Adding improved elements to GUI

This commit is contained in:
bmaltais 2022-12-14 14:40:24 -05:00
parent 469b15b579
commit 3834e5dbab
3 changed files with 319 additions and 69 deletions

View File

@ -1,4 +1,5 @@
# v1: initial release
# v2: add open and save folder icons
import gradio as gr
import json
@ -9,6 +10,7 @@ import pathlib
import shutil
from glob import glob
from os.path import join
from easygui import fileopenbox, filesavebox, enterbox, diropenbox, msgbox
def save_variables(
@ -44,6 +46,103 @@ def save_variables(
use_8bit_adam,
xformers,
):
original_file_path = file_path
if file_path == None or file_path == "":
file_path = filesavebox(
"Select the config file to save",
default="finetune.json",
filetypes="*.json",
)
if file_path == None:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
return file_path
# Return the values of the variables as a dictionary
variables = {
"pretrained_model_name_or_path": pretrained_model_name_or_path,
"v2": v2,
"v_parameterization": v_parameterization,
"logging_dir": logging_dir,
"train_data_dir": train_data_dir,
"reg_data_dir": reg_data_dir,
"output_dir": output_dir,
"max_resolution": max_resolution,
"learning_rate": learning_rate,
"lr_scheduler": lr_scheduler,
"lr_warmup": lr_warmup,
"train_batch_size": train_batch_size,
"epoch": epoch,
"save_every_n_epochs": save_every_n_epochs,
"mixed_precision": mixed_precision,
"save_precision": save_precision,
"seed": seed,
"num_cpu_threads_per_process": num_cpu_threads_per_process,
"convert_to_safetensors": convert_to_safetensors,
"convert_to_ckpt": convert_to_ckpt,
"cache_latent": cache_latent,
"caption_extention": caption_extention,
"use_safetensors": use_safetensors,
"enable_bucket": enable_bucket,
"gradient_checkpointing": gradient_checkpointing,
"full_fp16": full_fp16,
"no_token_padding": no_token_padding,
"stop_text_encoder_training": stop_text_encoder_training,
"use_8bit_adam": use_8bit_adam,
"xformers": xformers,
}
# Save the data to the selected file
with open(file_path, "w") as file:
json.dump(variables, file)
return file_path
def save_as_variables(
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
convert_to_safetensors,
convert_to_ckpt,
cache_latent,
caption_extention,
use_safetensors,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
):
original_file_path = file_path
file_path = filesavebox(
"Select the config file to save", default="finetune.json", filetypes="*.json"
)
if file_path == None:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
return file_path
# Return the values of the variables as a dictionary
variables = {
"pretrained_model_name_or_path": pretrained_model_name_or_path,
@ -82,44 +181,88 @@ def save_variables(
with open(file_path, "w") as file:
json.dump(variables, file)
return file_path
def load_variables(file_path):
# load variables from JSON file
with open(file_path, "r") as f:
my_data = json.load(f)
def open_config_file(
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
convert_to_safetensors,
convert_to_ckpt,
cache_latent,
caption_extention,
use_safetensors,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
):
original_file_path = file_path
file_path = get_file_path(file_path)
if file_path != "" and file_path != None:
print(file_path)
# load variables from JSON file
with open(file_path, "r") as f:
my_data = json.load(f)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
# Return the values of the variables as a dictionary
return (
my_data.get("pretrained_model_name_or_path", None),
my_data.get("v2", None),
my_data.get("v_parameterization", None),
my_data.get("logging_dir", None),
my_data.get("train_data_dir", None),
my_data.get("reg_data_dir", None),
my_data.get("output_dir", None),
my_data.get("max_resolution", None),
my_data.get("learning_rate", None),
my_data.get("lr_scheduler", None),
my_data.get("lr_warmup", None),
my_data.get("train_batch_size", None),
my_data.get("epoch", None),
my_data.get("save_every_n_epochs", None),
my_data.get("mixed_precision", None),
my_data.get("save_precision", None),
my_data.get("seed", None),
my_data.get("num_cpu_threads_per_process", None),
my_data.get("convert_to_safetensors", None),
my_data.get("convert_to_ckpt", None),
my_data.get("cache_latent", None),
my_data.get("caption_extention", None),
my_data.get("use_safetensors", None),
my_data.get("enable_bucket", None),
my_data.get("gradient_checkpointing", None),
my_data.get("full_fp16", None),
my_data.get("no_token_padding", None),
my_data.get("stop_text_encoder_training", None),
my_data.get("use_8bit_adam", None),
my_data.get("xformers", None),
file_path,
my_data.get("pretrained_model_name_or_path", pretrained_model_name_or_path),
my_data.get("v2", v2),
my_data.get("v_parameterization", v_parameterization),
my_data.get("logging_dir", logging_dir),
my_data.get("train_data_dir", train_data_dir),
my_data.get("reg_data_dir", reg_data_dir),
my_data.get("output_dir", output_dir),
my_data.get("max_resolution", max_resolution),
my_data.get("learning_rate", learning_rate),
my_data.get("lr_scheduler", lr_scheduler),
my_data.get("lr_warmup", lr_warmup),
my_data.get("train_batch_size", train_batch_size),
my_data.get("epoch", epoch),
my_data.get("save_every_n_epochs", save_every_n_epochs),
my_data.get("mixed_precision", mixed_precision),
my_data.get("save_precision", save_precision),
my_data.get("seed", seed),
my_data.get("num_cpu_threads_per_process", num_cpu_threads_per_process),
my_data.get("convert_to_safetensors", convert_to_safetensors),
my_data.get("convert_to_ckpt", convert_to_ckpt),
my_data.get("cache_latent", cache_latent),
my_data.get("caption_extention", caption_extention),
my_data.get("use_safetensors", use_safetensors),
my_data.get("enable_bucket", enable_bucket),
my_data.get("gradient_checkpointing", gradient_checkpointing),
my_data.get("full_fp16", full_fp16),
my_data.get("no_token_padding", no_token_padding),
my_data.get("stop_text_encoder_training", stop_text_encoder_training),
my_data.get("use_8bit_adam", use_8bit_adam),
my_data.get("xformers", xformers),
)
@ -356,28 +499,49 @@ def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
return value, v2, v_parameterization
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
file_path = file_path.replace('"', "")
return file_path
interface = gr.Blocks()
def get_file_path(file_path):
file_path = fileopenbox(
"Select the config file to load", default=file_path, filetypes="*.json"
)
return file_path
def get_folder_path():
folder_path = diropenbox("Select the directory to use")
return folder_path
css = ""
if os.path.exists("./style.css"):
with open(os.path.join("./style.css"), "r", encoding="utf8") as file:
print("Load CSS...")
css += file.read() + "\n"
interface = gr.Blocks(css=css)
with interface:
gr.Markdown("Enter kohya finetuner parameter using this interface.")
with gr.Accordion("Configuration File Load/Save", open=False):
with gr.Row():
config_file_name = gr.Textbox(label="Config file name")
button_load_config = gr.Button("Load config")
button_save_config = gr.Button("Save config")
button_open_config = gr.Button("Open 📂", elem_id="open_folder")
button_save_config = gr.Button("Save 💾", elem_id="open_folder")
button_save_as_config = gr.Button("Save as... 💾", elem_id="open_folder")
config_file_name = gr.Textbox(
label="", placeholder="type config file path or use buttons..."
)
config_file_name.change(
remove_doublequote,
inputs=[config_file_name],
outputs=[
config_file_name
]
remove_doublequote, inputs=[config_file_name], outputs=[config_file_name]
)
with gr.Tab("Source model"):
# Define the input elements
@ -406,9 +570,7 @@ with interface:
pretrained_model_name_or_path_input.change(
remove_doublequote,
inputs=[pretrained_model_name_or_path_input],
outputs=[
pretrained_model_name_or_path_input
]
outputs=[pretrained_model_name_or_path_input],
)
model_list.change(
set_pretrained_model_name_or_path_input,
@ -419,53 +581,49 @@ with interface:
v_parameterization_input,
],
)
with gr.Tab("Directories"):
with gr.Row():
train_data_dir_input = gr.Textbox(
label="Image folder",
placeholder="Directory where the training folders containing the images are located",
)
train_data_dir_input_folder = gr.Button("📂", elem_id="open_folder_small")
train_data_dir_input_folder.click(get_folder_path, outputs=train_data_dir_input)
reg_data_dir_input = gr.Textbox(
label="Regularisation folder",
placeholder="(Optional) Directory where where the regularization folders containing the images are located",
)
reg_data_dir_input_folder = gr.Button("📂", elem_id="open_folder_small")
reg_data_dir_input_folder.click(get_folder_path, outputs=reg_data_dir_input)
with gr.Row():
output_dir_input = gr.Textbox(
label="Output directory",
placeholder="Directory to output trained model",
)
output_dir_input_folder = gr.Button("📂", elem_id="open_folder_small")
output_dir_input_folder.click(get_folder_path, outputs=output_dir_input)
logging_dir_input = gr.Textbox(
label="Logging directory",
placeholder="Optional: enable logging and output TensorBoard log to this directory",
)
logging_dir_input_folder = gr.Button("📂", elem_id="open_folder_small")
logging_dir_input_folder.click(get_folder_path, outputs=logging_dir_input)
train_data_dir_input.change(
remove_doublequote,
inputs=[train_data_dir_input],
outputs=[
train_data_dir_input
]
outputs=[train_data_dir_input],
)
reg_data_dir_input.change(
remove_doublequote,
inputs=[reg_data_dir_input],
outputs=[
reg_data_dir_input
]
outputs=[reg_data_dir_input],
)
output_dir_input.change(
remove_doublequote,
inputs=[output_dir_input],
outputs=[
output_dir_input
]
remove_doublequote, inputs=[output_dir_input], outputs=[output_dir_input]
)
logging_dir_input.change(
remove_doublequote,
inputs=[logging_dir_input],
outputs=[
logging_dir_input
]
remove_doublequote, inputs=[logging_dir_input], outputs=[logging_dir_input]
)
with gr.Tab("Training parameters"):
with gr.Row():
@ -523,7 +681,11 @@ with interface:
label="Caption Extension",
placeholder="(Optional) Extension for caption files. default: .caption",
)
stop_text_encoder_training_input = gr.Slider(minimum=0, maximum=100, value=0, step=1,
stop_text_encoder_training_input = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=1,
label="Stop text encoder training",
)
with gr.Row():
@ -551,10 +713,43 @@ with interface:
button_run = gr.Button("Run")
button_load_config.click(
load_variables,
inputs=[config_file_name],
button_open_config.click(
open_config_file,
inputs=[
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
convert_to_safetensors_input,
convert_to_ckpt_input,
cache_latent_input,
caption_extention_input,
use_safetensors_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
],
outputs=[
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
@ -623,7 +818,47 @@ with interface:
use_8bit_adam_input,
xformers_input,
],
outputs=[config_file_name],
)
button_save_as_config.click(
save_as_variables,
inputs=[
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
convert_to_safetensors_input,
convert_to_ckpt_input,
cache_latent_input,
caption_extention_input,
use_safetensors_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
],
outputs=[config_file_name],
)
button_run.click(
train_model,
inputs=[

View File

@ -10,4 +10,5 @@ bitsandbytes==0.35.0
tensorboard
safetensors==0.2.6
gradio
altair
altair
easygui

14
style.css Normal file
View File

@ -0,0 +1,14 @@
#open_folder_small{
height: fit-content;
min-width: auto;
flex-grow: 0;
padding-left: 0.25em;
padding-right: 0.25em;
}
#open_folder{
height: fit-content;
flex-grow: 0;
padding-left: 0.25em;
padding-right: 0.25em;
}