug_range[1]: - if face_size > self.size // 10 and face_size >= 40: - p1 = p1 + random.randint(-face_size // 20, +face_size // 20) - - p1 = max(0, min(p1, length - target_size)) - - if axis == 0: - image = image[p1:p1 + target_size, :] - else: - image = image[:, p1:p1 + target_size] - - return image - - def __len__(self): - return self._length - - def set_cached_latents(self, image_path, latents): - if self.latents_cache is None: - self.latents_cache = {} - self.latents_cache[image_path] = latents - - def __getitem__(self, index_arg): - example = {} - - if self.fine_tuning or len(self.reg_img_path_captions) == 0: - index = index_arg - img_path_captions = self.train_img_path_captions - reg = False - else: - # 偶数ならtrain、奇数ならregを返す - # Return train for even numbers, reg for odd numbers - if index_arg % 2 == 0: - img_path_captions = self.train_img_path_captions - reg = False - else: - img_path_captions = self.reg_img_path_captions - reg = True - index = index_arg // 2 - example['loss_weight'] = 1.0 if (not reg or self.fine_tuning) else self.prior_loss_weight - - index = index % len(img_path_captions) - image_path, caption = img_path_captions[index] - example['image_path'] = image_path - - # image/latentsを処理する - # process images/latents - if self.latents_cache is not None and image_path in self.latents_cache: - # latentsはキャッシュ済み - example['latents'] = self.latents_cache[image_path] - else: - # 画像を読み込み必要ならcropする - # load images and crop if necessary - img, face_cx, face_cy, face_w, face_h = self.load_image(image_path) - im_h, im_w = img.shape[0:2] - if face_cx > 0: # 顔位置情報あり # With face location information - img = self.crop_target(img, face_cx, face_cy, face_w, face_h) - elif im_h > self.height or im_w > self.width: - assert self.random_crop, f"image too large, and face_crop_aug_range and random_crop are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_cropを有効にしてください" - if im_h > self.height: - p = random.randint(0, im_h - self.height) - img = img[p:p + self.height] - if im_w > self.width: - p = random.randint(0, im_w - self.width) - img = img[:, p:p + self.width] - - im_h, im_w = img.shape[0:2] - assert im_h == self.height and im_w == self.width, f"image too small / 画像サイズが小さいようです: {image_path}" - - # augmentation - if self.aug is not None: - img = self.aug(image=img)['image'] - - example['image'] = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる - - # captionを処理する - if self.fine_tuning and self.shuffle_caption: # fine tuning時にcaptionのshuffleをする - tokens = caption.strip().split(",") - random.shuffle(tokens) - caption = ",".join(tokens).strip() - - input_ids = self.tokenizer(caption, padding="do_not_pad", truncation=True, - max_length=self.tokenizer.model_max_length).input_ids - - # padしてTensor変換 - if self.disable_padding: - # paddingしない:padding==Trueはバッチの中の最大長に合わせるだけ(やはりバグでは……?) - input_ids = self.tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids - else: - # paddingする - input_ids = self.tokenizer.pad({"input_ids": input_ids}, padding='max_length', max_length=self.tokenizer.model_max_length, - return_tensors='pt').input_ids - - example['input_ids'] = input_ids - - if self.debug_dataset: - example['caption'] = caption - return example - - -# checkpoint変換など ############################### - -# region StableDiffusion->Diffusersの変換コード -# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) - -def shave_segments(path, n_shave_prefix_segments=1): - """ - Removes segments. Positive values shave the first segments, negative shave the last segments. - """ - if n_shave_prefix_segments >= 0: - return ".".join(path.split(".")[n_shave_prefix_segments:]) - else: - return ".".join(path.split(".")[:n_shave_prefix_segments]) - - -def renew_resnet_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside resnets to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item.replace("in_layers.0", "norm1") - new_item = new_item.replace("in_layers.2", "conv1") - - new_item = new_item.replace("out_layers.0", "norm2") - new_item = new_item.replace("out_layers.3", "conv2") - - new_item = new_item.replace("emb_layers.1", "time_emb_proj") - new_item = new_item.replace("skip_connection", "conv_shortcut") - - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside resnets to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - new_item = new_item.replace("nin_shortcut", "conv_shortcut") - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_attention_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside attentions to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - # new_item = new_item.replace('norm.weight', 'group_norm.weight') - # new_item = new_item.replace('norm.bias', 'group_norm.bias') - - # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') - # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') - - # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): - """ - Updates paths inside attentions to the new naming scheme (local renaming) - """ - mapping = [] - for old_item in old_list: - new_item = old_item - - new_item = new_item.replace("norm.weight", "group_norm.weight") - new_item = new_item.replace("norm.bias", "group_norm.bias") - - new_item = new_item.replace("q.weight", "query.weight") - new_item = new_item.replace("q.bias", "query.bias") - - new_item = new_item.replace("k.weight", "key.weight") - new_item = new_item.replace("k.bias", "key.bias") - - new_item = new_item.replace("v.weight", "value.weight") - new_item = new_item.replace("v.bias", "value.bias") - - new_item = new_item.replace("proj_out.weight", "proj_attn.weight") - new_item = new_item.replace("proj_out.bias", "proj_attn.bias") - - new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) - - mapping.append({"old": old_item, "new": new_item}) - - return mapping - - -def assign_to_checkpoint( - paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None -): - """ - This does the final conversion step: take locally converted weights and apply a global renaming - to them. It splits attention layers, and takes into account additional replacements - that may arise. - - Assigns the weights to the new checkpoint. - """ - assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." - - # Splits the attention layers into three variables. - if attention_paths_to_split is not None: - for path, path_map in attention_paths_to_split.items(): - old_tensor = old_checkpoint[path] - channels = old_tensor.shape[0] // 3 - - target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) - - num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 - - old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) - query, key, value = old_tensor.split(channels // num_heads, dim=1) - - checkpoint[path_map["query"]] = query.reshape(target_shape) - checkpoint[path_map["key"]] = key.reshape(target_shape) - checkpoint[path_map["value"]] = value.reshape(target_shape) - - for path in paths: - new_path = path["new"] - - # These have already been assigned - if attention_paths_to_split is not None and new_path in attention_paths_to_split: - continue - - # Global renaming happens here - new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") - new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") - new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") - - if additional_replacements is not None: - for replacement in additional_replacements: - new_path = new_path.replace(replacement["old"], replacement["new"]) - - # proj_attn.weight has to be converted from conv 1D to linear - if "proj_attn.weight" in new_path: - checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] - else: - checkpoint[new_path] = old_checkpoint[path["old"]] - - -def conv_attn_to_linear(checkpoint): - keys = list(checkpoint.keys()) - attn_keys = ["query.weight", "key.weight", "value.weight"] - for key in keys: - if ".".join(key.split(".")[-2:]) in attn_keys: - if checkpoint[key].ndim > 2: - checkpoint[key] = checkpoint[key][:, :, 0, 0] - elif "proj_attn.weight" in key: - if checkpoint[key].ndim > 2: - checkpoint[key] = checkpoint[key][:, :, 0] - - -def convert_ldm_unet_checkpoint(checkpoint, config): - """ - Takes a state dict and a config, and returns a converted checkpoint. - """ - - # extract state_dict for UNet - unet_state_dict = {} - unet_key = "model.diffusion_model." - keys = list(checkpoint.keys()) - for key in keys: - if key.startswith(unet_key): - unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) - - new_checkpoint = {} - - new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] - new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] - new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] - new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] - - new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] - new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] - - new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] - new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] - new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] - new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] - - # Retrieves the keys for the input blocks only - num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) - input_blocks = { - layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] - for layer_id in range(num_input_blocks) - } - - # Retrieves the keys for the middle blocks only - num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) - middle_blocks = { - layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] - for layer_id in range(num_middle_blocks) - } - - # Retrieves the keys for the output blocks only - num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) - output_blocks = { - layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] - for layer_id in range(num_output_blocks) - } - - for i in range(1, num_input_blocks): - block_id = (i - 1) // (config["layers_per_block"] + 1) - layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) - - resnets = [ - key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key - ] - attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] - - if f"input_blocks.{i}.0.op.weight" in unet_state_dict: - new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( - f"input_blocks.{i}.0.op.weight" - ) - new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( - f"input_blocks.{i}.0.op.bias" - ) - - paths = renew_resnet_paths(resnets) - meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - if len(attentions): - paths = renew_attention_paths(attentions) - meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - resnet_0 = middle_blocks[0] - attentions = middle_blocks[1] - resnet_1 = middle_blocks[2] - - resnet_0_paths = renew_resnet_paths(resnet_0) - assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) - - resnet_1_paths = renew_resnet_paths(resnet_1) - assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) - - attentions_paths = renew_attention_paths(attentions) - meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} - assign_to_checkpoint( - attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - for i in range(num_output_blocks): - block_id = i // (config["layers_per_block"] + 1) - layer_in_block_id = i % (config["layers_per_block"] + 1) - output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] - output_block_list = {} - - for layer in output_block_layers: - layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) - if layer_id in output_block_list: - output_block_list[layer_id].append(layer_name) - else: - output_block_list[layer_id] = [layer_name] - - if len(output_block_list) > 1: - resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] - attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] - - resnet_0_paths = renew_resnet_paths(resnets) - paths = renew_resnet_paths(resnets) - - meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - - if ["conv.weight", "conv.bias"] in output_block_list.values(): - index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) - new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ - f"output_blocks.{i}.{index}.conv.weight" - ] - new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ - f"output_blocks.{i}.{index}.conv.bias" - ] - - # Clear attentions as they have been attributed above. - if len(attentions) == 2: - attentions = [] - - if len(attentions): - paths = renew_attention_paths(attentions) - meta_path = { - "old": f"output_blocks.{i}.1", - "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", - } - assign_to_checkpoint( - paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config - ) - else: - resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) - for path in resnet_0_paths: - old_path = ".".join(["output_blocks", str(i), path["old"]]) - new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) - - new_checkpoint[new_path] = unet_state_dict[old_path] - - return new_checkpoint - - -def convert_ldm_vae_checkpoint(checkpoint, config): - # extract state dict for VAE - vae_state_dict = {} - vae_key = "first_stage_model." - keys = list(checkpoint.keys()) - for key in keys: - if key.startswith(vae_key): - vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) - - new_checkpoint = {} - - new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] - new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] - new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] - new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] - new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] - new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] - - new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] - new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] - new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] - new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] - new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] - new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] - - new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] - new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] - new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] - new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] - - # Retrieves the keys for the encoder down blocks only - num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) - down_blocks = { - layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) - } - - # Retrieves the keys for the decoder up blocks only - num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) - up_blocks = { - layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) - } - - for i in range(num_down_blocks): - resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] - - if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: - new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( - f"encoder.down.{i}.downsample.conv.weight" - ) - new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( - f"encoder.down.{i}.downsample.conv.bias" - ) - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] - num_mid_res_blocks = 2 - for i in range(1, num_mid_res_blocks + 1): - resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] - paths = renew_vae_attention_paths(mid_attentions) - meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - conv_attn_to_linear(new_checkpoint) - - for i in range(num_up_blocks): - block_id = num_up_blocks - 1 - i - resnets = [ - key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key - ] - - if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: - new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ - f"decoder.up.{block_id}.upsample.conv.weight" - ] - new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ - f"decoder.up.{block_id}.upsample.conv.bias" - ] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] - num_mid_res_blocks = 2 - for i in range(1, num_mid_res_blocks + 1): - resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] - - paths = renew_vae_resnet_paths(resnets) - meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - - mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] - paths = renew_vae_attention_paths(mid_attentions) - meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} - assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) - conv_attn_to_linear(new_checkpoint) - return new_checkpoint - - -def create_unet_diffusers_config(): - """ - Creates a config for the diffusers based on the config of the LDM model. - """ - # unet_params = original_config.model.params.unet_config.params - - block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] - - down_block_types = [] - resolution = 1 - for i in range(len(block_out_channels)): - block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" - down_block_types.append(block_type) - if i != len(block_out_channels) - 1: - resolution *= 2 - - up_block_types = [] - for i in range(len(block_out_channels)): - block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" - up_block_types.append(block_type) - resolution //= 2 - - config = dict( - sample_size=UNET_PARAMS_IMAGE_SIZE, - in_channels=UNET_PARAMS_IN_CHANNELS, - out_channels=UNET_PARAMS_OUT_CHANNELS, - down_block_types=tuple(down_block_types), - up_block_types=tuple(up_block_types), - block_out_channels=tuple(block_out_channels), - layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, - cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, - attention_head_dim=UNET_PARAMS_NUM_HEADS, - ) - - return config - - -def create_vae_diffusers_config(): - """ - Creates a config for the diffusers based on the config of the LDM model. - """ - # vae_params = original_config.model.params.first_stage_config.params.ddconfig - # _ = original_config.model.params.first_stage_config.params.embed_dim - block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] - down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) - up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) - - config = dict( - sample_size=VAE_PARAMS_RESOLUTION, - in_channels=VAE_PARAMS_IN_CHANNELS, - out_channels=VAE_PARAMS_OUT_CH, - down_block_types=tuple(down_block_types), - up_block_types=tuple(up_block_types), - block_out_channels=tuple(block_out_channels), - latent_channels=VAE_PARAMS_Z_CHANNELS, - layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, - ) - return config - - -def convert_ldm_clip_checkpoint(checkpoint): - text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") - - keys = list(checkpoint.keys()) - - text_model_dict = {} - - for key in keys: - if key.startswith("cond_stage_model.transformer"): - text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] - - text_model.load_state_dict(text_model_dict) - - return text_model - -# endregion - - -# region Diffusers->StableDiffusion の変換コード -# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) - -def convert_unet_state_dict(unet_state_dict): - unet_conversion_map = [ - # (stable-diffusion, HF Diffusers) - ("time_embed.0.weight", "time_embedding.linear_1.weight"), - ("time_embed.0.bias", "time_embedding.linear_1.bias"), - ("time_embed.2.weight", "time_embedding.linear_2.weight"), - ("time_embed.2.bias", "time_embedding.linear_2.bias"), - ("input_blocks.0.0.weight", "conv_in.weight"), - ("input_blocks.0.0.bias", "conv_in.bias"), - ("out.0.weight", "conv_norm_out.weight"), - ("out.0.bias", "conv_norm_out.bias"), - ("out.2.weight", "conv_out.weight"), - ("out.2.bias", "conv_out.bias"), - ] - - unet_conversion_map_resnet = [ - # (stable-diffusion, HF Diffusers) - ("in_layers.0", "norm1"), - ("in_layers.2", "conv1"), - ("out_layers.0", "norm2"), - ("out_layers.3", "conv2"), - ("emb_layers.1", "time_emb_proj"), - ("skip_connection", "conv_shortcut"), - ] - - unet_conversion_map_layer = [] - for i in range(4): - # loop over downblocks/upblocks - - for j in range(2): - # loop over resnets/attentions for downblocks - hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." - sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." - unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) - - if i < 3: - # no attention layers in down_blocks.3 - hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." - sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." - unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) - - for j in range(3): - # loop over resnets/attentions for upblocks - hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." - sd_up_res_prefix = f"output_blocks.{3*i + j}.0." - unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) - - if i > 0: - # no attention layers in up_blocks.0 - hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." - sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." - unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) - - if i < 3: - # no downsample in down_blocks.3 - hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." - sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." - unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) - - # no upsample in up_blocks.3 - hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." - sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." - unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) - - hf_mid_atn_prefix = "mid_block.attentions.0." - sd_mid_atn_prefix = "middle_block.1." - unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) - - for j in range(2): - hf_mid_res_prefix = f"mid_block.resnets.{j}." - sd_mid_res_prefix = f"middle_block.{2*j}." - unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) - - # buyer beware: this is a *brittle* function, - # and correct output requires that all of these pieces interact in - # the exact order in which I have arranged them. - mapping = {k: k for k in unet_state_dict.keys()} - for sd_name, hf_name in unet_conversion_map: - mapping[hf_name] = sd_name - for k, v in mapping.items(): - if "resnets" in k: - for sd_part, hf_part in unet_conversion_map_resnet: - v = v.replace(hf_part, sd_part) - mapping[k] = v - for k, v in mapping.items(): - for sd_part, hf_part in unet_conversion_map_layer: - v = v.replace(hf_part, sd_part) - mapping[k] = v - new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} - return new_state_dict - -# endregion - - -def load_stable_diffusion_checkpoint(ckpt_path): - checkpoint = torch.load(ckpt_path, map_location="cpu")["state_dict"] - - # Convert the UNet2DConditionModel model. - unet_config = create_unet_diffusers_config() - converted_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config) - - unet = UNet2DConditionModel(**unet_config) - unet.load_state_dict(converted_unet_checkpoint) - - # Convert the VAE model. - vae_config = create_vae_diffusers_config() - converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) - - vae = AutoencoderKL(**vae_config) - vae.load_state_dict(converted_vae_checkpoint) - - # convert text_model - text_model = convert_ldm_clip_checkpoint(checkpoint) - - return text_model, vae, unet - - -def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path): - # VAEがメモリ上にないので、もう一度VAEを含めて読み込む - state_dict = torch.load(ckpt_path, map_location="cpu")['state_dict'] - - # Convert the UNet model - unet_state_dict = convert_unet_state_dict(unet.state_dict()) - for k, v in unet_state_dict.items(): - key = "model.diffusion_model." + k - assert key in state_dict, f"Illegal key in save SD: {key}" - state_dict[key] = v - - # Convert the text encoder model - text_enc_dict = text_encoder.state_dict() # 変換不要 - for k, v in text_enc_dict.items(): - key = "cond_stage_model.transformer." + k - assert key in state_dict, f"Illegal key in save SD: {key}" - state_dict[key] = v - - # Put together new checkpoint - state_dict = {"state_dict": state_dict} - torch.save(state_dict, output_file) - - -def collate_fn(examples): - input_ids = [e['input_ids'] for e in examples] - input_ids = torch.stack(input_ids) - - if 'latents' in examples[0]: - pixel_values = None - latents = [e['latents'] for e in examples] - latents = torch.stack(latents) - else: - pixel_values = [e['image'] for e in examples] - pixel_values = torch.stack(pixel_values) - pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() - latents = None - - loss_weights = [e['loss_weight'] for e in examples] - loss_weights = torch.FloatTensor(loss_weights) - - batch = {"input_ids": input_ids, "pixel_values": pixel_values, "latents": latents, "loss_weights": loss_weights} - return batch - - -def train(args): - fine_tuning = args.fine_tuning - cache_latents = args.cache_latents - - # latentsをキャッシュする場合のオプション設定を確認する - if cache_latents: - # assert args.face_crop_aug_range is None and not args.random_crop, "when caching latents, crop aug cannot be used / latentをキャッシュするときは切り出しは使えません" - # →使えるようにしておく(初期イメージの切り出しになる) - assert not args.flip_aug and not args.color_aug, "when caching latents, augmentation cannot be used / latentをキャッシュするときはaugmentationは使えません" - - # モデル形式のオプション設定を確認する - use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) - if not use_stable_diffusion_format: - assert os.path.exists( - args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}" - - assert args.save_every_n_epochs is None or use_stable_diffusion_format, "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" - - if args.seed is not None: - set_seed(args.seed) - - # 学習データを用意する - def load_dreambooth_dir(dir): - tokens = os.path.basename(dir).split('_') - try: - n_repeats = int(tokens[0]) - except ValueError as e: - print(f"no 'n_repeats' in directory name / DreamBoothのディレクトリ名に繰り返し回数がないようです: {dir}") - raise e - - caption = '_'.join(tokens[1:]) - - img_paths = glob.glob(os.path.join(dir, "*.png")) + glob.glob(os.path.join(dir, "*.jpg")) - return n_repeats, [(ip, caption) for ip in img_paths] - - print("prepare train images.") - train_img_path_captions = [] - - if fine_tuning: - img_paths = glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.jpg")) - for img_path in tqdm(img_paths): - # captionの候補ファイル名を作る - base_name = os.path.splitext(img_path)[0] - base_name_face_det = base_name - tokens = base_name.split("_") - if len(tokens) >= 5: - base_name_face_det = "_".join(tokens[:-4]) - cap_paths = [base_name + '.txt', base_name + '.caption', base_name_face_det+'.txt', base_name_face_det+'.caption'] - - caption = None - for cap_path in cap_paths: - if os.path.isfile(cap_path): - with open(cap_path, "rt", encoding='utf-8') as f: - caption = f.readlines()[0].strip() - break - - assert caption is not None and len(caption) > 0, f"no caption / キャプションファイルが見つからないか、captionが空です: {cap_paths}" - - train_img_path_captions.append((img_path, caption)) - - else: - train_dirs = os.listdir(args.train_data_dir) - for dir in train_dirs: - n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.train_data_dir, dir)) - for _ in range(n_repeats): - train_img_path_captions.extend(img_caps) - print(f"{len(train_img_path_captions)} train images.") - - if fine_tuning: - reg_img_path_captions = [] - else: - print("prepare reg images.") - reg_img_path_captions = [] - if args.reg_data_dir: - reg_dirs = os.listdir(args.reg_data_dir) - for dir in reg_dirs: - n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.reg_data_dir, dir)) - for _ in range(n_repeats): - reg_img_path_captions.extend(img_caps) - print(f"{len(reg_img_path_captions)} reg images.") - - if args.debug_dataset: - # デバッグ時はshuffleして実際のデータセット使用時に近づける(学習時はdata loaderでshuffleする) - random.shuffle(train_img_path_captions) - random.shuffle(reg_img_path_captions) - - # データセットを準備する - resolution = tuple([int(r) for r in args.resolution.split(',')]) - if len(resolution) == 1: - resolution = (resolution[0], resolution[0]) - assert len( - resolution) == 2, f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}" - - if args.face_crop_aug_range is not None: - face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')]) - assert len( - face_crop_aug_range) == 2, f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}" - else: - face_crop_aug_range = None - - # tokenizerを読み込む - print("prepare tokenizer") - tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) - - print("prepare dataset") - train_dataset = DreamBoothOrFineTuningDataset(fine_tuning, train_img_path_captions, - reg_img_path_captions, tokenizer, resolution, args.prior_loss_weight, args.flip_aug, args.color_aug, face_crop_aug_range, args.random_crop, args.shuffle_caption, args.no_token_padding, args.debug_dataset) - - if args.debug_dataset: - print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") - print("Escape for exit. / Escキーで中断、終了します") - for example in train_dataset: - im = example['image'] - im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8) - im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c - im = im[:, :, ::-1] # RGB -> BGR (OpenCV) - print(f'caption: "{example["caption"]}", loss weight: {example["loss_weight"]}') - cv2.imshow("img", im) - k = cv2.waitKey() - cv2.destroyAllWindows() - if k == 27: - break - return - - # acceleratorを準備する - # gradient accumulationは複数モデルを学習する場合には対応していないとのことなので、1固定にする - print("prepare accelerator") - accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision) - - # モデルを読み込む - if use_stable_diffusion_format: - print("load StableDiffusion checkpoint") - text_encoder, vae, unet = load_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) - else: - print("load Diffusers pretrained models") - text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") - vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") - unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") - - # モデルに xformers とか memory efficient attention を組み込む - replace_unet_modules(unet, args.mem_eff_attn, args.xformers) - - # mixed precisionに対応した型を用意しておき適宜castする - weight_dtype = torch.float32 - if args.mixed_precision == "fp16": - weight_dtype = torch.float16 - elif args.mixed_precision == "bf16": - weight_dtype = torch.bfloat16 - - # 学習を準備する - if cache_latents: - # latentをcacheする→新しいDatasetを作るとcaptionのshuffleが効かないので元のDatasetにcacheを持つ(cascadeする手もあるが) - print("caching latents.") - vae.to(accelerator.device, dtype=weight_dtype) - - for i in tqdm(range(len(train_dataset))): - example = train_dataset[i] - if 'latents' not in example: - image_path = example['image_path'] - with torch.no_grad(): - pixel_values = example["image"].unsqueeze(0).to(device=accelerator.device, dtype=weight_dtype) - latents = vae.encode(pixel_values).latent_dist.sample().squeeze(0).to("cpu") - train_dataset.set_cached_latents(image_path, latents) - # assertion - for i in range(len(train_dataset)): - assert 'latents' in train_dataset[i], "internal error: latents not cached" - - del vae - if torch.cuda.is_available(): - torch.cuda.empty_cache() - else: - vae.requires_grad_(False) - - if args.gradient_checkpointing: - unet.enable_gradient_checkpointing() - text_encoder.gradient_checkpointing_enable() - - # 学習に必要なクラスを準備する - print("prepare optimizer, data loader etc.") - - # 8-bit Adamを使う - if args.use_8bit_adam: - try: - import bitsandbytes as bnb - except ImportError: - raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") - print("use 8-bit Adma optimizer") - optimizer_class = bnb.optim.AdamW8bit - else: - optimizer_class = torch.optim.AdamW - - trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters())) - - # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 - optimizer = optimizer_class(trainable_params, lr=args.learning_rate) - - # dataloaderを準備する - # DataLoaderのプロセス数:0はメインプロセスになる - n_workers = min(4, os.cpu_count() - 1) # cpu_count-1 ただし最大4 - train_dataloader = torch.utils.data.DataLoader( - train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=n_workers) - - # lr schedulerを用意する - lr_scheduler = diffusers.optimization.get_scheduler("constant", optimizer, num_training_steps=args.max_train_steps) - - # acceleratorがなんかよろしくやってくれるらしい - unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( - unet, text_encoder, optimizer, train_dataloader, lr_scheduler) - - if not cache_latents: - vae.to(accelerator.device, dtype=weight_dtype) - - # epoch数を計算する - num_train_epochs = math.ceil(args.max_train_steps / len(train_dataloader)) - - # 学習する - total_batch_size = args.train_batch_size # * accelerator.num_processes - print("running training / 学習開始") - print(f" num examples / サンプル数: {len(train_dataset)}") - print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") - print(f" num epochs / epoch数: {num_train_epochs}") - print(f" batch size per device / バッチサイズ: {args.train_batch_size}") - print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") - print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") - - progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") - global_step = 0 - - noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) - - if accelerator.is_main_process: - accelerator.init_trackers("dreambooth") - - # 以下 train_dreambooth.py からほぼコピペ - for epoch in range(num_train_epochs): - print(f"epoch {epoch+1}/{num_train_epochs}") - unet.train() - text_encoder.train() # なんかunetだけでいいらしい?→最新版で修正されてた(;´Д`) いろいろ雑だな - - for step, batch in enumerate(train_dataloader): - with accelerator.accumulate(unet): - with torch.no_grad(): - # latentに変換 - if cache_latents: - latents = batch["latents"].to(accelerator.device) - else: - latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() - latents = latents * 0.18215 - - # Sample noise that we'll add to the latents - noise = torch.randn_like(latents, device=latents.device) - b_size = latents.shape[0] - - # Sample a random timestep for each image - timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) - timesteps = timesteps.long() - - # Add noise to the latents according to the noise magnitude at each timestep - # (this is the forward diffusion process) - noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) - - # Get the text embedding for conditioning - if args.clip_skip is None: - encoder_hidden_states = text_encoder(batch["input_ids"])[0] - else: - enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True) - encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] - encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) - - # Predict the noise residual - noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample - - loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="none") - loss = loss.mean([1, 2, 3]) - - loss_weights = batch["loss_weights"] # 各sampleごとのweight - loss = loss * loss_weights - - loss = loss.mean() - - accelerator.backward(loss) - if accelerator.sync_gradients: - params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())) - accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) - - optimizer.step() - lr_scheduler.step() - optimizer.zero_grad(set_to_none=True) - - # Checks if the accelerator has performed an optimization step behind the scenes - if accelerator.sync_gradients: - progress_bar.update(1) - global_step += 1 - - logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]} - progress_bar.set_postfix(**logs) - # accelerator.log(logs, step=global_step) - - if global_step >= args.max_train_steps: - break - - accelerator.wait_for_everyone() - - if use_stable_diffusion_format and args.save_every_n_epochs is not None: - if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs: - print("saving check point.") - os.makedirs(args.output_dir, exist_ok=True) - ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) - save_stable_diffusion_checkpoint(ckpt_file, accelerator.unwrap_model( - text_encoder), accelerator.unwrap_model(unet), args.pretrained_model_name_or_path) - - is_main_process = accelerator.is_main_process - if is_main_process: - unet = accelerator.unwrap_model(unet) - text_encoder = accelerator.unwrap_model(text_encoder) - - accelerator.end_training() - del accelerator # この後メモリを使うのでこれは消す - - if is_main_process: - os.makedirs(args.output_dir, exist_ok=True) - if use_stable_diffusion_format: - print(f"save trained model as StableDiffusion checkpoint to {args.output_dir}") - ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) - save_stable_diffusion_checkpoint(ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path) - else: - # Create the pipeline using using the trained modules and save it. - print(f"save trained model as Diffusers to {args.output_dir}") - pipeline = StableDiffusionPipeline.from_pretrained( - args.pretrained_model_name_or_path, - unet=unet, - text_encoder=text_encoder, - ) - pipeline.save_pretrained(args.output_dir) - print("model saved.") - - -# region モジュール入れ替え部 -""" -高速化のためのモジュール入れ替え -""" - -# FlashAttentionを使うCrossAttention -# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py -# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE - -# constants - -EPSILON = 1e-6 - -# helper functions - - -def exists(val): - return val is not None - - -def default(val, d): - return val if exists(val) else d - -# flash attention forwards and backwards - -# https://arxiv.org/abs/2205.14135 - - -class FlashAttentionFunction(Function): - @ staticmethod - @ torch.no_grad() - def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): - """ Algorithm 2 in the paper """ - - device = q.device - dtype = q.dtype - max_neg_value = -torch.finfo(q.dtype).max - qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) - - o = torch.zeros_like(q) - all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) - all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) - - scale = (q.shape[-1] ** -0.5) - - if not exists(mask): - mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) - else: - mask = rearrange(mask, 'b n -> b 1 1 n') - mask = mask.split(q_bucket_size, dim=-1) - - row_splits = zip( - q.split(q_bucket_size, dim=-2), - o.split(q_bucket_size, dim=-2), - mask, - all_row_sums.split(q_bucket_size, dim=-2), - all_row_maxes.split(q_bucket_size, dim=-2), - ) - - for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): - q_start_index = ind * q_bucket_size - qk_len_diff - - col_splits = zip( - k.split(k_bucket_size, dim=-2), - v.split(k_bucket_size, dim=-2), - ) - - for k_ind, (kc, vc) in enumerate(col_splits): - k_start_index = k_ind * k_bucket_size - - attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale - - if exists(row_mask): - attn_weights.masked_fill_(~row_mask, max_neg_value) - - if causal and q_start_index < (k_start_index + k_bucket_size - 1): - causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, - device=device).triu(q_start_index - k_start_index + 1) - attn_weights.masked_fill_(causal_mask, max_neg_value) - - block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) - attn_weights -= block_row_maxes - exp_weights = torch.exp(attn_weights) - - if exists(row_mask): - exp_weights.masked_fill_(~row_mask, 0.) - - block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) - - new_row_maxes = torch.maximum(block_row_maxes, row_maxes) - - exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) - - exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) - exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) - - new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums - - oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) - - row_maxes.copy_(new_row_maxes) - row_sums.copy_(new_row_sums) - - ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) - ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) - - return o - - @ staticmethod - @ torch.no_grad() - def backward(ctx, do): - """ Algorithm 4 in the paper """ - - causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args - q, k, v, o, l, m = ctx.saved_tensors - - device = q.device - - max_neg_value = -torch.finfo(q.dtype).max - qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) - - dq = torch.zeros_like(q) - dk = torch.zeros_like(k) - dv = torch.zeros_like(v) - - row_splits = zip( - q.split(q_bucket_size, dim=-2), - o.split(q_bucket_size, dim=-2), - do.split(q_bucket_size, dim=-2), - mask, - l.split(q_bucket_size, dim=-2), - m.split(q_bucket_size, dim=-2), - dq.split(q_bucket_size, dim=-2) - ) - - for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): - q_start_index = ind * q_bucket_size - qk_len_diff - - col_splits = zip( - k.split(k_bucket_size, dim=-2), - v.split(k_bucket_size, dim=-2), - dk.split(k_bucket_size, dim=-2), - dv.split(k_bucket_size, dim=-2), - ) - - for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): - k_start_index = k_ind * k_bucket_size - - attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale - - if causal and q_start_index < (k_start_index + k_bucket_size - 1): - causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, - device=device).triu(q_start_index - k_start_index + 1) - attn_weights.masked_fill_(causal_mask, max_neg_value) - - exp_attn_weights = torch.exp(attn_weights - mc) - - if exists(row_mask): - exp_attn_weights.masked_fill_(~row_mask, 0.) - - p = exp_attn_weights / lc - - dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) - dp = einsum('... i d, ... j d -> ... i j', doc, vc) - - D = (doc * oc).sum(dim=-1, keepdims=True) - ds = p * scale * (dp - D) - - dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) - dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) - - dqc.add_(dq_chunk) - dkc.add_(dk_chunk) - dvc.add_(dv_chunk) - - return dq, dk, dv, None, None, None, None - - -def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): - if mem_eff_attn: - replace_unet_cross_attn_to_memory_efficient() - elif xformers: - replace_unet_cross_attn_to_xformers() - - -def replace_unet_cross_attn_to_memory_efficient(): - print("Replace CrossAttention.forward to use FlashAttention") - flash_func = FlashAttentionFunction - - def forward_flash_attn(self, x, context=None, mask=None): - q_bucket_size = 512 - k_bucket_size = 1024 - - h = self.heads - q = self.to_q(x) - - context = context if context is not None else x - context = context.to(x.dtype) - k = self.to_k(context) - v = self.to_v(context) - del context, x - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) - - out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) - - out = rearrange(out, 'b h n d -> b n (h d)') - return self.to_out(out) - - diffusers.models.attention.CrossAttention.forward = forward_flash_attn - - -def replace_unet_cross_attn_to_xformers(): - print("Replace CrossAttention.forward to use xformers") - try: - import xformers.ops - except ImportError: - raise ImportError("No xformers / xformersがインストールされていないようです") - - def forward_xformers(self, x, context=None, mask=None): - h = self.heads - q_in = self.to_q(x) - - context = default(context, x) - context = context.to(x.dtype) - - k_in = self.to_k(context) - v_in = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) - del q_in, k_in, v_in - out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる - - out = rearrange(out, 'b n h d -> b n (h d)', h=h) - return self.to_out(out) - - diffusers.models.attention.CrossAttention.forward = forward_xformers -# endregion - - -if __name__ == '__main__': - # torch.cuda.set_per_process_memory_fraction(0.48) - parser = argparse.ArgumentParser() - parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, - help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") - parser.add_argument("--fine_tuning", action="store_true", - help="fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする") - parser.add_argument("--shuffle_caption", action="store_true", - help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") - parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") - parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ") - parser.add_argument("--output_dir", type=str, default=None, - help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") - parser.add_argument("--save_every_n_epochs", type=int, default=None, - help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存します(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") - parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み") - parser.add_argument("--no_token_padding", action="store_true", - help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)") - parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする") - parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする") - parser.add_argument("--face_crop_aug_range", type=str, default=None, - help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)") - parser.add_argument("--random_crop", action="store_true", - help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)") - parser.add_argument("--debug_dataset", action="store_true", - help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") - parser.add_argument("--resolution", type=str, default=None, - help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)") - parser.add_argument("--train_batch_size", type=int, default=1, - help="batch size for training (1 means one train or reg data, not train/reg pair) / 学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)") - parser.add_argument("--use_8bit_adam", action="store_true", - help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") - parser.add_argument("--mem_eff_attn", action="store_true", - help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") - parser.add_argument("--xformers", action="store_true", - help="use xformers for CrossAttention / CrossAttentionにxformersを使う") - parser.add_argument("--cache_latents", action="store_true", - help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)") - parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") - parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") - parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") - parser.add_argument("--gradient_checkpointing", action="store_true", - help="enable gradient checkpointing / grandient checkpointingを有効にする") - parser.add_argument("--mixed_precision", type=str, default="no", - choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") - parser.add_argument("--clip_skip", type=int, default=None, - help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") - - args = parser.parse_args() - train(args)