1st cut at gradio UI
This commit is contained in:
parent
449a35368f
commit
379ab73496
454
finetune_gui.py
Normal file
454
finetune_gui.py
Normal file
@ -0,0 +1,454 @@
|
||||
import gradio as gr
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import pathlib
|
||||
import shutil
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
|
||||
|
||||
def save_variables(
|
||||
file_path,
|
||||
pretrained_model_name_or_path,
|
||||
v2,
|
||||
v_model,
|
||||
logging_dir,
|
||||
train_data_dir,
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
epoch,
|
||||
save_every_n_epochs,
|
||||
mixed_precision,
|
||||
save_precision,
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
convert_to_safetensors,
|
||||
convert_to_ckpt
|
||||
):
|
||||
# Return the values of the variables as a dictionary
|
||||
variables = {
|
||||
"pretrained_model_name_or_path": pretrained_model_name_or_path,
|
||||
"v2": v2,
|
||||
"v_model": v_model,
|
||||
# "model_list": model_list,
|
||||
"logging_dir": logging_dir,
|
||||
"train_data_dir": train_data_dir,
|
||||
"reg_data_dir": reg_data_dir,
|
||||
"output_dir": output_dir,
|
||||
"max_resolution": max_resolution,
|
||||
"learning_rate": learning_rate,
|
||||
"lr_scheduler": lr_scheduler,
|
||||
"lr_warmup": lr_warmup,
|
||||
"train_batch_size": train_batch_size,
|
||||
"epoch": epoch,
|
||||
"save_every_n_epochs": save_every_n_epochs,
|
||||
"mixed_precision": mixed_precision,
|
||||
"save_precision": save_precision,
|
||||
"seed": seed,
|
||||
"num_cpu_threads_per_process": num_cpu_threads_per_process,
|
||||
"convert_to_safetensors": convert_to_safetensors,
|
||||
"convert_to_ckpt": convert_to_ckpt
|
||||
}
|
||||
|
||||
# Save the data to the selected file
|
||||
with open(file_path, "w") as file:
|
||||
json.dump(variables, file)
|
||||
|
||||
|
||||
def load_variables(file_path):
|
||||
# load variables from JSON file
|
||||
with open(file_path, "r") as f:
|
||||
my_data = json.load(f)
|
||||
|
||||
# Return the values of the variables as a dictionary
|
||||
return (
|
||||
my_data.get("pretrained_model_name_or_path", None),
|
||||
my_data.get("v2", None),
|
||||
my_data.get("v_model", None),
|
||||
my_data.get("logging_dir", None),
|
||||
# my_data.get("model_list", None),
|
||||
my_data.get("train_data_dir", None),
|
||||
my_data.get("reg_data_dir", None),
|
||||
my_data.get("output_dir", None),
|
||||
my_data.get("max_resolution", None),
|
||||
my_data.get("learning_rate", None),
|
||||
my_data.get("lr_scheduler", None),
|
||||
my_data.get("lr_warmup", None),
|
||||
my_data.get("train_batch_size", None),
|
||||
my_data.get("epoch", None),
|
||||
my_data.get("save_every_n_epochs", None),
|
||||
my_data.get("mixed_precision", None),
|
||||
my_data.get("save_precision", None),
|
||||
my_data.get("seed", None),
|
||||
my_data.get("num_cpu_threads_per_process", None),
|
||||
my_data.get("convert_to_safetensors", None),
|
||||
my_data.get("convert_to_ckpt", None)
|
||||
)
|
||||
|
||||
|
||||
def train_model(
|
||||
pretrained_model_name_or_path,
|
||||
v2,
|
||||
v_model,
|
||||
logging_dir,
|
||||
train_data_dir,
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
epoch,
|
||||
save_every_n_epochs,
|
||||
mixed_precision,
|
||||
save_precision,
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
convert_to_safetensors,
|
||||
convert_to_ckpt,
|
||||
cache_latent_input
|
||||
):
|
||||
def save_inference_file(output_dir, v2, v_model):
|
||||
# Copy inference model for v2 if required
|
||||
if v2 and v_model:
|
||||
print(f"Saving v2-inference-v.yaml as {output_dir}/last.yaml")
|
||||
shutil.copy(
|
||||
f"./v2_inference/v2-inference-v.yaml",
|
||||
f"{output_dir}/last.yaml",
|
||||
)
|
||||
elif v2:
|
||||
print(f"Saving v2-inference.yaml as {output_dir}/last.yaml")
|
||||
shutil.copy(
|
||||
f"./v2_inference/v2-inference.yaml",
|
||||
f"{output_dir}/last.yaml",
|
||||
)
|
||||
|
||||
# Get a list of all subfolders in train_data_dir
|
||||
subfolders = [f for f in os.listdir(train_data_dir) if os.path.isdir(
|
||||
os.path.join(train_data_dir, f))]
|
||||
|
||||
total_steps = 0
|
||||
|
||||
# Loop through each subfolder and extract the number of repeats
|
||||
for folder in subfolders:
|
||||
# Extract the number of repeats from the folder name
|
||||
repeats = int(folder.split("_")[0])
|
||||
|
||||
# Count the number of images in the folder
|
||||
num_images = len([f for f in os.listdir(os.path.join(train_data_dir, folder)) if f.endswith(
|
||||
".jpg") or f.endswith(".jpeg") or f.endswith(".png") or f.endswith(".webp")])
|
||||
|
||||
# Calculate the total number of steps for this folder
|
||||
steps = repeats * num_images
|
||||
total_steps += steps
|
||||
|
||||
# Print the result
|
||||
print(f"Folder {folder}: {steps} steps")
|
||||
|
||||
# Print the result
|
||||
# print(f"{total_steps} total steps")
|
||||
|
||||
# calculate max_train_steps
|
||||
max_train_steps = int(
|
||||
math.ceil(float(total_steps) / int(train_batch_size) * int(epoch))
|
||||
)
|
||||
print(f"max_train_steps = {max_train_steps}")
|
||||
|
||||
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
|
||||
print(f"lr_warmup_steps = {lr_warmup_steps}")
|
||||
|
||||
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_db_fixed.py"'
|
||||
if v2:
|
||||
run_cmd += " --v2"
|
||||
if v_model:
|
||||
run_cmd += " --v_parameterization"
|
||||
if cache_latent_input:
|
||||
run_cmd += " --cache_latents"
|
||||
run_cmd += f" --pretrained_model_name_or_path={pretrained_model_name_or_path}"
|
||||
run_cmd += f" --train_data_dir={train_data_dir}"
|
||||
run_cmd += f" --reg_data_dir={reg_data_dir}"
|
||||
run_cmd += f" --resolution={max_resolution}"
|
||||
run_cmd += f" --output_dir={output_dir}"
|
||||
run_cmd += f" --train_batch_size={train_batch_size}"
|
||||
run_cmd += f" --learning_rate={learning_rate}"
|
||||
run_cmd += f" --lr_scheduler={lr_scheduler}"
|
||||
run_cmd += f" --lr_warmup_steps={lr_warmup_steps}"
|
||||
run_cmd += f" --max_train_steps={max_train_steps}"
|
||||
run_cmd += f" --use_8bit_adam"
|
||||
run_cmd += f" --xformers"
|
||||
run_cmd += f" --mixed_precision={mixed_precision}"
|
||||
run_cmd += f" --save_every_n_epochs={save_every_n_epochs}"
|
||||
run_cmd += f" --seed={seed}"
|
||||
run_cmd += f" --save_precision={save_precision}"
|
||||
run_cmd += f" --logging_dir={logging_dir}"
|
||||
|
||||
print(run_cmd)
|
||||
# Run the command
|
||||
subprocess.run(run_cmd)
|
||||
|
||||
# check if output_dir/last is a directory... therefore it is a diffuser model
|
||||
last_dir = pathlib.Path(f"{output_dir}/last")
|
||||
print(last_dir)
|
||||
if last_dir.is_dir():
|
||||
if convert_to_ckpt:
|
||||
print(f"Converting diffuser model {last_dir} to {last_dir}.ckpt")
|
||||
os.system(
|
||||
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.ckpt --{save_precision}"
|
||||
)
|
||||
|
||||
save_inference_file(output_dir, v2, v_model)
|
||||
|
||||
if convert_to_safetensors:
|
||||
print(f"Converting diffuser model {last_dir} to {last_dir}.safetensors")
|
||||
os.system(
|
||||
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.safetensors --{save_precision}"
|
||||
)
|
||||
|
||||
save_inference_file(output_dir, v2, v_model)
|
||||
else:
|
||||
# Copy inference model for v2 if required
|
||||
save_inference_file(output_dir, v2, v_model)
|
||||
|
||||
# Return the values of the variables as a dictionary
|
||||
# return
|
||||
|
||||
|
||||
def set_pretrained_model_name_or_path_input(value, v2, v_model):
|
||||
# define a list of substrings to search for
|
||||
substrings_v2 = ["stable-diffusion-2-1-base", "stable-diffusion-2-base"]
|
||||
|
||||
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
|
||||
if str(value) in substrings_v2:
|
||||
print("SD v2 model detected. Setting --v2 parameter")
|
||||
v2 = True
|
||||
v_model = False
|
||||
value = "stabilityai/{}".format(value)
|
||||
|
||||
return value, v2, v_model
|
||||
|
||||
# define a list of substrings to search for v-objective
|
||||
substrings_v_model = ["stable-diffusion-2-1", "stable-diffusion-2"]
|
||||
|
||||
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_model list
|
||||
if str(value) in substrings_v_model:
|
||||
print("SD v2 v_model detected. Setting --v2 parameter and --v_parameterization")
|
||||
v2 = True
|
||||
v_model = True
|
||||
value = "stabilityai/{}".format(value)
|
||||
|
||||
return value, v2, v_model
|
||||
|
||||
if value == "custom":
|
||||
value = ""
|
||||
v2 = False
|
||||
v_model = False
|
||||
|
||||
return value, v2, v_model
|
||||
|
||||
|
||||
# Define the output element
|
||||
output = gr.outputs.Textbox(label="Values of variables")
|
||||
|
||||
interface = gr.Blocks()
|
||||
|
||||
with interface:
|
||||
gr.Markdown("Enter kohya finetuner parameter using this interface.")
|
||||
with gr.Accordion("Configuration File Load/Save", open=False):
|
||||
with gr.Row():
|
||||
config_file_name = gr.inputs.Textbox(label="Config file name", default="")
|
||||
b1 = gr.Button("Load config")
|
||||
b2 = gr.Button("Save config")
|
||||
with gr.Tab("model"):
|
||||
# Define the input elements
|
||||
with gr.Row():
|
||||
pretrained_model_name_or_path_input = gr.inputs.Textbox(
|
||||
label="Pretrained model name or path",
|
||||
placeholder="enter the path to custom model or name of pretrained model",
|
||||
)
|
||||
model_list = gr.Dropdown(
|
||||
label="Model Quick Pick",
|
||||
choices=[
|
||||
"custom",
|
||||
"stable-diffusion-2-1-base",
|
||||
"stable-diffusion-2-base",
|
||||
"stable-diffusion-2-1",
|
||||
"stable-diffusion-2",
|
||||
],
|
||||
value="custom",
|
||||
)
|
||||
with gr.Row():
|
||||
v2_input = gr.inputs.Checkbox(label="v2", default=True)
|
||||
v_model_input = gr.inputs.Checkbox(label="v_model", default=False)
|
||||
model_list.change(
|
||||
set_pretrained_model_name_or_path_input,
|
||||
inputs=[model_list, v2_input, v_model_input],
|
||||
outputs=[pretrained_model_name_or_path_input, v2_input, v_model_input],
|
||||
)
|
||||
with gr.Tab("training dataset and output directory"):
|
||||
train_data_dir_input = gr.inputs.Textbox(
|
||||
label="Image folder", placeholder="directory where the training folders containing the images are located"
|
||||
)
|
||||
reg_data_dir_input = gr.inputs.Textbox(
|
||||
label="Regularisation folder", placeholder="directory where where the regularization folders containing the images are located"
|
||||
)
|
||||
output_dir_input = gr.inputs.Textbox(
|
||||
label="Output directory",
|
||||
placeholder="directory to output trained model",
|
||||
)
|
||||
logging_dir_input = gr.inputs.Textbox(
|
||||
label="Logging directory", placeholder="Optional: enable logging and output TensorBoard log to this directory"
|
||||
)
|
||||
max_resolution_input = gr.inputs.Textbox(
|
||||
label="Max resolution", default="512,512"
|
||||
)
|
||||
with gr.Tab("training parameters"):
|
||||
with gr.Row():
|
||||
learning_rate_input = gr.inputs.Textbox(label="Learning rate", default=1e-6)
|
||||
lr_scheduler_input = gr.Dropdown(
|
||||
label="LR Scheduler",
|
||||
choices=[
|
||||
"constant",
|
||||
"constant_with_warmup",
|
||||
"cosine",
|
||||
"cosine_with_restarts",
|
||||
"linear",
|
||||
"polynomial",
|
||||
],
|
||||
value="constant",
|
||||
)
|
||||
lr_warmup_input = gr.inputs.Textbox(label="LR warmup", default=0)
|
||||
with gr.Row():
|
||||
train_batch_size_input = gr.inputs.Textbox(
|
||||
label="Train batch size", default=1
|
||||
)
|
||||
epoch_input = gr.inputs.Textbox(label="Epoch", default=1)
|
||||
with gr.Row():
|
||||
save_every_n_epochs_input = gr.inputs.Textbox(
|
||||
label="Save every N epochs", default=1
|
||||
)
|
||||
mixed_precision_input = gr.Dropdown(
|
||||
label="Mixed precision",
|
||||
choices=[
|
||||
"no",
|
||||
"fp16",
|
||||
"bf16",
|
||||
],
|
||||
value="fp16",
|
||||
)
|
||||
save_precision_input = gr.Dropdown(
|
||||
label="Save precision",
|
||||
choices=[
|
||||
"float",
|
||||
"fp16",
|
||||
"bf16",
|
||||
],
|
||||
value="fp16",
|
||||
)
|
||||
with gr.Row():
|
||||
seed_input = gr.inputs.Textbox(label="Seed", default=1234)
|
||||
num_cpu_threads_per_process_input = gr.inputs.Textbox(
|
||||
label="Number of CPU threads per process", default=4
|
||||
)
|
||||
cache_latent_input = gr.inputs.Checkbox(
|
||||
label="Cache latent", default=True
|
||||
)
|
||||
with gr.Tab("model conveersion"):
|
||||
convert_to_safetensors_input = gr.inputs.Checkbox(
|
||||
label="Convert to SafeTensors", default=False
|
||||
)
|
||||
convert_to_ckpt_input = gr.inputs.Checkbox(
|
||||
label="Convert to CKPT", default=False
|
||||
)
|
||||
|
||||
b3 = gr.Button("Run")
|
||||
|
||||
b1.click(
|
||||
load_variables,
|
||||
inputs=[config_file_name],
|
||||
outputs=[
|
||||
pretrained_model_name_or_path_input,
|
||||
v2_input,
|
||||
v_model_input,
|
||||
logging_dir_input,
|
||||
train_data_dir_input,
|
||||
reg_data_dir_input,
|
||||
output_dir_input,
|
||||
max_resolution_input,
|
||||
learning_rate_input,
|
||||
lr_scheduler_input,
|
||||
lr_warmup_input,
|
||||
train_batch_size_input,
|
||||
epoch_input,
|
||||
save_every_n_epochs_input,
|
||||
mixed_precision_input,
|
||||
save_precision_input,
|
||||
seed_input,
|
||||
num_cpu_threads_per_process_input,
|
||||
convert_to_safetensors_input,
|
||||
convert_to_ckpt_input
|
||||
]
|
||||
)
|
||||
|
||||
b2.click(
|
||||
save_variables,
|
||||
inputs=[
|
||||
config_file_name,
|
||||
pretrained_model_name_or_path_input,
|
||||
v2_input,
|
||||
v_model_input,
|
||||
logging_dir_input,
|
||||
train_data_dir_input,
|
||||
reg_data_dir_input,
|
||||
output_dir_input,
|
||||
max_resolution_input,
|
||||
learning_rate_input,
|
||||
lr_scheduler_input,
|
||||
lr_warmup_input,
|
||||
train_batch_size_input,
|
||||
epoch_input,
|
||||
save_every_n_epochs_input,
|
||||
mixed_precision_input,
|
||||
save_precision_input,
|
||||
seed_input,
|
||||
num_cpu_threads_per_process_input,
|
||||
convert_to_safetensors_input,
|
||||
convert_to_ckpt_input
|
||||
]
|
||||
)
|
||||
b3.click(
|
||||
train_model,
|
||||
inputs=[
|
||||
pretrained_model_name_or_path_input,
|
||||
v2_input,
|
||||
v_model_input,
|
||||
logging_dir_input,
|
||||
train_data_dir_input,
|
||||
reg_data_dir_input,
|
||||
output_dir_input,
|
||||
max_resolution_input,
|
||||
learning_rate_input,
|
||||
lr_scheduler_input,
|
||||
lr_warmup_input,
|
||||
train_batch_size_input,
|
||||
epoch_input,
|
||||
save_every_n_epochs_input,
|
||||
mixed_precision_input,
|
||||
save_precision_input,
|
||||
seed_input,
|
||||
num_cpu_threads_per_process_input,
|
||||
convert_to_safetensors_input,
|
||||
convert_to_ckpt_input,
|
||||
cache_latent_input
|
||||
]
|
||||
)
|
||||
|
||||
# Show the interface
|
||||
interface.launch()
|
@ -8,4 +8,6 @@ diffusers[torch]==0.9.0
|
||||
pytorch_lightning
|
||||
bitsandbytes==0.35.0
|
||||
tensorboard
|
||||
safetensors==0.2.5
|
||||
safetensors==0.2.5
|
||||
gradio
|
||||
altair
|
Loading…
Reference in New Issue
Block a user