Adding example for SDv2
This commit is contained in:
parent
db542efc14
commit
6b87353f17
64
examples/kohya_train_db_fixed_with-reg_SDv2 512 base.ps1
Normal file
64
examples/kohya_train_db_fixed_with-reg_SDv2 512 base.ps1
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape,
|
||||||
|
# portrait and square images.
|
||||||
|
#
|
||||||
|
# Adjust the script to your own needs
|
||||||
|
|
||||||
|
# variable values
|
||||||
|
$pretrained_model_name_or_path = "D:\models\512-base-ema.ckpt"
|
||||||
|
$data_dir = "D:\models\dariusz_zawadzki\kohya_reg\data"
|
||||||
|
$reg_data_dir = "D:\models\dariusz_zawadzki\kohya_reg\reg"
|
||||||
|
$logging_dir = "D:\models\dariusz_zawadzki\logs"
|
||||||
|
$output_dir = "D:\models\dariusz_zawadzki\train_db_fixed_model_reg_v2"
|
||||||
|
$resolution = "512,512"
|
||||||
|
$lr_scheduler="polynomial"
|
||||||
|
$cache_latents = 1 # 1 = true, 0 = false
|
||||||
|
|
||||||
|
$image_num = Get-ChildItem $data_dir -Recurse -File -Include *.png, *.jpg, *.webp | Measure-Object | %{$_.Count}
|
||||||
|
|
||||||
|
Write-Output "image_num: $image_num"
|
||||||
|
|
||||||
|
$dataset_repeats = 200
|
||||||
|
$learning_rate = 2e-6
|
||||||
|
$train_batch_size = 4
|
||||||
|
$epoch = 1
|
||||||
|
$save_every_n_epochs=1
|
||||||
|
$mixed_precision="bf16"
|
||||||
|
$num_cpu_threads_per_process=6
|
||||||
|
|
||||||
|
# You should not have to change values past this point
|
||||||
|
if ($cache_latents -eq 1) {
|
||||||
|
$cache_latents_value="--cache_latents"
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
$cache_latents_value=""
|
||||||
|
}
|
||||||
|
|
||||||
|
$repeats = $image_num * $dataset_repeats
|
||||||
|
$mts = [Math]::Ceiling($repeats / $train_batch_size * $epoch)
|
||||||
|
|
||||||
|
Write-Output "Repeats: $repeats"
|
||||||
|
|
||||||
|
cd D:\kohya_ss
|
||||||
|
.\venv\Scripts\activate
|
||||||
|
|
||||||
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py `
|
||||||
|
--v2 `
|
||||||
|
--pretrained_model_name_or_path=$pretrained_model_name_or_path `
|
||||||
|
--train_data_dir=$data_dir `
|
||||||
|
--output_dir=$output_dir `
|
||||||
|
--resolution=$resolution `
|
||||||
|
--train_batch_size=$train_batch_size `
|
||||||
|
--learning_rate=$learning_rate `
|
||||||
|
--max_train_steps=$mts `
|
||||||
|
--use_8bit_adam `
|
||||||
|
--xformers `
|
||||||
|
--mixed_precision=$mixed_precision `
|
||||||
|
$cache_latents_value `
|
||||||
|
--save_every_n_epochs=$save_every_n_epochs `
|
||||||
|
--logging_dir=$logging_dir `
|
||||||
|
--save_precision="fp16" `
|
||||||
|
--reg_data_dir=$reg_data_dir `
|
||||||
|
--seed=494481440 `
|
||||||
|
--lr_scheduler=$lr_scheduler
|
||||||
|
|
||||||
|
# Add the inference yaml file along with the model for proper loading. Need to have the same name as model... Most likelly "last.yaml" in our case.
|
158
v2_inference/v2-inpainting-inference.yaml
Normal file
158
v2_inference/v2-inpainting-inference.yaml
Normal file
@ -0,0 +1,158 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 5.0e-05
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false
|
||||||
|
conditioning_key: hybrid
|
||||||
|
scale_factor: 0.18215
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
finetune_keys: null
|
||||||
|
use_ema: False
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
use_checkpoint: True
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 9
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_head_channels: 64 # need to fix for flash-attn
|
||||||
|
use_spatial_transformer: True
|
||||||
|
use_linear_in_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 1024
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
#attn_type: "vanilla-xformers"
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: [ ]
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||||
|
params:
|
||||||
|
freeze: True
|
||||||
|
layer: "penultimate"
|
||||||
|
|
||||||
|
|
||||||
|
data:
|
||||||
|
target: ldm.data.laion.WebDataModuleFromConfig
|
||||||
|
params:
|
||||||
|
tar_base: null # for concat as in LAION-A
|
||||||
|
p_unsafe_threshold: 0.1
|
||||||
|
filter_word_list: "data/filters.yaml"
|
||||||
|
max_pwatermark: 0.45
|
||||||
|
batch_size: 8
|
||||||
|
num_workers: 6
|
||||||
|
multinode: True
|
||||||
|
min_size: 512
|
||||||
|
train:
|
||||||
|
shards:
|
||||||
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
|
||||||
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
|
||||||
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
|
||||||
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
|
||||||
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
|
||||||
|
shuffle: 10000
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.RandomCrop
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
postprocess:
|
||||||
|
target: ldm.data.laion.AddMask
|
||||||
|
params:
|
||||||
|
mode: "512train-large"
|
||||||
|
p_drop: 0.25
|
||||||
|
# NOTE use enough shards to avoid empty validation loops in workers
|
||||||
|
validation:
|
||||||
|
shards:
|
||||||
|
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
|
||||||
|
shuffle: 0
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.CenterCrop
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
postprocess:
|
||||||
|
target: ldm.data.laion.AddMask
|
||||||
|
params:
|
||||||
|
mode: "512train-large"
|
||||||
|
p_drop: 0.25
|
||||||
|
|
||||||
|
lightning:
|
||||||
|
find_unused_parameters: True
|
||||||
|
modelcheckpoint:
|
||||||
|
params:
|
||||||
|
every_n_train_steps: 5000
|
||||||
|
|
||||||
|
callbacks:
|
||||||
|
metrics_over_trainsteps_checkpoint:
|
||||||
|
params:
|
||||||
|
every_n_train_steps: 10000
|
||||||
|
|
||||||
|
image_logger:
|
||||||
|
target: main.ImageLogger
|
||||||
|
params:
|
||||||
|
enable_autocast: False
|
||||||
|
disabled: False
|
||||||
|
batch_frequency: 1000
|
||||||
|
max_images: 4
|
||||||
|
increase_log_steps: False
|
||||||
|
log_first_step: False
|
||||||
|
log_images_kwargs:
|
||||||
|
use_ema_scope: False
|
||||||
|
inpaint: False
|
||||||
|
plot_progressive_rows: False
|
||||||
|
plot_diffusion_rows: False
|
||||||
|
N: 4
|
||||||
|
unconditional_guidance_scale: 5.0
|
||||||
|
unconditional_guidance_label: [""]
|
||||||
|
ddim_steps: 50 # todo check these out for depth2img,
|
||||||
|
ddim_eta: 0.0 # todo check these out for depth2img,
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
benchmark: True
|
||||||
|
val_check_interval: 5000000
|
||||||
|
num_sanity_val_steps: 0
|
||||||
|
accumulate_grad_batches: 1
|
74
v2_inference/v2-midas-inference.yaml
Normal file
74
v2_inference/v2-midas-inference.yaml
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 5.0e-07
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDepth2ImageDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false
|
||||||
|
conditioning_key: hybrid
|
||||||
|
scale_factor: 0.18215
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
finetune_keys: null
|
||||||
|
use_ema: False
|
||||||
|
|
||||||
|
depth_stage_config:
|
||||||
|
target: ldm.modules.midas.api.MiDaSInference
|
||||||
|
params:
|
||||||
|
model_type: "dpt_hybrid"
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
use_checkpoint: True
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 5
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_head_channels: 64 # need to fix for flash-attn
|
||||||
|
use_spatial_transformer: True
|
||||||
|
use_linear_in_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 1024
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
#attn_type: "vanilla-xformers"
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: [ ]
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||||
|
params:
|
||||||
|
freeze: True
|
||||||
|
layer: "penultimate"
|
||||||
|
|
||||||
|
|
76
v2_inference/x4-upscaling.yaml
Normal file
76
v2_inference/x4-upscaling.yaml
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-04
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
||||||
|
params:
|
||||||
|
parameterization: "v"
|
||||||
|
low_scale_key: "lr"
|
||||||
|
linear_start: 0.0001
|
||||||
|
linear_end: 0.02
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 128
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false
|
||||||
|
conditioning_key: "hybrid-adm"
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.08333
|
||||||
|
use_ema: False
|
||||||
|
|
||||||
|
low_scale_config:
|
||||||
|
target: ldm.modules.diffusionmodules.upscaling.ImageConcatWithNoiseAugmentation
|
||||||
|
params:
|
||||||
|
noise_schedule_config: # image space
|
||||||
|
linear_start: 0.0001
|
||||||
|
linear_end: 0.02
|
||||||
|
max_noise_level: 350
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
use_checkpoint: True
|
||||||
|
num_classes: 1000 # timesteps for noise conditioning (here constant, just need one)
|
||||||
|
image_size: 128
|
||||||
|
in_channels: 7
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 256
|
||||||
|
attention_resolutions: [ 2,4,8]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 2, 4]
|
||||||
|
disable_self_attentions: [True, True, True, False]
|
||||||
|
disable_middle_self_attn: False
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 1024
|
||||||
|
legacy: False
|
||||||
|
use_linear_in_transformer: True
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
ddconfig:
|
||||||
|
# attn_type: "vanilla-xformers" this model needs efficient attention to be feasible on HR data, also the decoder seems to break in half precision (UNet is fine though)
|
||||||
|
double_z: True
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: [ ]
|
||||||
|
dropout: 0.0
|
||||||
|
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||||
|
params:
|
||||||
|
freeze: True
|
||||||
|
layer: "penultimate"
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user