Merge branch 'macos_gui' of https://github.com/jstayco/kohya_ss into macos_gui
This commit is contained in:
commit
8dd96e35ef
3
.gitignore
vendored
3
.gitignore
vendored
@ -239,4 +239,5 @@ fabric.properties
|
||||
.idea/httpRequests
|
||||
|
||||
# Android studio 3.1+ serialized cache file
|
||||
.idea/caches/build_file_checksums.ser
|
||||
.idea/caches/build_file_checksums.ser
|
||||
library/__init__.py
|
||||
|
51
README.md
51
README.md
@ -64,36 +64,19 @@ cd kohya_ss
|
||||
bash ubuntu_setup.sh
|
||||
```
|
||||
|
||||
then configure accelerate with the same answers as in the Windows instructions when prompted.
|
||||
then configure accelerate with the same answers as in the MacOS instructions when prompted.
|
||||
|
||||
### Windows
|
||||
In the terminal, run
|
||||
|
||||
Give unrestricted script access to powershell so venv can work:
|
||||
|
||||
- Run PowerShell as an administrator
|
||||
- Run `Set-ExecutionPolicy Unrestricted` and answer 'A'
|
||||
- Close PowerShell
|
||||
|
||||
Open a regular user Powershell terminal and run the following commands:
|
||||
|
||||
```powershell
|
||||
```
|
||||
git clone https://github.com/bmaltais/kohya_ss.git
|
||||
cd kohya_ss
|
||||
|
||||
python -m venv venv
|
||||
.\venv\Scripts\activate
|
||||
|
||||
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
|
||||
pip install --use-pep517 --upgrade -r requirements.txt
|
||||
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
|
||||
|
||||
cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
|
||||
cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
|
||||
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
|
||||
|
||||
accelerate config
|
||||
setup.bat
|
||||
```
|
||||
|
||||
then configure accelerate with the same answers as in the MacOS instructions when prompted.
|
||||
|
||||
### Optional: CUDNN 8.6
|
||||
|
||||
This step is optional but can improve the learning speed for NVIDIA 30X0/40X0 owners. It allows for larger training batch size and faster training speed.
|
||||
@ -125,11 +108,7 @@ Once the commands have completed successfully you should be ready to use the new
|
||||
When a new release comes out, you can upgrade your repo with the following commands in the root directory:
|
||||
|
||||
```powershell
|
||||
git pull
|
||||
|
||||
.\venv\Scripts\activate
|
||||
|
||||
pip install --use-pep517 --upgrade -r requirements.txt
|
||||
upgrade.bat
|
||||
```
|
||||
|
||||
Once the commands have completed successfully you should be ready to use the new version.
|
||||
@ -213,6 +192,22 @@ This will store your a backup file with your current locally installed pip packa
|
||||
|
||||
## Change History
|
||||
|
||||
* 2023/04/01 (v21.4.0)
|
||||
- Fix an issue that `merge_lora.py` does not work with the latest version.
|
||||
- Fix an issue that `merge_lora.py` does not merge Conv2d3x3 weights.
|
||||
- Fix an issue that the VRAM usage temporarily increases when loading a model in `train_network.py`.
|
||||
- Fix an issue that an error occurs when loading a `.safetensors` model in `train_network.py`. [#354](https://github.com/kohya-ss/sd-scripts/issues/354)
|
||||
- Support [P+](https://prompt-plus.github.io/) training. Thank you jakaline-dev!
|
||||
- See [#327](https://github.com/kohya-ss/sd-scripts/pull/327) for details.
|
||||
- Use `train_textual_inversion_XTI.py` for training. The usage is almost the same as `train_textual_inversion.py`. However, sample image generation during training is not supported.
|
||||
- Use `gen_img_diffusers.py` for image generation (I think Web UI is not supported). Specify the embedding with `--XTI_embeddings` option.
|
||||
- Reduce RAM usage at startup in `train_network.py`. [#332](https://github.com/kohya-ss/sd-scripts/pull/332) Thank you guaneec!
|
||||
- Support pre-merge for LoRA in `gen_img_diffusers.py`. Specify `--network_merge` option. Note that the `--am` option of the prompt option is no longer available with this option.
|
||||
* 2023/04/01 (v21.3.9)
|
||||
- Update how setup is done on Windows by introducing a setup.bat script. This will make it easier to install/re-install on Windows if needed. Many thanks to @missionfloyd for his PR: https://github.com/bmaltais/kohya_ss/pull/496
|
||||
- Fix issue with WD14 caption script by applying a custom fix to kohya_ss code.
|
||||
* 2023/03/30 (v21.3.8)
|
||||
- Fix issue with LyCORIS version not being found: https://github.com/bmaltais/kohya_ss/issues/481
|
||||
* 2023/03/29 (v21.3.7)
|
||||
- Allow for 0.1 increment in Network and Conv alpha values: https://github.com/bmaltais/kohya_ss/pull/471 Thanks to @srndpty
|
||||
- Updated Lycoris module version
|
||||
|
209
XTI_hijack.py
Normal file
209
XTI_hijack.py
Normal file
@ -0,0 +1,209 @@
|
||||
import torch
|
||||
from typing import Union, List, Optional, Dict, Any, Tuple
|
||||
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
|
||||
|
||||
def unet_forward_XTI(self,
|
||||
sample: torch.FloatTensor,
|
||||
timestep: Union[torch.Tensor, float, int],
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
class_labels: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[UNet2DConditionOutput, Tuple]:
|
||||
r"""
|
||||
Args:
|
||||
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
||||
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
||||
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
||||
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
||||
returning a tuple, the first element is the sample tensor.
|
||||
"""
|
||||
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
||||
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
||||
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
||||
# on the fly if necessary.
|
||||
default_overall_up_factor = 2**self.num_upsamplers
|
||||
|
||||
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
||||
forward_upsample_size = False
|
||||
upsample_size = None
|
||||
|
||||
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
||||
logger.info("Forward upsample size to force interpolation output size.")
|
||||
forward_upsample_size = True
|
||||
|
||||
# 0. center input if necessary
|
||||
if self.config.center_input_sample:
|
||||
sample = 2 * sample - 1.0
|
||||
|
||||
# 1. time
|
||||
timesteps = timestep
|
||||
if not torch.is_tensor(timesteps):
|
||||
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
||||
# This would be a good case for the `match` statement (Python 3.10+)
|
||||
is_mps = sample.device.type == "mps"
|
||||
if isinstance(timestep, float):
|
||||
dtype = torch.float32 if is_mps else torch.float64
|
||||
else:
|
||||
dtype = torch.int32 if is_mps else torch.int64
|
||||
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
||||
elif len(timesteps.shape) == 0:
|
||||
timesteps = timesteps[None].to(sample.device)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timesteps = timesteps.expand(sample.shape[0])
|
||||
|
||||
t_emb = self.time_proj(timesteps)
|
||||
|
||||
# timesteps does not contain any weights and will always return f32 tensors
|
||||
# but time_embedding might actually be running in fp16. so we need to cast here.
|
||||
# there might be better ways to encapsulate this.
|
||||
t_emb = t_emb.to(dtype=self.dtype)
|
||||
emb = self.time_embedding(t_emb)
|
||||
|
||||
if self.config.num_class_embeds is not None:
|
||||
if class_labels is None:
|
||||
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
||||
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
||||
emb = emb + class_emb
|
||||
|
||||
# 2. pre-process
|
||||
sample = self.conv_in(sample)
|
||||
|
||||
# 3. down
|
||||
down_block_res_samples = (sample,)
|
||||
down_i = 0
|
||||
for downsample_block in self.down_blocks:
|
||||
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
||||
sample, res_samples = downsample_block(
|
||||
hidden_states=sample,
|
||||
temb=emb,
|
||||
encoder_hidden_states=encoder_hidden_states[down_i:down_i+2],
|
||||
)
|
||||
down_i += 2
|
||||
else:
|
||||
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
||||
|
||||
down_block_res_samples += res_samples
|
||||
|
||||
# 4. mid
|
||||
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states[6])
|
||||
|
||||
# 5. up
|
||||
up_i = 7
|
||||
for i, upsample_block in enumerate(self.up_blocks):
|
||||
is_final_block = i == len(self.up_blocks) - 1
|
||||
|
||||
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
||||
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
||||
|
||||
# if we have not reached the final block and need to forward the
|
||||
# upsample size, we do it here
|
||||
if not is_final_block and forward_upsample_size:
|
||||
upsample_size = down_block_res_samples[-1].shape[2:]
|
||||
|
||||
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
||||
sample = upsample_block(
|
||||
hidden_states=sample,
|
||||
temb=emb,
|
||||
res_hidden_states_tuple=res_samples,
|
||||
encoder_hidden_states=encoder_hidden_states[up_i:up_i+3],
|
||||
upsample_size=upsample_size,
|
||||
)
|
||||
up_i += 3
|
||||
else:
|
||||
sample = upsample_block(
|
||||
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
||||
)
|
||||
# 6. post-process
|
||||
sample = self.conv_norm_out(sample)
|
||||
sample = self.conv_act(sample)
|
||||
sample = self.conv_out(sample)
|
||||
|
||||
if not return_dict:
|
||||
return (sample,)
|
||||
|
||||
return UNet2DConditionOutput(sample=sample)
|
||||
|
||||
def downblock_forward_XTI(
|
||||
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
|
||||
):
|
||||
output_states = ()
|
||||
i = 0
|
||||
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states[i]
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = resnet(hidden_states, temb)
|
||||
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states[i]).sample
|
||||
|
||||
output_states += (hidden_states,)
|
||||
i += 1
|
||||
|
||||
if self.downsamplers is not None:
|
||||
for downsampler in self.downsamplers:
|
||||
hidden_states = downsampler(hidden_states)
|
||||
|
||||
output_states += (hidden_states,)
|
||||
|
||||
return hidden_states, output_states
|
||||
|
||||
def upblock_forward_XTI(
|
||||
self,
|
||||
hidden_states,
|
||||
res_hidden_states_tuple,
|
||||
temb=None,
|
||||
encoder_hidden_states=None,
|
||||
upsample_size=None,
|
||||
):
|
||||
i = 0
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
# pop res hidden states
|
||||
res_hidden_states = res_hidden_states_tuple[-1]
|
||||
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||||
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
||||
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states[i]
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = resnet(hidden_states, temb)
|
||||
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states[i]).sample
|
||||
|
||||
i += 1
|
||||
|
||||
if self.upsamplers is not None:
|
||||
for upsampler in self.upsamplers:
|
||||
hidden_states = upsampler(hidden_states, upsample_size)
|
||||
|
||||
return hidden_states
|
217
finetune/tag_images_by_wd14_tagger_bmaltais.py
Normal file
217
finetune/tag_images_by_wd14_tagger_bmaltais.py
Normal file
@ -0,0 +1,217 @@
|
||||
import argparse
|
||||
import csv
|
||||
import glob
|
||||
import os
|
||||
|
||||
from PIL import Image
|
||||
import cv2
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from tensorflow.keras.models import load_model
|
||||
from huggingface_hub import hf_hub_download
|
||||
import torch
|
||||
|
||||
# import library.train_util as train_util
|
||||
|
||||
# from wd14 tagger
|
||||
IMAGE_SIZE = 448
|
||||
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".PNG", ".JPG", ".JPEG", ".WEBP", ".BMP"]
|
||||
|
||||
# wd-v1-4-swinv2-tagger-v2 / wd-v1-4-vit-tagger / wd-v1-4-vit-tagger-v2/ wd-v1-4-convnext-tagger / wd-v1-4-convnext-tagger-v2
|
||||
DEFAULT_WD14_TAGGER_REPO = 'SmilingWolf/wd-v1-4-convnext-tagger-v2'
|
||||
FILES = ["keras_metadata.pb", "saved_model.pb", "selected_tags.csv"]
|
||||
SUB_DIR = "variables"
|
||||
SUB_DIR_FILES = ["variables.data-00000-of-00001", "variables.index"]
|
||||
CSV_FILE = FILES[-1]
|
||||
|
||||
def glob_images(directory, base="*"):
|
||||
img_paths = []
|
||||
for ext in IMAGE_EXTENSIONS:
|
||||
if base == "*":
|
||||
img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
|
||||
else:
|
||||
img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
|
||||
img_paths = list(set(img_paths)) # 重複を排除
|
||||
img_paths.sort()
|
||||
return img_paths
|
||||
|
||||
def preprocess_image(image):
|
||||
image = np.array(image)
|
||||
image = image[:, :, ::-1] # RGB->BGR
|
||||
|
||||
# pad to square
|
||||
size = max(image.shape[0:2])
|
||||
pad_x = size - image.shape[1]
|
||||
pad_y = size - image.shape[0]
|
||||
pad_l = pad_x // 2
|
||||
pad_t = pad_y // 2
|
||||
image = np.pad(image, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode='constant', constant_values=255)
|
||||
|
||||
interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4
|
||||
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp)
|
||||
|
||||
image = image.astype(np.float32)
|
||||
return image
|
||||
|
||||
|
||||
class ImageLoadingPrepDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, image_paths):
|
||||
self.images = image_paths
|
||||
|
||||
def __len__(self):
|
||||
return len(self.images)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
img_path = self.images[idx]
|
||||
|
||||
try:
|
||||
image = Image.open(img_path).convert("RGB")
|
||||
image = preprocess_image(image)
|
||||
tensor = torch.tensor(image)
|
||||
except Exception as e:
|
||||
print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
|
||||
return None
|
||||
|
||||
return (tensor, img_path)
|
||||
|
||||
|
||||
def collate_fn_remove_corrupted(batch):
|
||||
"""Collate function that allows to remove corrupted examples in the
|
||||
dataloader. It expects that the dataloader returns 'None' when that occurs.
|
||||
The 'None's in the batch are removed.
|
||||
"""
|
||||
# Filter out all the Nones (corrupted examples)
|
||||
batch = list(filter(lambda x: x is not None, batch))
|
||||
return batch
|
||||
|
||||
|
||||
def main(args):
|
||||
# hf_hub_downloadをそのまま使うとsymlink関係で問題があるらしいので、キャッシュディレクトリとforce_filenameを指定してなんとかする
|
||||
# depreacatedの警告が出るけどなくなったらその時
|
||||
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/issues/22
|
||||
if not os.path.exists(args.model_dir) or args.force_download:
|
||||
print(f"downloading wd14 tagger model from hf_hub. id: {args.repo_id}")
|
||||
for file in FILES:
|
||||
hf_hub_download(args.repo_id, file, cache_dir=args.model_dir, force_download=True, force_filename=file)
|
||||
for file in SUB_DIR_FILES:
|
||||
hf_hub_download(args.repo_id, file, subfolder=SUB_DIR, cache_dir=os.path.join(
|
||||
args.model_dir, SUB_DIR), force_download=True, force_filename=file)
|
||||
else:
|
||||
print("using existing wd14 tagger model")
|
||||
|
||||
# 画像を読み込む
|
||||
image_paths = glob_images(args.train_data_dir)
|
||||
print(f"found {len(image_paths)} images.")
|
||||
|
||||
print("loading model and labels")
|
||||
model = load_model(args.model_dir)
|
||||
|
||||
# label_names = pd.read_csv("2022_0000_0899_6549/selected_tags.csv")
|
||||
# 依存ライブラリを増やしたくないので自力で読むよ
|
||||
with open(os.path.join(args.model_dir, CSV_FILE), "r", encoding="utf-8") as f:
|
||||
reader = csv.reader(f)
|
||||
l = [row for row in reader]
|
||||
header = l[0] # tag_id,name,category,count
|
||||
rows = l[1:]
|
||||
assert header[0] == 'tag_id' and header[1] == 'name' and header[2] == 'category', f"unexpected csv format: {header}"
|
||||
|
||||
tags = [row[1] for row in rows[1:] if row[2] == '0'] # categoryが0、つまり通常のタグのみ
|
||||
|
||||
# 推論する
|
||||
def run_batch(path_imgs):
|
||||
imgs = np.array([im for _, im in path_imgs])
|
||||
|
||||
probs = model(imgs, training=False)
|
||||
probs = probs.numpy()
|
||||
|
||||
for (image_path, _), prob in zip(path_imgs, probs):
|
||||
# 最初の4つはratingなので無視する
|
||||
# # First 4 labels are actually ratings: pick one with argmax
|
||||
# ratings_names = label_names[:4]
|
||||
# rating_index = ratings_names["probs"].argmax()
|
||||
# found_rating = ratings_names[rating_index: rating_index + 1][["name", "probs"]]
|
||||
|
||||
# それ以降はタグなのでconfidenceがthresholdより高いものを追加する
|
||||
# Everything else is tags: pick any where prediction confidence > threshold
|
||||
tag_text = ""
|
||||
for i, p in enumerate(prob[4:]): # numpyとか使うのが良いけど、まあそれほど数も多くないのでループで
|
||||
if p >= args.thresh and i < len(tags):
|
||||
tag_text += ", " + tags[i]
|
||||
|
||||
if len(tag_text) > 0:
|
||||
tag_text = tag_text[2:] # 最初の ", " を消す
|
||||
|
||||
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding='utf-8') as f:
|
||||
f.write(tag_text + '\n')
|
||||
if args.debug:
|
||||
print(image_path, tag_text)
|
||||
|
||||
# 読み込みの高速化のためにDataLoaderを使うオプション
|
||||
if args.max_data_loader_n_workers is not None:
|
||||
dataset = ImageLoadingPrepDataset(image_paths)
|
||||
data = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False,
|
||||
num_workers=args.max_data_loader_n_workers, collate_fn=collate_fn_remove_corrupted, drop_last=False)
|
||||
else:
|
||||
data = [[(None, ip)] for ip in image_paths]
|
||||
|
||||
b_imgs = []
|
||||
for data_entry in tqdm(data, smoothing=0.0):
|
||||
for data in data_entry:
|
||||
if data is None:
|
||||
continue
|
||||
|
||||
image, image_path = data
|
||||
if image is not None:
|
||||
image = image.detach().numpy()
|
||||
else:
|
||||
try:
|
||||
image = Image.open(image_path)
|
||||
if image.mode != 'RGB':
|
||||
image = image.convert("RGB")
|
||||
image = preprocess_image(image)
|
||||
except Exception as e:
|
||||
print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
|
||||
continue
|
||||
b_imgs.append((image_path, image))
|
||||
|
||||
if len(b_imgs) >= args.batch_size:
|
||||
run_batch(b_imgs)
|
||||
b_imgs.clear()
|
||||
|
||||
if len(b_imgs) > 0:
|
||||
run_batch(b_imgs)
|
||||
|
||||
print("done!")
|
||||
|
||||
|
||||
def setup_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("--repo_id", type=str, default=DEFAULT_WD14_TAGGER_REPO,
|
||||
help="repo id for wd14 tagger on Hugging Face / Hugging Faceのwd14 taggerのリポジトリID")
|
||||
parser.add_argument("--model_dir", type=str, default="wd14_tagger_model",
|
||||
help="directory to store wd14 tagger model / wd14 taggerのモデルを格納するディレクトリ")
|
||||
parser.add_argument("--force_download", action='store_true',
|
||||
help="force downloading wd14 tagger models / wd14 taggerのモデルを再ダウンロードします")
|
||||
parser.add_argument("--thresh", type=float, default=0.35, help="threshold of confidence to add a tag / タグを追加するか判定する閾値")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
|
||||
parser.add_argument("--max_data_loader_n_workers", type=int, default=None,
|
||||
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)")
|
||||
parser.add_argument("--caption_extention", type=str, default=None,
|
||||
help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)")
|
||||
parser.add_argument("--caption_extension", type=str, default=".txt", help="extension of caption file / 出力されるキャプションファイルの拡張子")
|
||||
parser.add_argument("--debug", action="store_true", help="debug mode")
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = setup_parser()
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# スペルミスしていたオプションを復元する
|
||||
if args.caption_extention is not None:
|
||||
args.caption_extension = args.caption_extention
|
||||
|
||||
main(args)
|
@ -95,6 +95,8 @@ import library.train_util as train_util
|
||||
import tools.original_control_net as original_control_net
|
||||
from tools.original_control_net import ControlNetInfo
|
||||
|
||||
from XTI_hijack import unet_forward_XTI, downblock_forward_XTI, upblock_forward_XTI
|
||||
|
||||
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
|
||||
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
|
||||
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
|
||||
@ -491,6 +493,9 @@ class PipelineLike:
|
||||
# Textual Inversion
|
||||
self.token_replacements = {}
|
||||
|
||||
# XTI
|
||||
self.token_replacements_XTI = {}
|
||||
|
||||
# CLIP guidance
|
||||
self.clip_guidance_scale = clip_guidance_scale
|
||||
self.clip_image_guidance_scale = clip_image_guidance_scale
|
||||
@ -514,15 +519,26 @@ class PipelineLike:
|
||||
def add_token_replacement(self, target_token_id, rep_token_ids):
|
||||
self.token_replacements[target_token_id] = rep_token_ids
|
||||
|
||||
def replace_token(self, tokens):
|
||||
def replace_token(self, tokens, layer=None):
|
||||
new_tokens = []
|
||||
for token in tokens:
|
||||
if token in self.token_replacements:
|
||||
new_tokens.extend(self.token_replacements[token])
|
||||
replacer_ = self.token_replacements[token]
|
||||
if layer:
|
||||
replacer = []
|
||||
for r in replacer_:
|
||||
if r in self.token_replacements_XTI:
|
||||
replacer.append(self.token_replacements_XTI[r][layer])
|
||||
else:
|
||||
replacer = replacer_
|
||||
new_tokens.extend(replacer)
|
||||
else:
|
||||
new_tokens.append(token)
|
||||
return new_tokens
|
||||
|
||||
def add_token_replacement_XTI(self, target_token_id, rep_token_ids):
|
||||
self.token_replacements_XTI[target_token_id] = rep_token_ids
|
||||
|
||||
def set_control_nets(self, ctrl_nets):
|
||||
self.control_nets = ctrl_nets
|
||||
|
||||
@ -744,14 +760,15 @@ class PipelineLike:
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
text_embeddings, uncond_embeddings, prompt_tokens = get_weighted_text_embeddings(
|
||||
pipe=self,
|
||||
prompt=prompt,
|
||||
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
clip_skip=self.clip_skip,
|
||||
**kwargs,
|
||||
)
|
||||
if not self.token_replacements_XTI:
|
||||
text_embeddings, uncond_embeddings, prompt_tokens = get_weighted_text_embeddings(
|
||||
pipe=self,
|
||||
prompt=prompt,
|
||||
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
clip_skip=self.clip_skip,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if negative_scale is not None:
|
||||
_, real_uncond_embeddings, _ = get_weighted_text_embeddings(
|
||||
@ -763,11 +780,47 @@ class PipelineLike:
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if negative_scale is None:
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
else:
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, real_uncond_embeddings])
|
||||
if self.token_replacements_XTI:
|
||||
text_embeddings_concat = []
|
||||
for layer in [
|
||||
"IN01",
|
||||
"IN02",
|
||||
"IN04",
|
||||
"IN05",
|
||||
"IN07",
|
||||
"IN08",
|
||||
"MID",
|
||||
"OUT03",
|
||||
"OUT04",
|
||||
"OUT05",
|
||||
"OUT06",
|
||||
"OUT07",
|
||||
"OUT08",
|
||||
"OUT09",
|
||||
"OUT10",
|
||||
"OUT11",
|
||||
]:
|
||||
text_embeddings, uncond_embeddings, prompt_tokens = get_weighted_text_embeddings(
|
||||
pipe=self,
|
||||
prompt=prompt,
|
||||
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
clip_skip=self.clip_skip,
|
||||
layer=layer,
|
||||
**kwargs,
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
if negative_scale is None:
|
||||
text_embeddings_concat.append(torch.cat([uncond_embeddings, text_embeddings]))
|
||||
else:
|
||||
text_embeddings_concat.append(torch.cat([uncond_embeddings, text_embeddings, real_uncond_embeddings]))
|
||||
text_embeddings = torch.stack(text_embeddings_concat)
|
||||
else:
|
||||
if do_classifier_free_guidance:
|
||||
if negative_scale is None:
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
else:
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, real_uncond_embeddings])
|
||||
|
||||
# CLIP guidanceで使用するembeddingsを取得する
|
||||
if self.clip_guidance_scale > 0:
|
||||
@ -1675,7 +1728,7 @@ def parse_prompt_attention(text):
|
||||
return res
|
||||
|
||||
|
||||
def get_prompts_with_weights(pipe: PipelineLike, prompt: List[str], max_length: int):
|
||||
def get_prompts_with_weights(pipe: PipelineLike, prompt: List[str], max_length: int, layer=None):
|
||||
r"""
|
||||
Tokenize a list of prompts and return its tokens with weights of each token.
|
||||
No padding, starting or ending token is included.
|
||||
@ -1691,7 +1744,7 @@ def get_prompts_with_weights(pipe: PipelineLike, prompt: List[str], max_length:
|
||||
# tokenize and discard the starting and the ending token
|
||||
token = pipe.tokenizer(word).input_ids[1:-1]
|
||||
|
||||
token = pipe.replace_token(token)
|
||||
token = pipe.replace_token(token, layer=layer)
|
||||
|
||||
text_token += token
|
||||
# copy the weight by length of token
|
||||
@ -1807,6 +1860,7 @@ def get_weighted_text_embeddings(
|
||||
skip_parsing: Optional[bool] = False,
|
||||
skip_weighting: Optional[bool] = False,
|
||||
clip_skip=None,
|
||||
layer=None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
@ -1837,11 +1891,11 @@ def get_weighted_text_embeddings(
|
||||
prompt = [prompt]
|
||||
|
||||
if not skip_parsing:
|
||||
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
|
||||
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2, layer=layer)
|
||||
if uncond_prompt is not None:
|
||||
if isinstance(uncond_prompt, str):
|
||||
uncond_prompt = [uncond_prompt]
|
||||
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
|
||||
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2, layer=layer)
|
||||
else:
|
||||
prompt_tokens = [token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids]
|
||||
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
|
||||
@ -2229,13 +2283,17 @@ def main(args):
|
||||
if network is None:
|
||||
return
|
||||
|
||||
network.apply_to(text_encoder, unet)
|
||||
if not args.network_merge:
|
||||
network.apply_to(text_encoder, unet)
|
||||
|
||||
if args.opt_channels_last:
|
||||
network.to(memory_format=torch.channels_last)
|
||||
network.to(dtype).to(device)
|
||||
if args.opt_channels_last:
|
||||
network.to(memory_format=torch.channels_last)
|
||||
network.to(dtype).to(device)
|
||||
|
||||
networks.append(network)
|
||||
else:
|
||||
network.merge_to(text_encoder, unet, dtype, device)
|
||||
|
||||
networks.append(network)
|
||||
else:
|
||||
networks = []
|
||||
|
||||
@ -2289,6 +2347,11 @@ def main(args):
|
||||
if args.diffusers_xformers:
|
||||
pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
if args.XTI_embeddings:
|
||||
diffusers.models.UNet2DConditionModel.forward = unet_forward_XTI
|
||||
diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D.forward = downblock_forward_XTI
|
||||
diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D.forward = upblock_forward_XTI
|
||||
|
||||
# Textual Inversionを処理する
|
||||
if args.textual_inversion_embeddings:
|
||||
token_ids_embeds = []
|
||||
@ -2335,6 +2398,71 @@ def main(args):
|
||||
for token_id, embed in zip(token_ids, embeds):
|
||||
token_embeds[token_id] = embed
|
||||
|
||||
if args.XTI_embeddings:
|
||||
XTI_layers = [
|
||||
"IN01",
|
||||
"IN02",
|
||||
"IN04",
|
||||
"IN05",
|
||||
"IN07",
|
||||
"IN08",
|
||||
"MID",
|
||||
"OUT03",
|
||||
"OUT04",
|
||||
"OUT05",
|
||||
"OUT06",
|
||||
"OUT07",
|
||||
"OUT08",
|
||||
"OUT09",
|
||||
"OUT10",
|
||||
"OUT11",
|
||||
]
|
||||
token_ids_embeds_XTI = []
|
||||
for embeds_file in args.XTI_embeddings:
|
||||
if model_util.is_safetensors(embeds_file):
|
||||
from safetensors.torch import load_file
|
||||
|
||||
data = load_file(embeds_file)
|
||||
else:
|
||||
data = torch.load(embeds_file, map_location="cpu")
|
||||
if set(data.keys()) != set(XTI_layers):
|
||||
raise ValueError("NOT XTI")
|
||||
embeds = torch.concat(list(data.values()))
|
||||
num_vectors_per_token = data["MID"].size()[0]
|
||||
|
||||
token_string = os.path.splitext(os.path.basename(embeds_file))[0]
|
||||
token_strings = [token_string] + [f"{token_string}{i+1}" for i in range(num_vectors_per_token - 1)]
|
||||
|
||||
# add new word to tokenizer, count is num_vectors_per_token
|
||||
num_added_tokens = tokenizer.add_tokens(token_strings)
|
||||
assert (
|
||||
num_added_tokens == num_vectors_per_token
|
||||
), f"tokenizer has same word to token string (filename). please rename the file / 指定した名前(ファイル名)のトークンが既に存在します。ファイルをリネームしてください: {embeds_file}"
|
||||
|
||||
token_ids = tokenizer.convert_tokens_to_ids(token_strings)
|
||||
print(f"XTI embeddings `{token_string}` loaded. Tokens are added: {token_ids}")
|
||||
|
||||
# if num_vectors_per_token > 1:
|
||||
pipe.add_token_replacement(token_ids[0], token_ids)
|
||||
|
||||
token_strings_XTI = []
|
||||
for layer_name in XTI_layers:
|
||||
token_strings_XTI += [f"{t}_{layer_name}" for t in token_strings]
|
||||
tokenizer.add_tokens(token_strings_XTI)
|
||||
token_ids_XTI = tokenizer.convert_tokens_to_ids(token_strings_XTI)
|
||||
token_ids_embeds_XTI.append((token_ids_XTI, embeds))
|
||||
for t in token_ids:
|
||||
t_XTI_dic = {}
|
||||
for i, layer_name in enumerate(XTI_layers):
|
||||
t_XTI_dic[layer_name] = t + (i + 1) * num_added_tokens
|
||||
pipe.add_token_replacement_XTI(t, t_XTI_dic)
|
||||
|
||||
text_encoder.resize_token_embeddings(len(tokenizer))
|
||||
token_embeds = text_encoder.get_input_embeddings().weight.data
|
||||
for token_ids, embeds in token_ids_embeds_XTI:
|
||||
for token_id, embed in zip(token_ids, embeds):
|
||||
token_embeds[token_id] = embed
|
||||
|
||||
# promptを取得する
|
||||
if args.from_file is not None:
|
||||
print(f"reading prompts from {args.from_file}")
|
||||
@ -2983,6 +3111,7 @@ def setup_parser() -> argparse.ArgumentParser:
|
||||
"--network_args", type=str, default=None, nargs="*", help="additional argmuments for network (key=value) / ネットワークへの追加の引数"
|
||||
)
|
||||
parser.add_argument("--network_show_meta", action="store_true", help="show metadata of network model / ネットワークモデルのメタデータを表示する")
|
||||
parser.add_argument("--network_merge", action="store_true", help="merge network weights to original model / ネットワークの重みをマージする")
|
||||
parser.add_argument(
|
||||
"--textual_inversion_embeddings",
|
||||
type=str,
|
||||
@ -2990,6 +3119,13 @@ def setup_parser() -> argparse.ArgumentParser:
|
||||
nargs="*",
|
||||
help="Embeddings files of Textual Inversion / Textual Inversionのembeddings",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--XTI_embeddings",
|
||||
type=str,
|
||||
default=None,
|
||||
nargs="*",
|
||||
help="Embeddings files of Extended Textual Inversion / Extended Textual Inversionのembeddings",
|
||||
)
|
||||
parser.add_argument("--clip_skip", type=int, default=None, help="layer number from bottom to use in CLIP / CLIPの後ろからn層目の出力を使う")
|
||||
parser.add_argument(
|
||||
"--max_embeddings_multiples",
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -404,6 +404,8 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
|
||||
self.token_padding_disabled = False
|
||||
self.tag_frequency = {}
|
||||
self.XTI_layers = None
|
||||
self.token_strings = None
|
||||
|
||||
self.enable_bucket = False
|
||||
self.bucket_manager: BucketManager = None # not initialized
|
||||
@ -464,6 +466,10 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
def disable_token_padding(self):
|
||||
self.token_padding_disabled = True
|
||||
|
||||
def enable_XTI(self, layers=None, token_strings=None):
|
||||
self.XTI_layers = layers
|
||||
self.token_strings = token_strings
|
||||
|
||||
def add_replacement(self, str_from, str_to):
|
||||
self.replacements[str_from] = str_to
|
||||
|
||||
@ -909,9 +915,22 @@ class BaseDataset(torch.utils.data.Dataset):
|
||||
latents_list.append(latents)
|
||||
|
||||
caption = self.process_caption(subset, image_info.caption)
|
||||
captions.append(caption)
|
||||
if self.XTI_layers:
|
||||
caption_layer = []
|
||||
for layer in self.XTI_layers:
|
||||
token_strings_from = " ".join(self.token_strings)
|
||||
token_strings_to = " ".join([f"{x}_{layer}" for x in self.token_strings])
|
||||
caption_ = caption.replace(token_strings_from, token_strings_to)
|
||||
caption_layer.append(caption_)
|
||||
captions.append(caption_layer)
|
||||
else:
|
||||
captions.append(caption)
|
||||
if not self.token_padding_disabled: # this option might be omitted in future
|
||||
input_ids_list.append(self.get_input_ids(caption))
|
||||
if self.XTI_layers:
|
||||
token_caption = self.get_input_ids(caption_layer)
|
||||
else:
|
||||
token_caption = self.get_input_ids(caption)
|
||||
input_ids_list.append(token_caption)
|
||||
|
||||
example = {}
|
||||
example["loss_weights"] = torch.FloatTensor(loss_weights)
|
||||
@ -1314,6 +1333,10 @@ class DatasetGroup(torch.utils.data.ConcatDataset):
|
||||
# for dataset in self.datasets:
|
||||
# dataset.make_buckets()
|
||||
|
||||
def enable_XTI(self, *args, **kwargs):
|
||||
for dataset in self.datasets:
|
||||
dataset.enable_XTI(*args, **kwargs)
|
||||
|
||||
def cache_latents(self, vae, vae_batch_size=1):
|
||||
for i, dataset in enumerate(self.datasets):
|
||||
print(f"[Dataset {i}]")
|
||||
@ -2617,14 +2640,15 @@ def prepare_dtype(args: argparse.Namespace):
|
||||
return weight_dtype, save_dtype
|
||||
|
||||
|
||||
def load_target_model(args: argparse.Namespace, weight_dtype):
|
||||
def load_target_model(args: argparse.Namespace, weight_dtype, device='cpu'):
|
||||
name_or_path = args.pretrained_model_name_or_path
|
||||
name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path
|
||||
load_stable_diffusion_format = os.path.isfile(name_or_path) # determine SD or Diffusers
|
||||
if load_stable_diffusion_format:
|
||||
print("load StableDiffusion checkpoint")
|
||||
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, name_or_path)
|
||||
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, name_or_path, device)
|
||||
else:
|
||||
# Diffusers model is loaded to CPU
|
||||
print("load Diffusers pretrained models")
|
||||
try:
|
||||
pipe = StableDiffusionPipeline.from_pretrained(name_or_path, tokenizer=None, safety_checker=None)
|
||||
|
@ -34,7 +34,7 @@ def caption_images(
|
||||
return
|
||||
|
||||
print(f'Captioning files in {train_data_dir}...')
|
||||
run_cmd = f'accelerate launch "./finetune/tag_images_by_wd14_tagger.py"'
|
||||
run_cmd = f'accelerate launch "./finetune/tag_images_by_wd14_tagger_bmaltais.py"'
|
||||
run_cmd += f' --batch_size="{int(batch_size)}"'
|
||||
run_cmd += f' --thresh="{thresh}"'
|
||||
run_cmd += f' --caption_extension="{caption_extension}"'
|
||||
|
679
networks/lora.py
679
networks/lora.py
@ -13,386 +13,471 @@ from library import train_util
|
||||
|
||||
|
||||
class LoRAModule(torch.nn.Module):
|
||||
"""
|
||||
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
||||
"""
|
||||
"""
|
||||
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
||||
"""
|
||||
|
||||
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1):
|
||||
""" if alpha == 0 or None, alpha is rank (no scaling). """
|
||||
super().__init__()
|
||||
self.lora_name = lora_name
|
||||
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1):
|
||||
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
||||
super().__init__()
|
||||
self.lora_name = lora_name
|
||||
|
||||
if org_module.__class__.__name__ == 'Conv2d':
|
||||
in_dim = org_module.in_channels
|
||||
out_dim = org_module.out_channels
|
||||
else:
|
||||
in_dim = org_module.in_features
|
||||
out_dim = org_module.out_features
|
||||
if org_module.__class__.__name__ == "Conv2d":
|
||||
in_dim = org_module.in_channels
|
||||
out_dim = org_module.out_channels
|
||||
else:
|
||||
in_dim = org_module.in_features
|
||||
out_dim = org_module.out_features
|
||||
|
||||
# if limit_rank:
|
||||
# self.lora_dim = min(lora_dim, in_dim, out_dim)
|
||||
# if self.lora_dim != lora_dim:
|
||||
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
|
||||
# else:
|
||||
self.lora_dim = lora_dim
|
||||
# if limit_rank:
|
||||
# self.lora_dim = min(lora_dim, in_dim, out_dim)
|
||||
# if self.lora_dim != lora_dim:
|
||||
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
|
||||
# else:
|
||||
self.lora_dim = lora_dim
|
||||
|
||||
if org_module.__class__.__name__ == 'Conv2d':
|
||||
kernel_size = org_module.kernel_size
|
||||
stride = org_module.stride
|
||||
padding = org_module.padding
|
||||
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
|
||||
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
||||
else:
|
||||
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
|
||||
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
|
||||
if org_module.__class__.__name__ == "Conv2d":
|
||||
kernel_size = org_module.kernel_size
|
||||
stride = org_module.stride
|
||||
padding = org_module.padding
|
||||
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
|
||||
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
||||
else:
|
||||
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
|
||||
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
|
||||
|
||||
if type(alpha) == torch.Tensor:
|
||||
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
||||
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
|
||||
self.scale = alpha / self.lora_dim
|
||||
self.register_buffer('alpha', torch.tensor(alpha)) # 定数として扱える
|
||||
if type(alpha) == torch.Tensor:
|
||||
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
||||
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
|
||||
self.scale = alpha / self.lora_dim
|
||||
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
|
||||
|
||||
# same as microsoft's
|
||||
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
||||
torch.nn.init.zeros_(self.lora_up.weight)
|
||||
# same as microsoft's
|
||||
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
||||
torch.nn.init.zeros_(self.lora_up.weight)
|
||||
|
||||
self.multiplier = multiplier
|
||||
self.org_module = org_module # remove in applying
|
||||
self.region = None
|
||||
self.region_mask = None
|
||||
self.multiplier = multiplier
|
||||
self.org_module = org_module # remove in applying
|
||||
self.region = None
|
||||
self.region_mask = None
|
||||
|
||||
def apply_to(self):
|
||||
self.org_forward = self.org_module.forward
|
||||
self.org_module.forward = self.forward
|
||||
del self.org_module
|
||||
def apply_to(self):
|
||||
self.org_forward = self.org_module.forward
|
||||
self.org_module.forward = self.forward
|
||||
del self.org_module
|
||||
|
||||
def set_region(self, region):
|
||||
self.region = region
|
||||
self.region_mask = None
|
||||
def merge_to(self, sd, dtype, device):
|
||||
# get up/down weight
|
||||
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
|
||||
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
|
||||
|
||||
def forward(self, x):
|
||||
if self.region is None:
|
||||
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
||||
# extract weight from org_module
|
||||
org_sd = self.org_module.state_dict()
|
||||
weight = org_sd["weight"].to(torch.float)
|
||||
|
||||
# regional LoRA FIXME same as additional-network extension
|
||||
if x.size()[1] % 77 == 0:
|
||||
# print(f"LoRA for context: {self.lora_name}")
|
||||
self.region = None
|
||||
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
||||
# merge weight
|
||||
if len(weight.size()) == 2:
|
||||
# linear
|
||||
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
|
||||
elif down_weight.size()[2:4] == (1, 1):
|
||||
# conv2d 1x1
|
||||
weight = (
|
||||
weight
|
||||
+ self.multiplier
|
||||
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
||||
* self.scale
|
||||
)
|
||||
else:
|
||||
# conv2d 3x3
|
||||
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
||||
# print(conved.size(), weight.size(), module.stride, module.padding)
|
||||
weight = weight + self.multiplier * conved * self.scale
|
||||
|
||||
# calculate region mask first time
|
||||
if self.region_mask is None:
|
||||
if len(x.size()) == 4:
|
||||
h, w = x.size()[2:4]
|
||||
else:
|
||||
seq_len = x.size()[1]
|
||||
ratio = math.sqrt((self.region.size()[0] * self.region.size()[1]) / seq_len)
|
||||
h = int(self.region.size()[0] / ratio + .5)
|
||||
w = seq_len // h
|
||||
# set weight to org_module
|
||||
org_sd["weight"] = weight.to(dtype)
|
||||
self.org_module.load_state_dict(org_sd)
|
||||
|
||||
r = self.region.to(x.device)
|
||||
if r.dtype == torch.bfloat16:
|
||||
r = r.to(torch.float)
|
||||
r = r.unsqueeze(0).unsqueeze(1)
|
||||
# print(self.lora_name, self.region.size(), x.size(), r.size(), h, w)
|
||||
r = torch.nn.functional.interpolate(r, (h, w), mode='bilinear')
|
||||
r = r.to(x.dtype)
|
||||
def set_region(self, region):
|
||||
self.region = region
|
||||
self.region_mask = None
|
||||
|
||||
if len(x.size()) == 3:
|
||||
r = torch.reshape(r, (1, x.size()[1], -1))
|
||||
def forward(self, x):
|
||||
if self.region is None:
|
||||
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
||||
|
||||
self.region_mask = r
|
||||
# regional LoRA FIXME same as additional-network extension
|
||||
if x.size()[1] % 77 == 0:
|
||||
# print(f"LoRA for context: {self.lora_name}")
|
||||
self.region = None
|
||||
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
||||
|
||||
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale * self.region_mask
|
||||
# calculate region mask first time
|
||||
if self.region_mask is None:
|
||||
if len(x.size()) == 4:
|
||||
h, w = x.size()[2:4]
|
||||
else:
|
||||
seq_len = x.size()[1]
|
||||
ratio = math.sqrt((self.region.size()[0] * self.region.size()[1]) / seq_len)
|
||||
h = int(self.region.size()[0] / ratio + 0.5)
|
||||
w = seq_len // h
|
||||
|
||||
r = self.region.to(x.device)
|
||||
if r.dtype == torch.bfloat16:
|
||||
r = r.to(torch.float)
|
||||
r = r.unsqueeze(0).unsqueeze(1)
|
||||
# print(self.lora_name, self.region.size(), x.size(), r.size(), h, w)
|
||||
r = torch.nn.functional.interpolate(r, (h, w), mode="bilinear")
|
||||
r = r.to(x.dtype)
|
||||
|
||||
if len(x.size()) == 3:
|
||||
r = torch.reshape(r, (1, x.size()[1], -1))
|
||||
|
||||
self.region_mask = r
|
||||
|
||||
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale * self.region_mask
|
||||
|
||||
|
||||
def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs):
|
||||
if network_dim is None:
|
||||
network_dim = 4 # default
|
||||
if network_dim is None:
|
||||
network_dim = 4 # default
|
||||
|
||||
# extract dim/alpha for conv2d, and block dim
|
||||
conv_dim = kwargs.get('conv_dim', None)
|
||||
conv_alpha = kwargs.get('conv_alpha', None)
|
||||
if conv_dim is not None:
|
||||
conv_dim = int(conv_dim)
|
||||
if conv_alpha is None:
|
||||
conv_alpha = 1.0
|
||||
else:
|
||||
conv_alpha = float(conv_alpha)
|
||||
# extract dim/alpha for conv2d, and block dim
|
||||
conv_dim = kwargs.get("conv_dim", None)
|
||||
conv_alpha = kwargs.get("conv_alpha", None)
|
||||
if conv_dim is not None:
|
||||
conv_dim = int(conv_dim)
|
||||
if conv_alpha is None:
|
||||
conv_alpha = 1.0
|
||||
else:
|
||||
conv_alpha = float(conv_alpha)
|
||||
|
||||
"""
|
||||
block_dims = kwargs.get("block_dims")
|
||||
block_alphas = None
|
||||
"""
|
||||
block_dims = kwargs.get("block_dims")
|
||||
block_alphas = None
|
||||
|
||||
if block_dims is not None:
|
||||
if block_dims is not None:
|
||||
block_dims = [int(d) for d in block_dims.split(',')]
|
||||
assert len(block_dims) == NUM_BLOCKS, f"Number of block dimensions is not same to {NUM_BLOCKS}"
|
||||
block_alphas = kwargs.get("block_alphas")
|
||||
if block_alphas is None:
|
||||
block_alphas = [1] * len(block_dims)
|
||||
block_alphas = [1] * len(block_dims)
|
||||
else:
|
||||
block_alphas = [int(a) for a in block_alphas(',')]
|
||||
block_alphas = [int(a) for a in block_alphas(',')]
|
||||
assert len(block_alphas) == NUM_BLOCKS, f"Number of block alphas is not same to {NUM_BLOCKS}"
|
||||
|
||||
conv_block_dims = kwargs.get("conv_block_dims")
|
||||
conv_block_alphas = None
|
||||
conv_block_dims = kwargs.get("conv_block_dims")
|
||||
conv_block_alphas = None
|
||||
|
||||
if conv_block_dims is not None:
|
||||
if conv_block_dims is not None:
|
||||
conv_block_dims = [int(d) for d in conv_block_dims.split(',')]
|
||||
assert len(conv_block_dims) == NUM_BLOCKS, f"Number of block dimensions is not same to {NUM_BLOCKS}"
|
||||
conv_block_alphas = kwargs.get("conv_block_alphas")
|
||||
if conv_block_alphas is None:
|
||||
conv_block_alphas = [1] * len(conv_block_dims)
|
||||
conv_block_alphas = [1] * len(conv_block_dims)
|
||||
else:
|
||||
conv_block_alphas = [int(a) for a in conv_block_alphas(',')]
|
||||
conv_block_alphas = [int(a) for a in conv_block_alphas(',')]
|
||||
assert len(conv_block_alphas) == NUM_BLOCKS, f"Number of block alphas is not same to {NUM_BLOCKS}"
|
||||
"""
|
||||
|
||||
network = LoRANetwork(text_encoder, unet, multiplier=multiplier, lora_dim=network_dim,
|
||||
alpha=network_alpha, conv_lora_dim=conv_dim, conv_alpha=conv_alpha)
|
||||
return network
|
||||
network = LoRANetwork(
|
||||
text_encoder,
|
||||
unet,
|
||||
multiplier=multiplier,
|
||||
lora_dim=network_dim,
|
||||
alpha=network_alpha,
|
||||
conv_lora_dim=conv_dim,
|
||||
conv_alpha=conv_alpha,
|
||||
)
|
||||
return network
|
||||
|
||||
|
||||
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, **kwargs):
|
||||
if weights_sd is None:
|
||||
if os.path.splitext(file)[1] == '.safetensors':
|
||||
from safetensors.torch import load_file, safe_open
|
||||
weights_sd = load_file(file)
|
||||
else:
|
||||
weights_sd = torch.load(file, map_location='cpu')
|
||||
if weights_sd is None:
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
from safetensors.torch import load_file, safe_open
|
||||
|
||||
# get dim/alpha mapping
|
||||
modules_dim = {}
|
||||
modules_alpha = {}
|
||||
for key, value in weights_sd.items():
|
||||
if '.' not in key:
|
||||
continue
|
||||
weights_sd = load_file(file)
|
||||
else:
|
||||
weights_sd = torch.load(file, map_location="cpu")
|
||||
|
||||
lora_name = key.split('.')[0]
|
||||
if 'alpha' in key:
|
||||
modules_alpha[lora_name] = value
|
||||
elif 'lora_down' in key:
|
||||
dim = value.size()[0]
|
||||
modules_dim[lora_name] = dim
|
||||
# print(lora_name, value.size(), dim)
|
||||
# get dim/alpha mapping
|
||||
modules_dim = {}
|
||||
modules_alpha = {}
|
||||
for key, value in weights_sd.items():
|
||||
if "." not in key:
|
||||
continue
|
||||
|
||||
# support old LoRA without alpha
|
||||
for key in modules_dim.keys():
|
||||
if key not in modules_alpha:
|
||||
modules_alpha = modules_dim[key]
|
||||
lora_name = key.split(".")[0]
|
||||
if "alpha" in key:
|
||||
modules_alpha[lora_name] = value
|
||||
elif "lora_down" in key:
|
||||
dim = value.size()[0]
|
||||
modules_dim[lora_name] = dim
|
||||
# print(lora_name, value.size(), dim)
|
||||
|
||||
network = LoRANetwork(text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha)
|
||||
network.weights_sd = weights_sd
|
||||
return network
|
||||
# support old LoRA without alpha
|
||||
for key in modules_dim.keys():
|
||||
if key not in modules_alpha:
|
||||
modules_alpha = modules_dim[key]
|
||||
|
||||
network = LoRANetwork(text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha)
|
||||
network.weights_sd = weights_sd
|
||||
return network
|
||||
|
||||
|
||||
class LoRANetwork(torch.nn.Module):
|
||||
# is it possible to apply conv_in and conv_out?
|
||||
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
|
||||
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
|
||||
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
||||
LORA_PREFIX_UNET = 'lora_unet'
|
||||
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
|
||||
# is it possible to apply conv_in and conv_out?
|
||||
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
|
||||
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
|
||||
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
||||
LORA_PREFIX_UNET = "lora_unet"
|
||||
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
||||
|
||||
def __init__(self, text_encoder, unet, multiplier=1.0, lora_dim=4, alpha=1, conv_lora_dim=None, conv_alpha=None, modules_dim=None, modules_alpha=None) -> None:
|
||||
super().__init__()
|
||||
self.multiplier = multiplier
|
||||
def __init__(
|
||||
self,
|
||||
text_encoder,
|
||||
unet,
|
||||
multiplier=1.0,
|
||||
lora_dim=4,
|
||||
alpha=1,
|
||||
conv_lora_dim=None,
|
||||
conv_alpha=None,
|
||||
modules_dim=None,
|
||||
modules_alpha=None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.multiplier = multiplier
|
||||
|
||||
self.lora_dim = lora_dim
|
||||
self.alpha = alpha
|
||||
self.conv_lora_dim = conv_lora_dim
|
||||
self.conv_alpha = conv_alpha
|
||||
self.lora_dim = lora_dim
|
||||
self.alpha = alpha
|
||||
self.conv_lora_dim = conv_lora_dim
|
||||
self.conv_alpha = conv_alpha
|
||||
|
||||
if modules_dim is not None:
|
||||
print(f"create LoRA network from weights")
|
||||
else:
|
||||
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
|
||||
if modules_dim is not None:
|
||||
print(f"create LoRA network from weights")
|
||||
else:
|
||||
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
|
||||
|
||||
self.apply_to_conv2d_3x3 = self.conv_lora_dim is not None
|
||||
if self.apply_to_conv2d_3x3:
|
||||
if self.conv_alpha is None:
|
||||
self.conv_alpha = self.alpha
|
||||
print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
|
||||
self.apply_to_conv2d_3x3 = self.conv_lora_dim is not None
|
||||
if self.apply_to_conv2d_3x3:
|
||||
if self.conv_alpha is None:
|
||||
self.conv_alpha = self.alpha
|
||||
print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
|
||||
|
||||
# create module instances
|
||||
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> List[LoRAModule]:
|
||||
loras = []
|
||||
for name, module in root_module.named_modules():
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
# TODO get block index here
|
||||
for child_name, child_module in module.named_modules():
|
||||
is_linear = child_module.__class__.__name__ == "Linear"
|
||||
is_conv2d = child_module.__class__.__name__ == "Conv2d"
|
||||
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
|
||||
if is_linear or is_conv2d:
|
||||
lora_name = prefix + '.' + name + '.' + child_name
|
||||
lora_name = lora_name.replace('.', '_')
|
||||
# create module instances
|
||||
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> List[LoRAModule]:
|
||||
loras = []
|
||||
for name, module in root_module.named_modules():
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
# TODO get block index here
|
||||
for child_name, child_module in module.named_modules():
|
||||
is_linear = child_module.__class__.__name__ == "Linear"
|
||||
is_conv2d = child_module.__class__.__name__ == "Conv2d"
|
||||
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
|
||||
if is_linear or is_conv2d:
|
||||
lora_name = prefix + "." + name + "." + child_name
|
||||
lora_name = lora_name.replace(".", "_")
|
||||
|
||||
if modules_dim is not None:
|
||||
if lora_name not in modules_dim:
|
||||
continue # no LoRA module in this weights file
|
||||
dim = modules_dim[lora_name]
|
||||
alpha = modules_alpha[lora_name]
|
||||
else:
|
||||
if is_linear or is_conv2d_1x1:
|
||||
dim = self.lora_dim
|
||||
alpha = self.alpha
|
||||
elif self.apply_to_conv2d_3x3:
|
||||
dim = self.conv_lora_dim
|
||||
alpha = self.conv_alpha
|
||||
else:
|
||||
continue
|
||||
if modules_dim is not None:
|
||||
if lora_name not in modules_dim:
|
||||
continue # no LoRA module in this weights file
|
||||
dim = modules_dim[lora_name]
|
||||
alpha = modules_alpha[lora_name]
|
||||
else:
|
||||
if is_linear or is_conv2d_1x1:
|
||||
dim = self.lora_dim
|
||||
alpha = self.alpha
|
||||
elif self.apply_to_conv2d_3x3:
|
||||
dim = self.conv_lora_dim
|
||||
alpha = self.conv_alpha
|
||||
else:
|
||||
continue
|
||||
|
||||
lora = LoRAModule(lora_name, child_module, self.multiplier, dim, alpha)
|
||||
loras.append(lora)
|
||||
return loras
|
||||
lora = LoRAModule(lora_name, child_module, self.multiplier, dim, alpha)
|
||||
loras.append(lora)
|
||||
return loras
|
||||
|
||||
self.text_encoder_loras = create_modules(LoRANetwork.LORA_PREFIX_TEXT_ENCODER,
|
||||
text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
||||
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
||||
self.text_encoder_loras = create_modules(
|
||||
LoRANetwork.LORA_PREFIX_TEXT_ENCODER, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
|
||||
)
|
||||
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
||||
|
||||
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
|
||||
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
|
||||
if modules_dim is not None or self.conv_lora_dim is not None:
|
||||
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
|
||||
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
|
||||
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
|
||||
if modules_dim is not None or self.conv_lora_dim is not None:
|
||||
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
|
||||
|
||||
self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, target_modules)
|
||||
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
||||
self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, target_modules)
|
||||
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
||||
|
||||
self.weights_sd = None
|
||||
self.weights_sd = None
|
||||
|
||||
# assertion
|
||||
names = set()
|
||||
for lora in self.text_encoder_loras + self.unet_loras:
|
||||
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
|
||||
names.add(lora.lora_name)
|
||||
# assertion
|
||||
names = set()
|
||||
for lora in self.text_encoder_loras + self.unet_loras:
|
||||
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
|
||||
names.add(lora.lora_name)
|
||||
|
||||
def set_multiplier(self, multiplier):
|
||||
self.multiplier = multiplier
|
||||
for lora in self.text_encoder_loras + self.unet_loras:
|
||||
lora.multiplier = self.multiplier
|
||||
def set_multiplier(self, multiplier):
|
||||
self.multiplier = multiplier
|
||||
for lora in self.text_encoder_loras + self.unet_loras:
|
||||
lora.multiplier = self.multiplier
|
||||
|
||||
def load_weights(self, file):
|
||||
if os.path.splitext(file)[1] == '.safetensors':
|
||||
from safetensors.torch import load_file, safe_open
|
||||
self.weights_sd = load_file(file)
|
||||
else:
|
||||
self.weights_sd = torch.load(file, map_location='cpu')
|
||||
def load_weights(self, file):
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
from safetensors.torch import load_file, safe_open
|
||||
|
||||
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
|
||||
if self.weights_sd:
|
||||
weights_has_text_encoder = weights_has_unet = False
|
||||
for key in self.weights_sd.keys():
|
||||
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
|
||||
weights_has_text_encoder = True
|
||||
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
|
||||
weights_has_unet = True
|
||||
self.weights_sd = load_file(file)
|
||||
else:
|
||||
self.weights_sd = torch.load(file, map_location="cpu")
|
||||
|
||||
if apply_text_encoder is None:
|
||||
apply_text_encoder = weights_has_text_encoder
|
||||
else:
|
||||
assert apply_text_encoder == weights_has_text_encoder, f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています"
|
||||
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
|
||||
if self.weights_sd:
|
||||
weights_has_text_encoder = weights_has_unet = False
|
||||
for key in self.weights_sd.keys():
|
||||
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
|
||||
weights_has_text_encoder = True
|
||||
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
|
||||
weights_has_unet = True
|
||||
|
||||
if apply_unet is None:
|
||||
apply_unet = weights_has_unet
|
||||
else:
|
||||
assert apply_unet == weights_has_unet, f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています"
|
||||
else:
|
||||
assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set"
|
||||
if apply_text_encoder is None:
|
||||
apply_text_encoder = weights_has_text_encoder
|
||||
else:
|
||||
assert (
|
||||
apply_text_encoder == weights_has_text_encoder
|
||||
), f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています"
|
||||
|
||||
if apply_text_encoder:
|
||||
print("enable LoRA for text encoder")
|
||||
else:
|
||||
self.text_encoder_loras = []
|
||||
if apply_unet is None:
|
||||
apply_unet = weights_has_unet
|
||||
else:
|
||||
assert (
|
||||
apply_unet == weights_has_unet
|
||||
), f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています"
|
||||
else:
|
||||
assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set"
|
||||
|
||||
if apply_unet:
|
||||
print("enable LoRA for U-Net")
|
||||
else:
|
||||
self.unet_loras = []
|
||||
if apply_text_encoder:
|
||||
print("enable LoRA for text encoder")
|
||||
else:
|
||||
self.text_encoder_loras = []
|
||||
|
||||
for lora in self.text_encoder_loras + self.unet_loras:
|
||||
lora.apply_to()
|
||||
self.add_module(lora.lora_name, lora)
|
||||
if apply_unet:
|
||||
print("enable LoRA for U-Net")
|
||||
else:
|
||||
self.unet_loras = []
|
||||
|
||||
if self.weights_sd:
|
||||
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
|
||||
info = self.load_state_dict(self.weights_sd, False)
|
||||
print(f"weights are loaded: {info}")
|
||||
for lora in self.text_encoder_loras + self.unet_loras:
|
||||
lora.apply_to()
|
||||
self.add_module(lora.lora_name, lora)
|
||||
|
||||
def enable_gradient_checkpointing(self):
|
||||
# not supported
|
||||
pass
|
||||
if self.weights_sd:
|
||||
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
|
||||
info = self.load_state_dict(self.weights_sd, False)
|
||||
print(f"weights are loaded: {info}")
|
||||
|
||||
def prepare_optimizer_params(self, text_encoder_lr, unet_lr):
|
||||
def enumerate_params(loras):
|
||||
params = []
|
||||
for lora in loras:
|
||||
params.extend(lora.parameters())
|
||||
return params
|
||||
# TODO refactor to common function with apply_to
|
||||
def merge_to(self, text_encoder, unet, dtype, device):
|
||||
assert self.weights_sd is not None, "weights are not loaded"
|
||||
|
||||
self.requires_grad_(True)
|
||||
all_params = []
|
||||
apply_text_encoder = apply_unet = False
|
||||
for key in self.weights_sd.keys():
|
||||
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
|
||||
apply_text_encoder = True
|
||||
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
|
||||
apply_unet = True
|
||||
|
||||
if self.text_encoder_loras:
|
||||
param_data = {'params': enumerate_params(self.text_encoder_loras)}
|
||||
if text_encoder_lr is not None:
|
||||
param_data['lr'] = text_encoder_lr
|
||||
all_params.append(param_data)
|
||||
if apply_text_encoder:
|
||||
print("enable LoRA for text encoder")
|
||||
else:
|
||||
self.text_encoder_loras = []
|
||||
|
||||
if self.unet_loras:
|
||||
param_data = {'params': enumerate_params(self.unet_loras)}
|
||||
if unet_lr is not None:
|
||||
param_data['lr'] = unet_lr
|
||||
all_params.append(param_data)
|
||||
if apply_unet:
|
||||
print("enable LoRA for U-Net")
|
||||
else:
|
||||
self.unet_loras = []
|
||||
|
||||
return all_params
|
||||
for lora in self.text_encoder_loras + self.unet_loras:
|
||||
sd_for_lora = {}
|
||||
for key in self.weights_sd.keys():
|
||||
if key.startswith(lora.lora_name):
|
||||
sd_for_lora[key[len(lora.lora_name) + 1 :]] = self.weights_sd[key]
|
||||
lora.merge_to(sd_for_lora, dtype, device)
|
||||
print(f"weights are merged")
|
||||
|
||||
def prepare_grad_etc(self, text_encoder, unet):
|
||||
self.requires_grad_(True)
|
||||
def enable_gradient_checkpointing(self):
|
||||
# not supported
|
||||
pass
|
||||
|
||||
def on_epoch_start(self, text_encoder, unet):
|
||||
self.train()
|
||||
def prepare_optimizer_params(self, text_encoder_lr, unet_lr):
|
||||
def enumerate_params(loras):
|
||||
params = []
|
||||
for lora in loras:
|
||||
params.extend(lora.parameters())
|
||||
return params
|
||||
|
||||
def get_trainable_params(self):
|
||||
return self.parameters()
|
||||
self.requires_grad_(True)
|
||||
all_params = []
|
||||
|
||||
def save_weights(self, file, dtype, metadata):
|
||||
if metadata is not None and len(metadata) == 0:
|
||||
metadata = None
|
||||
if self.text_encoder_loras:
|
||||
param_data = {"params": enumerate_params(self.text_encoder_loras)}
|
||||
if text_encoder_lr is not None:
|
||||
param_data["lr"] = text_encoder_lr
|
||||
all_params.append(param_data)
|
||||
|
||||
state_dict = self.state_dict()
|
||||
if self.unet_loras:
|
||||
param_data = {"params": enumerate_params(self.unet_loras)}
|
||||
if unet_lr is not None:
|
||||
param_data["lr"] = unet_lr
|
||||
all_params.append(param_data)
|
||||
|
||||
if dtype is not None:
|
||||
for key in list(state_dict.keys()):
|
||||
v = state_dict[key]
|
||||
v = v.detach().clone().to("cpu").to(dtype)
|
||||
state_dict[key] = v
|
||||
return all_params
|
||||
|
||||
if os.path.splitext(file)[1] == '.safetensors':
|
||||
from safetensors.torch import save_file
|
||||
def prepare_grad_etc(self, text_encoder, unet):
|
||||
self.requires_grad_(True)
|
||||
|
||||
# Precalculate model hashes to save time on indexing
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
|
||||
metadata["sshs_model_hash"] = model_hash
|
||||
metadata["sshs_legacy_hash"] = legacy_hash
|
||||
def on_epoch_start(self, text_encoder, unet):
|
||||
self.train()
|
||||
|
||||
save_file(state_dict, file, metadata)
|
||||
else:
|
||||
torch.save(state_dict, file)
|
||||
def get_trainable_params(self):
|
||||
return self.parameters()
|
||||
|
||||
@ staticmethod
|
||||
def set_regions(networks, image):
|
||||
image = image.astype(np.float32) / 255.0
|
||||
for i, network in enumerate(networks[:3]):
|
||||
# NOTE: consider averaging overwrapping area
|
||||
region = image[:, :, i]
|
||||
if region.max() == 0:
|
||||
continue
|
||||
region = torch.tensor(region)
|
||||
network.set_region(region)
|
||||
def save_weights(self, file, dtype, metadata):
|
||||
if metadata is not None and len(metadata) == 0:
|
||||
metadata = None
|
||||
|
||||
def set_region(self, region):
|
||||
for lora in self.unet_loras:
|
||||
lora.set_region(region)
|
||||
state_dict = self.state_dict()
|
||||
|
||||
if dtype is not None:
|
||||
for key in list(state_dict.keys()):
|
||||
v = state_dict[key]
|
||||
v = v.detach().clone().to("cpu").to(dtype)
|
||||
state_dict[key] = v
|
||||
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
from safetensors.torch import save_file
|
||||
|
||||
# Precalculate model hashes to save time on indexing
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
|
||||
metadata["sshs_model_hash"] = model_hash
|
||||
metadata["sshs_legacy_hash"] = legacy_hash
|
||||
|
||||
save_file(state_dict, file, metadata)
|
||||
else:
|
||||
torch.save(state_dict, file)
|
||||
|
||||
@staticmethod
|
||||
def set_regions(networks, image):
|
||||
image = image.astype(np.float32) / 255.0
|
||||
for i, network in enumerate(networks[:3]):
|
||||
# NOTE: consider averaging overwrapping area
|
||||
region = image[:, :, i]
|
||||
if region.max() == 0:
|
||||
continue
|
||||
region = torch.tensor(region)
|
||||
network.set_region(region)
|
||||
|
||||
def set_region(self, region):
|
||||
for lora in self.unet_loras:
|
||||
lora.set_region(region)
|
||||
|
@ -1,4 +1,3 @@
|
||||
|
||||
import math
|
||||
import argparse
|
||||
import os
|
||||
@ -9,216 +8,236 @@ import lora
|
||||
|
||||
|
||||
def load_state_dict(file_name, dtype):
|
||||
if os.path.splitext(file_name)[1] == '.safetensors':
|
||||
sd = load_file(file_name)
|
||||
else:
|
||||
sd = torch.load(file_name, map_location='cpu')
|
||||
for key in list(sd.keys()):
|
||||
if type(sd[key]) == torch.Tensor:
|
||||
sd[key] = sd[key].to(dtype)
|
||||
return sd
|
||||
if os.path.splitext(file_name)[1] == ".safetensors":
|
||||
sd = load_file(file_name)
|
||||
else:
|
||||
sd = torch.load(file_name, map_location="cpu")
|
||||
for key in list(sd.keys()):
|
||||
if type(sd[key]) == torch.Tensor:
|
||||
sd[key] = sd[key].to(dtype)
|
||||
return sd
|
||||
|
||||
|
||||
def save_to_file(file_name, model, state_dict, dtype):
|
||||
if dtype is not None:
|
||||
for key in list(state_dict.keys()):
|
||||
if type(state_dict[key]) == torch.Tensor:
|
||||
state_dict[key] = state_dict[key].to(dtype)
|
||||
if dtype is not None:
|
||||
for key in list(state_dict.keys()):
|
||||
if type(state_dict[key]) == torch.Tensor:
|
||||
state_dict[key] = state_dict[key].to(dtype)
|
||||
|
||||
if os.path.splitext(file_name)[1] == '.safetensors':
|
||||
save_file(model, file_name)
|
||||
else:
|
||||
torch.save(model, file_name)
|
||||
if os.path.splitext(file_name)[1] == ".safetensors":
|
||||
save_file(model, file_name)
|
||||
else:
|
||||
torch.save(model, file_name)
|
||||
|
||||
|
||||
def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype):
|
||||
text_encoder.to(merge_dtype)
|
||||
unet.to(merge_dtype)
|
||||
text_encoder.to(merge_dtype)
|
||||
unet.to(merge_dtype)
|
||||
|
||||
# create module map
|
||||
name_to_module = {}
|
||||
for i, root_module in enumerate([text_encoder, unet]):
|
||||
if i == 0:
|
||||
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
|
||||
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
|
||||
else:
|
||||
prefix = lora.LoRANetwork.LORA_PREFIX_UNET
|
||||
target_replace_modules = lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE
|
||||
|
||||
for name, module in root_module.named_modules():
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
for child_name, child_module in module.named_modules():
|
||||
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d":
|
||||
lora_name = prefix + '.' + name + '.' + child_name
|
||||
lora_name = lora_name.replace('.', '_')
|
||||
name_to_module[lora_name] = child_module
|
||||
|
||||
for model, ratio in zip(models, ratios):
|
||||
print(f"loading: {model}")
|
||||
lora_sd = load_state_dict(model, merge_dtype)
|
||||
|
||||
print(f"merging...")
|
||||
for key in lora_sd.keys():
|
||||
if "lora_down" in key:
|
||||
up_key = key.replace("lora_down", "lora_up")
|
||||
alpha_key = key[:key.index("lora_down")] + 'alpha'
|
||||
|
||||
# find original module for this lora
|
||||
module_name = '.'.join(key.split('.')[:-2]) # remove trailing ".lora_down.weight"
|
||||
if module_name not in name_to_module:
|
||||
print(f"no module found for LoRA weight: {key}")
|
||||
continue
|
||||
module = name_to_module[module_name]
|
||||
# print(f"apply {key} to {module}")
|
||||
|
||||
down_weight = lora_sd[key]
|
||||
up_weight = lora_sd[up_key]
|
||||
|
||||
dim = down_weight.size()[0]
|
||||
alpha = lora_sd.get(alpha_key, dim)
|
||||
scale = alpha / dim
|
||||
|
||||
# W <- W + U * D
|
||||
weight = module.weight
|
||||
# print(module_name, down_weight.size(), up_weight.size())
|
||||
if len(weight.size()) == 2:
|
||||
# linear
|
||||
weight = weight + ratio * (up_weight @ down_weight) * scale
|
||||
elif down_weight.size()[2:4] == (1, 1):
|
||||
# conv2d 1x1
|
||||
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
|
||||
).unsqueeze(2).unsqueeze(3) * scale
|
||||
# create module map
|
||||
name_to_module = {}
|
||||
for i, root_module in enumerate([text_encoder, unet]):
|
||||
if i == 0:
|
||||
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
|
||||
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
|
||||
else:
|
||||
# conv2d 3x3
|
||||
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
||||
# print(conved.size(), weight.size(), module.stride, module.padding)
|
||||
weight = weight + ratio * conved * scale
|
||||
prefix = lora.LoRANetwork.LORA_PREFIX_UNET
|
||||
target_replace_modules = (
|
||||
lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE + lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
|
||||
)
|
||||
|
||||
module.weight = torch.nn.Parameter(weight)
|
||||
for name, module in root_module.named_modules():
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
for child_name, child_module in module.named_modules():
|
||||
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d":
|
||||
lora_name = prefix + "." + name + "." + child_name
|
||||
lora_name = lora_name.replace(".", "_")
|
||||
name_to_module[lora_name] = child_module
|
||||
|
||||
for model, ratio in zip(models, ratios):
|
||||
print(f"loading: {model}")
|
||||
lora_sd = load_state_dict(model, merge_dtype)
|
||||
|
||||
print(f"merging...")
|
||||
for key in lora_sd.keys():
|
||||
if "lora_down" in key:
|
||||
up_key = key.replace("lora_down", "lora_up")
|
||||
alpha_key = key[: key.index("lora_down")] + "alpha"
|
||||
|
||||
# find original module for this lora
|
||||
module_name = ".".join(key.split(".")[:-2]) # remove trailing ".lora_down.weight"
|
||||
if module_name not in name_to_module:
|
||||
print(f"no module found for LoRA weight: {key}")
|
||||
continue
|
||||
module = name_to_module[module_name]
|
||||
# print(f"apply {key} to {module}")
|
||||
|
||||
down_weight = lora_sd[key]
|
||||
up_weight = lora_sd[up_key]
|
||||
|
||||
dim = down_weight.size()[0]
|
||||
alpha = lora_sd.get(alpha_key, dim)
|
||||
scale = alpha / dim
|
||||
|
||||
# W <- W + U * D
|
||||
weight = module.weight
|
||||
# print(module_name, down_weight.size(), up_weight.size())
|
||||
if len(weight.size()) == 2:
|
||||
# linear
|
||||
weight = weight + ratio * (up_weight @ down_weight) * scale
|
||||
elif down_weight.size()[2:4] == (1, 1):
|
||||
# conv2d 1x1
|
||||
weight = (
|
||||
weight
|
||||
+ ratio
|
||||
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
||||
* scale
|
||||
)
|
||||
else:
|
||||
# conv2d 3x3
|
||||
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
||||
# print(conved.size(), weight.size(), module.stride, module.padding)
|
||||
weight = weight + ratio * conved * scale
|
||||
|
||||
module.weight = torch.nn.Parameter(weight)
|
||||
|
||||
|
||||
def merge_lora_models(models, ratios, merge_dtype):
|
||||
base_alphas = {} # alpha for merged model
|
||||
base_dims = {}
|
||||
base_alphas = {} # alpha for merged model
|
||||
base_dims = {}
|
||||
|
||||
merged_sd = {}
|
||||
for model, ratio in zip(models, ratios):
|
||||
print(f"loading: {model}")
|
||||
lora_sd = load_state_dict(model, merge_dtype)
|
||||
merged_sd = {}
|
||||
for model, ratio in zip(models, ratios):
|
||||
print(f"loading: {model}")
|
||||
lora_sd = load_state_dict(model, merge_dtype)
|
||||
|
||||
# get alpha and dim
|
||||
alphas = {} # alpha for current model
|
||||
dims = {} # dims for current model
|
||||
for key in lora_sd.keys():
|
||||
if 'alpha' in key:
|
||||
lora_module_name = key[:key.rfind(".alpha")]
|
||||
alpha = float(lora_sd[key].detach().numpy())
|
||||
alphas[lora_module_name] = alpha
|
||||
if lora_module_name not in base_alphas:
|
||||
base_alphas[lora_module_name] = alpha
|
||||
elif "lora_down" in key:
|
||||
lora_module_name = key[:key.rfind(".lora_down")]
|
||||
dim = lora_sd[key].size()[0]
|
||||
dims[lora_module_name] = dim
|
||||
if lora_module_name not in base_dims:
|
||||
base_dims[lora_module_name] = dim
|
||||
# get alpha and dim
|
||||
alphas = {} # alpha for current model
|
||||
dims = {} # dims for current model
|
||||
for key in lora_sd.keys():
|
||||
if "alpha" in key:
|
||||
lora_module_name = key[: key.rfind(".alpha")]
|
||||
alpha = float(lora_sd[key].detach().numpy())
|
||||
alphas[lora_module_name] = alpha
|
||||
if lora_module_name not in base_alphas:
|
||||
base_alphas[lora_module_name] = alpha
|
||||
elif "lora_down" in key:
|
||||
lora_module_name = key[: key.rfind(".lora_down")]
|
||||
dim = lora_sd[key].size()[0]
|
||||
dims[lora_module_name] = dim
|
||||
if lora_module_name not in base_dims:
|
||||
base_dims[lora_module_name] = dim
|
||||
|
||||
for lora_module_name in dims.keys():
|
||||
if lora_module_name not in alphas:
|
||||
alpha = dims[lora_module_name]
|
||||
alphas[lora_module_name] = alpha
|
||||
if lora_module_name not in base_alphas:
|
||||
base_alphas[lora_module_name] = alpha
|
||||
for lora_module_name in dims.keys():
|
||||
if lora_module_name not in alphas:
|
||||
alpha = dims[lora_module_name]
|
||||
alphas[lora_module_name] = alpha
|
||||
if lora_module_name not in base_alphas:
|
||||
base_alphas[lora_module_name] = alpha
|
||||
|
||||
print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
|
||||
print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
|
||||
|
||||
# merge
|
||||
print(f"merging...")
|
||||
for key in lora_sd.keys():
|
||||
if 'alpha' in key:
|
||||
continue
|
||||
# merge
|
||||
print(f"merging...")
|
||||
for key in lora_sd.keys():
|
||||
if "alpha" in key:
|
||||
continue
|
||||
|
||||
lora_module_name = key[:key.rfind(".lora_")]
|
||||
lora_module_name = key[: key.rfind(".lora_")]
|
||||
|
||||
base_alpha = base_alphas[lora_module_name]
|
||||
alpha = alphas[lora_module_name]
|
||||
base_alpha = base_alphas[lora_module_name]
|
||||
alpha = alphas[lora_module_name]
|
||||
|
||||
scale = math.sqrt(alpha / base_alpha) * ratio
|
||||
scale = math.sqrt(alpha / base_alpha) * ratio
|
||||
|
||||
if key in merged_sd:
|
||||
assert merged_sd[key].size() == lora_sd[key].size(
|
||||
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
|
||||
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
|
||||
else:
|
||||
merged_sd[key] = lora_sd[key] * scale
|
||||
if key in merged_sd:
|
||||
assert (
|
||||
merged_sd[key].size() == lora_sd[key].size()
|
||||
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
|
||||
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
|
||||
else:
|
||||
merged_sd[key] = lora_sd[key] * scale
|
||||
|
||||
# set alpha to sd
|
||||
for lora_module_name, alpha in base_alphas.items():
|
||||
key = lora_module_name + ".alpha"
|
||||
merged_sd[key] = torch.tensor(alpha)
|
||||
# set alpha to sd
|
||||
for lora_module_name, alpha in base_alphas.items():
|
||||
key = lora_module_name + ".alpha"
|
||||
merged_sd[key] = torch.tensor(alpha)
|
||||
|
||||
print("merged model")
|
||||
print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
|
||||
print("merged model")
|
||||
print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
|
||||
|
||||
return merged_sd
|
||||
return merged_sd
|
||||
|
||||
|
||||
def merge(args):
|
||||
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
|
||||
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
|
||||
|
||||
def str_to_dtype(p):
|
||||
if p == 'float':
|
||||
return torch.float
|
||||
if p == 'fp16':
|
||||
return torch.float16
|
||||
if p == 'bf16':
|
||||
return torch.bfloat16
|
||||
return None
|
||||
def str_to_dtype(p):
|
||||
if p == "float":
|
||||
return torch.float
|
||||
if p == "fp16":
|
||||
return torch.float16
|
||||
if p == "bf16":
|
||||
return torch.bfloat16
|
||||
return None
|
||||
|
||||
merge_dtype = str_to_dtype(args.precision)
|
||||
save_dtype = str_to_dtype(args.save_precision)
|
||||
if save_dtype is None:
|
||||
save_dtype = merge_dtype
|
||||
merge_dtype = str_to_dtype(args.precision)
|
||||
save_dtype = str_to_dtype(args.save_precision)
|
||||
if save_dtype is None:
|
||||
save_dtype = merge_dtype
|
||||
|
||||
if args.sd_model is not None:
|
||||
print(f"loading SD model: {args.sd_model}")
|
||||
if args.sd_model is not None:
|
||||
print(f"loading SD model: {args.sd_model}")
|
||||
|
||||
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)
|
||||
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)
|
||||
|
||||
merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)
|
||||
merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)
|
||||
|
||||
print(f"saving SD model to: {args.save_to}")
|
||||
model_util.save_stable_diffusion_checkpoint(args.v2, args.save_to, text_encoder, unet,
|
||||
args.sd_model, 0, 0, save_dtype, vae)
|
||||
else:
|
||||
state_dict = merge_lora_models(args.models, args.ratios, merge_dtype)
|
||||
print(f"saving SD model to: {args.save_to}")
|
||||
model_util.save_stable_diffusion_checkpoint(args.v2, args.save_to, text_encoder, unet, args.sd_model, 0, 0, save_dtype, vae)
|
||||
else:
|
||||
state_dict = merge_lora_models(args.models, args.ratios, merge_dtype)
|
||||
|
||||
print(f"saving model to: {args.save_to}")
|
||||
save_to_file(args.save_to, state_dict, state_dict, save_dtype)
|
||||
print(f"saving model to: {args.save_to}")
|
||||
save_to_file(args.save_to, state_dict, state_dict, save_dtype)
|
||||
|
||||
|
||||
def setup_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--v2", action='store_true',
|
||||
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
|
||||
parser.add_argument("--save_precision", type=str, default=None,
|
||||
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
|
||||
parser.add_argument("--precision", type=str, default="float",
|
||||
choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)")
|
||||
parser.add_argument("--sd_model", type=str, default=None,
|
||||
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする")
|
||||
parser.add_argument("--save_to", type=str, default=None,
|
||||
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
|
||||
parser.add_argument("--models", type=str, nargs='*',
|
||||
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
|
||||
parser.add_argument("--ratios", type=float, nargs='*',
|
||||
help="ratios for each model / それぞれのLoRAモデルの比率")
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む")
|
||||
parser.add_argument(
|
||||
"--save_precision",
|
||||
type=str,
|
||||
default=None,
|
||||
choices=[None, "float", "fp16", "bf16"],
|
||||
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precision",
|
||||
type=str,
|
||||
default="float",
|
||||
choices=["float", "fp16", "bf16"],
|
||||
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sd_model",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_to", type=str, default=None, help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--models", type=str, nargs="*", help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors"
|
||||
)
|
||||
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率")
|
||||
|
||||
return parser
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = setup_parser()
|
||||
if __name__ == "__main__":
|
||||
parser = setup_parser()
|
||||
|
||||
args = parser.parse_args()
|
||||
merge(args)
|
||||
args = parser.parse_args()
|
||||
merge(args)
|
||||
|
@ -25,6 +25,7 @@ timm==0.6.12
|
||||
huggingface-hub==0.13.0
|
||||
tensorflow==2.10.1
|
||||
# For locon support
|
||||
lycoris_lora==0.1.4
|
||||
lycoris-lora @ git+https://github.com/KohakuBlueleaf/LyCORIS.git@c3d925421209a22a60d863ffa3de0b3e7e89f047
|
||||
# lycoris_lora==0.1.4
|
||||
# for kohya_ss library
|
||||
.
|
17
setup.bat
Normal file
17
setup.bat
Normal file
@ -0,0 +1,17 @@
|
||||
@echo off
|
||||
IF NOT EXIST venv (
|
||||
python -m venv venv
|
||||
) ELSE (
|
||||
echo venv folder already exists, skipping creation...
|
||||
)
|
||||
call .\venv\Scripts\activate.bat
|
||||
|
||||
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
|
||||
pip install --use-pep517 --upgrade -r requirements.txt
|
||||
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
|
||||
|
||||
copy /y .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
|
||||
copy /y .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
|
||||
copy /y .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
|
||||
|
||||
accelerate config
|
587
setup.sh
Executable file
587
setup.sh
Executable file
@ -0,0 +1,587 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# This file will be the host environment setup file for all operating systems other than base Windows.
|
||||
|
||||
display_help() {
|
||||
cat <<EOF
|
||||
Kohya_SS Installation Script for POSIX operating systems.
|
||||
|
||||
Usage:
|
||||
# Specifies custom branch, install directory, and git repo
|
||||
setup.sh -b dev -d /workspace/kohya_ss -g https://mycustom.repo.tld/custom_fork.git
|
||||
|
||||
# Same as example 1, but uses long options
|
||||
setup.sh --branch=dev --dir=/workspace/kohya_ss --git-repo=https://mycustom.repo.tld/custom_fork.git
|
||||
|
||||
# Maximum verbosity, fully automated installation in a runpod environment skipping the runpod env checks
|
||||
setup.sh -vvv --skip-space-check --runpod
|
||||
|
||||
Options:
|
||||
-b BRANCH, --branch=BRANCH Select which branch of kohya to check out on new installs.
|
||||
-d DIR, --dir=DIR The full path you want kohya_ss installed to.
|
||||
-g REPO, --git_repo=REPO You can optionally provide a git repo to check out for runpod installation. Useful for custom forks.
|
||||
-h, --help Show this screen.
|
||||
-i, --interactive Interactively configure accelerate instead of using default config file.
|
||||
-n, --no-git-update Do not update kohya_ss repo. No git pull or clone operations.
|
||||
-p, --public Expose public URL in runpod mode. Won't have an effect in other modes.
|
||||
-r, --runpod Forces a runpod installation. Useful if detection fails for any reason.
|
||||
-s, --skip-space-check Skip the 10Gb minimum storage space check.
|
||||
-v, --verbose Increase verbosity levels up to 3.
|
||||
EOF
|
||||
}
|
||||
|
||||
# Checks to see if variable is set and non-empty.
|
||||
# This is defined first, so we can use the function for some default variable values
|
||||
env_var_exists() {
|
||||
if [[ -n "${!1}" ]]; then
|
||||
return 0
|
||||
else
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Need RUNPOD to have a default value before first access
|
||||
RUNPOD=false
|
||||
if env_var_exists RUNPOD_POD_ID || env_var_exists RUNPOD_API_KEY; then
|
||||
RUNPOD=true
|
||||
fi
|
||||
|
||||
# This gets the directory the script is run from so pathing can work relative to the script where needed.
|
||||
SCRIPT_DIR="$(cd -- $(dirname -- "$0") && pwd)"
|
||||
|
||||
# Variables defined before the getopts loop, so we have sane default values.
|
||||
# Default installation locations based on OS and environment
|
||||
if [[ "$OSTYPE" == "linux-gnu"* ]]; then
|
||||
if [ "$RUNPOD" = true ]; then
|
||||
DIR="/workspace/kohya_ss"
|
||||
elif [ -d "$SCRIPT_DIR/.git" ]; then
|
||||
DIR="$SCRIPT_DIR"
|
||||
elif [ -w "/opt" ]; then
|
||||
DIR="/opt/kohya_ss"
|
||||
elif env_var_exists HOME; then
|
||||
DIR="$HOME/kohya_ss"
|
||||
else
|
||||
# The last fallback is simply PWD
|
||||
DIR="$(PWD)"
|
||||
fi
|
||||
else
|
||||
if [ -d "$SCRIPT_DIR/.git" ]; then
|
||||
DIR="$SCRIPT_DIR"
|
||||
elif env_var_exists HOME; then
|
||||
DIR="$HOME/kohya_ss"
|
||||
else
|
||||
# The last fallback is simply PWD
|
||||
DIR="$(PWD)"
|
||||
fi
|
||||
fi
|
||||
|
||||
VERBOSITY=2 #Start counting at 2 so that any increase to this will result in a minimum of file descriptor 3. You should leave this alone.
|
||||
MAXVERBOSITY=6 #The highest verbosity we use / allow to be displayed. Feel free to adjust.
|
||||
|
||||
BRANCH="master"
|
||||
GIT_REPO="https://github.com/bmaltais/kohya_ss.git"
|
||||
INTERACTIVE=false
|
||||
PUBLIC=false
|
||||
SKIP_SPACE_CHECK=false
|
||||
SKIP_GIT_UPDATE=false
|
||||
|
||||
while getopts ":vb:d:g:inprs-:" opt; do
|
||||
# support long options: https://stackoverflow.com/a/28466267/519360
|
||||
if [ "$opt" = "-" ]; then # long option: reformulate OPT and OPTARG
|
||||
opt="${OPTARG%%=*}" # extract long option name
|
||||
OPTARG="${OPTARG#$opt}" # extract long option argument (may be empty)
|
||||
OPTARG="${OPTARG#=}" # if long option argument, remove assigning `=`
|
||||
fi
|
||||
case $opt in
|
||||
b | branch) BRANCH="$OPTARG" ;;
|
||||
d | dir) DIR="$OPTARG" ;;
|
||||
g | git-repo) GIT_REPO="$OPTARG" ;;
|
||||
i | interactive) INTERACTIVE=true ;;
|
||||
n | no-git-update) SKIP_GIT_UPDATE=true ;;
|
||||
p | public) PUBLIC=true ;;
|
||||
r | runpod) RUNPOD=true ;;
|
||||
s | skip-space-check) SKIP_SPACE_CHECK=true ;;
|
||||
v) ((VERBOSITY = VERBOSITY + 1)) ;;
|
||||
h) display_help && exit 0 ;;
|
||||
*) display_help && exit 0 ;;
|
||||
esac
|
||||
done
|
||||
shift $((OPTIND - 1))
|
||||
|
||||
# Just in case someone puts in a relative path into $DIR,
|
||||
# we're going to get the absolute path of that.
|
||||
if [[ "$DIR" != /* ]] && [[ "$DIR" != ~* ]]; then
|
||||
DIR="$(
|
||||
cd "$(dirname "$DIR")" || exit 1
|
||||
pwd
|
||||
)/$(basename "$DIR")"
|
||||
fi
|
||||
|
||||
for v in $( #Start counting from 3 since 1 and 2 are standards (stdout/stderr).
|
||||
seq 3 $VERBOSITY
|
||||
); do
|
||||
(("$v" <= "$MAXVERBOSITY")) && eval exec "$v>&2" #Don't change anything higher than the maximum verbosity allowed.
|
||||
done
|
||||
|
||||
for v in $( #From the verbosity level one higher than requested, through the maximum;
|
||||
seq $((VERBOSITY + 1)) $MAXVERBOSITY
|
||||
); do
|
||||
(("$v" > "2")) && eval exec "$v>/dev/null" #Redirect these to bitbucket, provided that they don't match stdout and stderr.
|
||||
done
|
||||
|
||||
# Example of how to use the verbosity levels.
|
||||
# printf "%s\n" "This message is seen at verbosity level 1 and above." >&3
|
||||
# printf "%s\n" "This message is seen at verbosity level 2 and above." >&4
|
||||
# printf "%s\n" "This message is seen at verbosity level 3 and above." >&5
|
||||
|
||||
# Debug variable dump at max verbosity
|
||||
echo "BRANCH: $BRANCH
|
||||
DIR: $DIR
|
||||
GIT_REPO: $GIT_REPO
|
||||
INTERACTIVE: $INTERACTIVE
|
||||
PUBLIC: $PUBLIC
|
||||
RUNPOD: $RUNPOD
|
||||
SKIP_SPACE_CHECK: $SKIP_SPACE_CHECK
|
||||
VERBOSITY: $VERBOSITY
|
||||
Script directory is ${SCRIPT_DIR}." >&5
|
||||
|
||||
# This must be set after the getopts loop to account for $DIR changes.
|
||||
PARENT_DIR="$(dirname "${DIR}")"
|
||||
VENV_DIR="$DIR/venv"
|
||||
|
||||
if [ -w "$PARENT_DIR" ] && [ ! -d "$DIR" ]; then
|
||||
echo "Creating install folder ${DIR}."
|
||||
mkdir "$DIR"
|
||||
fi
|
||||
|
||||
if [ ! -w "$DIR" ]; then
|
||||
echo "We cannot write to ${DIR}."
|
||||
echo "Please ensure the install directory is accurate and you have the correct permissions."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Shared functions
|
||||
# This checks for free space on the installation drive and returns that in Gb.
|
||||
size_available() {
|
||||
local folder
|
||||
if [ -d "$DIR" ]; then
|
||||
folder="$DIR"
|
||||
elif [ -d "$PARENT_DIR" ]; then
|
||||
folder="$PARENT_DIR"
|
||||
elif [ -d "$(echo "$DIR" | cut -d "/" -f2)" ]; then
|
||||
folder="$(echo "$DIR" | cut -d "/" -f2)"
|
||||
else
|
||||
echo "We are assuming a root drive install for space-checking purposes."
|
||||
folder='/'
|
||||
fi
|
||||
|
||||
local FREESPACEINKB
|
||||
FREESPACEINKB="$(df -Pk "$folder" | sed 1d | grep -v used | awk '{ print $4 "\t" }')"
|
||||
echo "Detected available space in Kb: $FREESPACEINKB" >&5
|
||||
local FREESPACEINGB
|
||||
FREESPACEINGB=$((FREESPACEINKB / 1024 / 1024))
|
||||
echo "$FREESPACEINGB"
|
||||
}
|
||||
|
||||
# The expected usage is create_symlinks symlink target_file
|
||||
create_symlinks() {
|
||||
echo "Checking symlinks now."
|
||||
# Next line checks for valid symlink
|
||||
if [ -L "$1" ]; then
|
||||
# Check if the linked file exists and points to the expected file
|
||||
if [ -e "$1" ] && [ "$(readlink "$1")" == "$2" ]; then
|
||||
echo "$(basename "$1") symlink looks fine. Skipping."
|
||||
else
|
||||
if [ -f "$2" ]; then
|
||||
echo "Broken symlink detected. Recreating $(basename "$1")."
|
||||
rm "$1" &&
|
||||
ln -s "$2" "$1"
|
||||
else
|
||||
echo "$2 does not exist. Nothing to link."
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "Linking $(basename "$1")."
|
||||
ln -s "$2" "$1"
|
||||
fi
|
||||
}
|
||||
|
||||
install_python_dependencies() {
|
||||
# Switch to local virtual env
|
||||
echo "Switching to virtual Python environment."
|
||||
if command -v python3 >/dev/null; then
|
||||
python3 -m venv "$DIR/venv"
|
||||
elif command -v python3.10 >/dev/null; then
|
||||
python3.10 -m venv "$DIR/venv"
|
||||
else
|
||||
echo "Valid python3 or python3.10 binary not found."
|
||||
echo "Cannot proceed with the python steps."
|
||||
return 1
|
||||
fi
|
||||
|
||||
# Activate the virtual environment
|
||||
source "$DIR/venv/bin/activate"
|
||||
|
||||
# Updating pip if there is one
|
||||
echo "Checking for pip updates before Python operations."
|
||||
pip install --upgrade pip >&3
|
||||
|
||||
echo "Installing python dependencies. This could take a few minutes as it downloads files."
|
||||
echo "If this operation ever runs too long, you can rerun this script in verbose mode to check."
|
||||
case "$OSTYPE" in
|
||||
"linux-gnu"*) pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu116 >&3 &&
|
||||
pip install -U -I --no-deps \
|
||||
https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/downloadlinux/xformers-0.0.14.dev0-cp310-cp310-linux_x86_64.whl >&3 ;;
|
||||
"darwin"*) pip install torch==2.0.0 torchvision==0.15.1 \
|
||||
-f https://download.pytorch.org/whl/cpu/torch_stable.html >&3 ;;
|
||||
"cygwin")
|
||||
:
|
||||
;;
|
||||
"msys")
|
||||
:
|
||||
;;
|
||||
esac
|
||||
|
||||
if [ "$RUNPOD" = true ]; then
|
||||
echo "Installing tenssort."
|
||||
pip install tensorrt >&3
|
||||
fi
|
||||
|
||||
# DEBUG ONLY (Update this version number to whatever PyCharm recommends)
|
||||
# pip install pydevd-pycharm~=223.8836.43
|
||||
|
||||
#This will copy our requirements.txt file out, make the khoya_ss lib a dynamic location then cleanup.
|
||||
echo "Copying $DIR/requirements.txt to /tmp/requirements_tmp.txt" >&3
|
||||
echo "Replacing the . for lib to our DIR variable in tmp/requirements_tmp.txt." >&3
|
||||
awk -v dir="$DIR" '/#.*kohya_ss.*library/{print; getline; sub(/^\.$/, dir)}1' "$DIR/requirements.txt" >/tmp/requirements_tmp.txt
|
||||
if [ $VERBOSITY == 2 ]; then
|
||||
python -m pip install --quiet --use-pep517 --upgrade -r /tmp/requirements_tmp.txt >&3
|
||||
else
|
||||
python -m pip install --use-pep517 --upgrade -r /tmp/requirements_tmp.txt >&3
|
||||
fi
|
||||
|
||||
echo "Removing the temp requirements file."
|
||||
if [ -f /tmp/requirements_tmp.txt ]; then
|
||||
rm /tmp/requirements_tmp.txt
|
||||
fi
|
||||
|
||||
if [ -n "$VIRTUAL_ENV" ]; then
|
||||
if command -v deactivate >/dev/null; then
|
||||
echo "Exiting Python virtual environment."
|
||||
deactivate
|
||||
else
|
||||
echo "deactivate command not found. Could still be in the Python virtual environment."
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
# Attempt to non-interactively install a default accelerate config file unless specified otherwise.
|
||||
# Documentation for order of precedence locations for configuration file for automated installation:
|
||||
# https://huggingface.co/docs/accelerate/basic_tutorials/launch#custom-configurations
|
||||
configure_accelerate() {
|
||||
echo "Source accelerate config location: $DIR/config_files/accelerate/default_config.yaml" >&3
|
||||
if [ "$INTERACTIVE" = true ]; then
|
||||
accelerate config
|
||||
else
|
||||
if env_var_exists HF_HOME; then
|
||||
if [ ! -f "$HF_HOME/accelerate/default_config.yaml" ]; then
|
||||
mkdir -p "$HF_HOME/accelerate/" &&
|
||||
echo "Target accelerate config location: $HF_HOME/accelerate/default_config.yaml" >&3
|
||||
cp "$DIR/config_files/accelerate/default_config.yaml" "$HF_HOME/accelerate/default_config.yaml" &&
|
||||
echo "Copied accelerate config file to: $HF_HOME/accelerate/default_config.yaml"
|
||||
fi
|
||||
elif env_var_exists XDG_CACHE_HOME; then
|
||||
if [ ! -f "$XDG_CACHE_HOME/huggingface/accelerate" ]; then
|
||||
mkdir -p "$XDG_CACHE_HOME/huggingface/accelerate" &&
|
||||
echo "Target accelerate config location: $XDG_CACHE_HOME/accelerate/default_config.yaml" >&3
|
||||
cp "$DIR/config_files/accelerate/default_config.yaml" "$XDG_CACHE_HOME/huggingface/accelerate/default_config.yaml" &&
|
||||
echo "Copied accelerate config file to: $XDG_CACHE_HOME/huggingface/accelerate/default_config.yaml"
|
||||
fi
|
||||
elif env_var_exists HOME; then
|
||||
if [ ! -f "$HOME/.cache/huggingface/accelerate" ]; then
|
||||
mkdir -p "$HOME/.cache/huggingface/accelerate" &&
|
||||
echo "Target accelerate config location: $HOME/accelerate/default_config.yaml" >&3
|
||||
cp "$DIR/config_files/accelerate/default_config.yaml" "$HOME/.cache/huggingface/accelerate/default_config.yaml" &&
|
||||
echo "Copying accelerate config file to: $HOME/.cache/huggingface/accelerate/default_config.yaml"
|
||||
fi
|
||||
else
|
||||
echo "Could not place the accelerate configuration file. Please configure manually."
|
||||
sleep 2
|
||||
accelerate config
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
# Offer a warning and opportunity to cancel the installation if < 10Gb of Free Space detected
|
||||
check_storage_space() {
|
||||
if [ "$SKIP_SPACE_CHECK" = false ]; then
|
||||
if [ "$(size_available)" -lt 10 ]; then
|
||||
echo "You have less than 10Gb of free space. This installation may fail."
|
||||
MSGTIMEOUT=10 # In seconds
|
||||
MESSAGE="Continuing in..."
|
||||
echo "Press control-c to cancel the installation."
|
||||
for ((i = MSGTIMEOUT; i >= 0; i--)); do
|
||||
printf "\r${MESSAGE} %ss. " "${i}"
|
||||
sleep 1
|
||||
done
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
# These are the git operations that will run to update or clone the repo
|
||||
update_kohya_ss() {
|
||||
if [ "$SKIP_GIT_UPDATE" = false ]; then
|
||||
if command -v git >/dev/null; then
|
||||
# First, we make sure there are no changes that need to be made in git, so no work is lost.
|
||||
if [ "$(git -C "$DIR" status --porcelain=v1 2>/dev/null | wc -l)" -gt 0 ] &&
|
||||
echo "These files need to be committed or discarded: " >&4 &&
|
||||
git -C "$DIR" status >&4; then
|
||||
echo "There are changes that need to be committed or discarded in the repo in $DIR."
|
||||
echo "Commit those changes or run this script with -n to skip git operations entirely."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Attempting to clone $GIT_REPO."
|
||||
if [ ! -d "$DIR/.git" ]; then
|
||||
echo "Cloning and switching to $GIT_REPO:$BRANCH" >&4
|
||||
git -C "$PARENT_DIR" clone -b "$BRANCH" "$GIT_REPO" "$(basename "$DIR")" >&3
|
||||
git -C "$DIR" switch "$BRANCH" >&4
|
||||
else
|
||||
echo "git repo detected. Attempting to update repository instead."
|
||||
echo "Updating: $GIT_REPO"
|
||||
git -C "$DIR" pull "$GIT_REPO" "$BRANCH" >&3
|
||||
if ! git -C "$DIR" switch "$BRANCH" >&4; then
|
||||
echo "Branch $BRANCH did not exist. Creating it." >&4
|
||||
git -C "$DIR" switch -c "$BRANCH" >&4
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "You need to install git."
|
||||
echo "Rerun this after installing git or run this script with -n to skip the git operations."
|
||||
fi
|
||||
else
|
||||
echo "Skipping git operations."
|
||||
fi
|
||||
}
|
||||
|
||||
# Start OS-specific detection and work
|
||||
if [[ "$OSTYPE" == "linux-gnu"* ]]; then
|
||||
# Check if root or sudo
|
||||
root=false
|
||||
if [ "$EUID" = 0 ]; then
|
||||
root=true
|
||||
elif command -v id >/dev/null && [ "$(id -u)" = 0 ]; then
|
||||
root=true
|
||||
elif [ "$UID" = 0 ]; then
|
||||
root=true
|
||||
fi
|
||||
|
||||
get_distro_name() {
|
||||
local line
|
||||
if [ -f /etc/os-release ]; then
|
||||
# We search for the line starting with ID=
|
||||
# Then we remove the ID= prefix to get the name itself
|
||||
line="$(grep -Ei '^ID=' /etc/os-release)"
|
||||
echo "Raw detected os-release distro line: $line" >&5
|
||||
line=${line##*=}
|
||||
echo "$line"
|
||||
return 0
|
||||
elif command -v python >/dev/null; then
|
||||
line="$(python -mplatform)"
|
||||
echo "$line"
|
||||
return 0
|
||||
elif command -v python3 >/dev/null; then
|
||||
line="$(python3 -mplatform)"
|
||||
echo "$line"
|
||||
return 0
|
||||
else
|
||||
line="None"
|
||||
echo "$line"
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
# We search for the line starting with ID_LIKE=
|
||||
# Then we remove the ID_LIKE= prefix to get the name itself
|
||||
# This is the "type" of distro. For example, Ubuntu returns "debian".
|
||||
get_distro_family() {
|
||||
local line
|
||||
if [ -f /etc/os-release ]; then
|
||||
if grep -Eiq '^ID_LIKE=' /etc/os-release >/dev/null; then
|
||||
line="$(grep -Ei '^ID_LIKE=' /etc/os-release)"
|
||||
echo "Raw detected os-release distro family line: $line" >&5
|
||||
line=${line##*=}
|
||||
echo "$line"
|
||||
return 0
|
||||
else
|
||||
line="None"
|
||||
echo "$line"
|
||||
return 1
|
||||
fi
|
||||
else
|
||||
line="None"
|
||||
echo "$line"
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
check_storage_space
|
||||
update_kohya_ss
|
||||
|
||||
distro=get_distro_name
|
||||
family=get_distro_family
|
||||
echo "Raw detected distro string: $distro" >&4
|
||||
echo "Raw detected distro family string: $family" >&4
|
||||
|
||||
echo "Installing Python TK if not found on the system."
|
||||
if "$distro" | grep -qi "Ubuntu" || "$family" | grep -qi "Ubuntu"; then
|
||||
echo "Ubuntu detected."
|
||||
if [ $(dpkg-query -W -f='${Status}' python3-tk 2>/dev/null | grep -c "ok installed") = 0 ]; then
|
||||
if [ "$root" = true ]; then
|
||||
apt update -y >&3 && apt install -y python3-tk >&3
|
||||
else
|
||||
echo "This script needs to be run as root or via sudo to install packages."
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "Python TK found! Skipping install!"
|
||||
fi
|
||||
elif "$distro" | grep -Eqi "Fedora|CentOS|Redhat"; then
|
||||
echo "Redhat or Redhat base detected."
|
||||
if ! rpm -qa | grep -qi python3-tkinter; then
|
||||
if [ "$root" = true ]; then
|
||||
dnf install python3-tkinter -y >&3
|
||||
else
|
||||
echo "This script needs to be run as root or via sudo to install packages."
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
elif "$distro" | grep -Eqi "arch" || "$family" | grep -qi "arch"; then
|
||||
echo "Arch Linux or Arch base detected."
|
||||
if ! pacman -Qi tk >/dev/null; then
|
||||
if [ "$root" = true ]; then
|
||||
pacman --noconfirm -S tk >&3
|
||||
else
|
||||
echo "This script needs to be run as root or via sudo to install packages."
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
elif "$distro" | grep -Eqi "opensuse" || "$family" | grep -qi "opensuse"; then
|
||||
echo "OpenSUSE detected."
|
||||
if ! rpm -qa | grep -qi python-tk; then
|
||||
if [ "$root" = true ]; then
|
||||
zypper install -y python-tk >&3
|
||||
else
|
||||
echo "This script needs to be run as root or via sudo to install packages."
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
elif [ "$distro" = "None" ] || [ "$family" = "None" ]; then
|
||||
if [ "$distro" = "None" ]; then
|
||||
echo "We could not detect your distribution of Linux. Please file a bug report on github with the contents of your /etc/os-release file."
|
||||
fi
|
||||
|
||||
if [ "$family" = "None" ]; then
|
||||
echo "We could not detect the family of your Linux distribution. Please file a bug report on github with the contents of your /etc/os-release file."
|
||||
fi
|
||||
fi
|
||||
|
||||
install_python_dependencies
|
||||
|
||||
# We need just a little bit more setup for non-interactive environments
|
||||
if [ "$RUNPOD" = true ]; then
|
||||
# Symlink paths
|
||||
libnvinfer_plugin_symlink="$VENV_DIR/lib/python3.10/site-packages/tensorrt/libnvinfer_plugin.so.7"
|
||||
libnvinfer_symlink="$VENV_DIR/lib/python3.10/site-packages/tensorrt/libnvinfer.so.7"
|
||||
libcudart_symlink="$VENV_DIR/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/libcudart.so.11.0"
|
||||
|
||||
#Target file paths
|
||||
libnvinfer_plugin_target="$VENV_DIR/lib/python3.10/site-packages/tensorrt/libnvinfer_plugin.so.8"
|
||||
libnvinfer_target="$VENV_DIR/lib/python3.10/site-packages/tensorrt/libnvinfer.so.8"
|
||||
libcudart_target="$VENV_DIR/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12"
|
||||
|
||||
echo "Checking symlinks now."
|
||||
create_symlinks "$libnvinfer_plugin_symlink" "$libnvinfer_plugin_target"
|
||||
create_symlinks "$libnvinfer_symlink" "$libnvinfer_target"
|
||||
create_symlinks "$libcudart_symlink" "$libcudart_target"
|
||||
|
||||
if [ -d "${VENV_DIR}/lib/python3.10/site-packages/tensorrt/" ]; then
|
||||
export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${VENV_DIR}/lib/python3.10/site-packages/tensorrt/"
|
||||
else
|
||||
echo "${VENV_DIR}/lib/python3.10/site-packages/tensorrt/ not found; not linking library."
|
||||
fi
|
||||
|
||||
if [ -d "${VENV_DIR}/lib/python3.10/site-packages/tensorrt/" ]; then
|
||||
export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${VENV_DIR}/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/"
|
||||
else
|
||||
echo "${VENV_DIR}/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/ not found; not linking library."
|
||||
fi
|
||||
|
||||
configure_accelerate
|
||||
|
||||
# This is a non-interactive environment, so just directly call gui.sh after all setup steps are complete.
|
||||
if command -v bash >/dev/null; then
|
||||
if [ "$PUBLIC" = false ]; then
|
||||
bash "$DIR"/gui.sh
|
||||
else
|
||||
bash "$DIR"/gui.sh --share
|
||||
fi
|
||||
else
|
||||
# This shouldn't happen, but we're going to try to help.
|
||||
if [ "$PUBLIC" = false ]; then
|
||||
sh "$DIR"/gui.sh
|
||||
else
|
||||
sh "$DIR"/gui.sh --share
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
echo -e "Setup finished! Run \e[0;92m./gui.sh\e[0m to start."
|
||||
echo "Please note if you'd like to expose your public server you need to run ./gui.sh --share"
|
||||
elif [[ "$OSTYPE" == "darwin"* ]]; then
|
||||
# The initial setup script to prep the environment on macOS
|
||||
# xformers has been omitted as that is for Nvidia GPUs only
|
||||
|
||||
if ! command -v brew >/dev/null; then
|
||||
echo "Please install homebrew first. This is a requirement for the remaining setup."
|
||||
echo "You can find that here: https://brew.sh"
|
||||
#shellcheck disable=SC2016
|
||||
echo 'The "brew" command should be in $PATH to be detected.'
|
||||
exit 1
|
||||
fi
|
||||
|
||||
check_storage_space
|
||||
|
||||
# Install base python packages
|
||||
echo "Installing Python 3.10 if not found."
|
||||
if ! brew ls --versions python@3.10 >/dev/null; then
|
||||
echo "Installing Python 3.10."
|
||||
brew install python@3.10 >&3
|
||||
else
|
||||
echo "Python 3.10 found!"
|
||||
fi
|
||||
echo "Installing Python-TK 3.10 if not found."
|
||||
if ! brew ls --versions python-tk@3.10 >/dev/null; then
|
||||
echo "Installing Python TK 3.10."
|
||||
brew install python-tk@3.10 >&3
|
||||
else
|
||||
echo "Python Tkinter 3.10 found!"
|
||||
fi
|
||||
|
||||
update_kohya_ss
|
||||
|
||||
if ! install_python_dependencies; then
|
||||
echo "You may need to install Python. The command for this is brew install python@3.10."
|
||||
fi
|
||||
|
||||
configure_accelerate
|
||||
echo -e "Setup finished! Run ./gui.sh to start."
|
||||
elif [[ "$OSTYPE" == "cygwin" ]]; then
|
||||
# Cygwin is a standalone suite of Linux utilies on Windows
|
||||
echo "This hasn't been validated on cygwin yet."
|
||||
elif [[ "$OSTYPE" == "msys" ]]; then
|
||||
# MinGW has the msys environment which is a standalone suite of Linux utilies on Windows
|
||||
# "git bash" on Windows may also be detected as msys.
|
||||
echo "This hasn't been validated in msys (mingw) on Windows yet."
|
||||
fi
|
80
tools/merge_lycoris.py
Normal file
80
tools/merge_lycoris.py
Normal file
@ -0,0 +1,80 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import torch
|
||||
from lycoris.utils import merge_loha, merge_locon
|
||||
from lycoris.kohya_model_utils import (
|
||||
load_models_from_stable_diffusion_checkpoint,
|
||||
save_stable_diffusion_checkpoint,
|
||||
load_file
|
||||
)
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def merge_models(base_model, lycoris_model, output_name, is_v2, device, dtype, weight):
|
||||
base = load_models_from_stable_diffusion_checkpoint(is_v2, base_model)
|
||||
if lycoris_model.rsplit('.', 1)[-1] == 'safetensors':
|
||||
lyco = load_file(lycoris_model)
|
||||
else:
|
||||
lyco = torch.load(lycoris_model)
|
||||
|
||||
algo = None
|
||||
for key in lyco:
|
||||
if 'hada' in key:
|
||||
algo = 'loha'
|
||||
break
|
||||
elif 'lora_up' in key:
|
||||
algo = 'lora'
|
||||
break
|
||||
else:
|
||||
raise NotImplementedError('Cannot find the algo for this lycoris model file.')
|
||||
|
||||
dtype_str = dtype.replace('fp', 'float').replace('bf', 'bfloat')
|
||||
dtype = {
|
||||
'float': torch.float,
|
||||
'float16': torch.float16,
|
||||
'float32': torch.float32,
|
||||
'float64': torch.float64,
|
||||
'bfloat': torch.bfloat16,
|
||||
'bfloat16': torch.bfloat16,
|
||||
}.get(dtype_str, None)
|
||||
if dtype is None:
|
||||
raise ValueError(f'Cannot Find the dtype "{dtype}"')
|
||||
|
||||
if algo == 'loha':
|
||||
merge_loha(base, lyco, weight, device)
|
||||
elif algo == 'lora':
|
||||
merge_locon(base, lyco, weight, device)
|
||||
|
||||
save_stable_diffusion_checkpoint(
|
||||
is_v2, output_name,
|
||||
base[0], base[2],
|
||||
None, 0, 0, dtype,
|
||||
base[1]
|
||||
)
|
||||
|
||||
return output_name
|
||||
|
||||
|
||||
def main():
|
||||
iface = gr.Interface(
|
||||
fn=merge_models,
|
||||
inputs=[
|
||||
gr.inputs.Textbox(label="Base Model Path"),
|
||||
gr.inputs.Textbox(label="Lycoris Model Path"),
|
||||
gr.inputs.Textbox(label="Output Model Path", default='./out.pt'),
|
||||
gr.inputs.Checkbox(label="Is base model SD V2?", default=False),
|
||||
gr.inputs.Textbox(label="Device", default='cpu'),
|
||||
gr.inputs.Dropdown(choices=['float', 'float16', 'float32', 'float64', 'bfloat', 'bfloat16'], label="Dtype", default='float'),
|
||||
gr.inputs.Number(label="Weight", default=1.0)
|
||||
],
|
||||
outputs=gr.outputs.Textbox(label="Merged Model Path"),
|
||||
title="Model Merger",
|
||||
description="Merge Lycoris and Stable Diffusion models",
|
||||
)
|
||||
|
||||
iface.launch()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -25,7 +25,19 @@ for requirement in requirements:
|
||||
try:
|
||||
pkg_resources.require(requirement)
|
||||
except pkg_resources.DistributionNotFound:
|
||||
missing_requirements.append(requirement)
|
||||
# Check if the requirement contains a VCS URL
|
||||
if "@" in requirement:
|
||||
# If it does, split the requirement into two parts: the package name and the VCS URL
|
||||
package_name, vcs_url = requirement.split("@", 1)
|
||||
# Use pip to install the package from the VCS URL
|
||||
os.system(f"pip install -e {vcs_url}")
|
||||
# Try to require the package again
|
||||
try:
|
||||
pkg_resources.require(package_name)
|
||||
except pkg_resources.DistributionNotFound:
|
||||
missing_requirements.append(requirement)
|
||||
else:
|
||||
missing_requirements.append(requirement)
|
||||
except pkg_resources.VersionConflict as e:
|
||||
wrong_version_requirements.append((requirement, str(e.req), e.dist.version))
|
||||
|
||||
|
@ -1,30 +1,31 @@
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
import importlib
|
||||
import argparse
|
||||
import gc
|
||||
import importlib
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
import json
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from accelerate.utils import set_seed
|
||||
from diffusers import DDPMScheduler
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from tqdm import tqdm
|
||||
|
||||
import library.config_ml_util as config_util
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
import library.train_util as train_util
|
||||
from library.config_ml_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
from library.train_util import (
|
||||
DreamBoothDataset,
|
||||
)
|
||||
import library.config_util as config_util
|
||||
from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
|
||||
|
||||
# TODO 他のスクリプトと共通化する
|
||||
@ -126,12 +127,25 @@ def train(args):
|
||||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||||
|
||||
# モデルを読み込む
|
||||
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
|
||||
for pi in range(accelerator.state.num_processes):
|
||||
# TODO: modify other training scripts as well
|
||||
if pi == accelerator.state.local_process_index:
|
||||
print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")
|
||||
|
||||
text_encoder, vae, unet, _ = train_util.load_target_model(
|
||||
args, weight_dtype, accelerator.device if args.lowram else "cpu"
|
||||
)
|
||||
|
||||
# work on low-ram device
|
||||
if args.lowram:
|
||||
text_encoder.to(accelerator.device)
|
||||
unet.to(accelerator.device)
|
||||
vae.to(accelerator.device)
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
# work on low-ram device
|
||||
if args.lowram:
|
||||
text_encoder.to("cuda")
|
||||
unet.to("cuda")
|
||||
|
||||
# モデルに xformers とか memory efficient attention を組み込む
|
||||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||||
@ -188,7 +202,7 @@ def train(args):
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||||
|
||||
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
@ -555,9 +569,9 @@ def train(args):
|
||||
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
|
||||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||||
|
||||
|
644
train_textual_inversion_XTI.py
Normal file
644
train_textual_inversion_XTI.py
Normal file
@ -0,0 +1,644 @@
|
||||
import importlib
|
||||
import argparse
|
||||
import gc
|
||||
import math
|
||||
import os
|
||||
import toml
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from accelerate.utils import set_seed
|
||||
import diffusers
|
||||
from diffusers import DDPMScheduler
|
||||
|
||||
import library.train_util as train_util
|
||||
import library.config_util as config_util
|
||||
from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import apply_snr_weight
|
||||
from XTI_hijack import unet_forward_XTI, downblock_forward_XTI, upblock_forward_XTI
|
||||
|
||||
imagenet_templates_small = [
|
||||
"a photo of a {}",
|
||||
"a rendering of a {}",
|
||||
"a cropped photo of the {}",
|
||||
"the photo of a {}",
|
||||
"a photo of a clean {}",
|
||||
"a photo of a dirty {}",
|
||||
"a dark photo of the {}",
|
||||
"a photo of my {}",
|
||||
"a photo of the cool {}",
|
||||
"a close-up photo of a {}",
|
||||
"a bright photo of the {}",
|
||||
"a cropped photo of a {}",
|
||||
"a photo of the {}",
|
||||
"a good photo of the {}",
|
||||
"a photo of one {}",
|
||||
"a close-up photo of the {}",
|
||||
"a rendition of the {}",
|
||||
"a photo of the clean {}",
|
||||
"a rendition of a {}",
|
||||
"a photo of a nice {}",
|
||||
"a good photo of a {}",
|
||||
"a photo of the nice {}",
|
||||
"a photo of the small {}",
|
||||
"a photo of the weird {}",
|
||||
"a photo of the large {}",
|
||||
"a photo of a cool {}",
|
||||
"a photo of a small {}",
|
||||
]
|
||||
|
||||
imagenet_style_templates_small = [
|
||||
"a painting in the style of {}",
|
||||
"a rendering in the style of {}",
|
||||
"a cropped painting in the style of {}",
|
||||
"the painting in the style of {}",
|
||||
"a clean painting in the style of {}",
|
||||
"a dirty painting in the style of {}",
|
||||
"a dark painting in the style of {}",
|
||||
"a picture in the style of {}",
|
||||
"a cool painting in the style of {}",
|
||||
"a close-up painting in the style of {}",
|
||||
"a bright painting in the style of {}",
|
||||
"a cropped painting in the style of {}",
|
||||
"a good painting in the style of {}",
|
||||
"a close-up painting in the style of {}",
|
||||
"a rendition in the style of {}",
|
||||
"a nice painting in the style of {}",
|
||||
"a small painting in the style of {}",
|
||||
"a weird painting in the style of {}",
|
||||
"a large painting in the style of {}",
|
||||
]
|
||||
|
||||
|
||||
def train(args):
|
||||
if args.output_name is None:
|
||||
args.output_name = args.token_string
|
||||
use_template = args.use_object_template or args.use_style_template
|
||||
|
||||
train_util.verify_training_args(args)
|
||||
train_util.prepare_dataset_args(args, True)
|
||||
|
||||
if args.sample_every_n_steps is not None or args.sample_every_n_epochs is not None:
|
||||
print(
|
||||
"sample_every_n_steps and sample_every_n_epochs are not supported in this script currently / sample_every_n_stepsとsample_every_n_epochsは現在このスクリプトではサポートされていません"
|
||||
)
|
||||
|
||||
cache_latents = args.cache_latents
|
||||
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
tokenizer = train_util.load_tokenizer(args)
|
||||
|
||||
# acceleratorを準備する
|
||||
print("prepare accelerator")
|
||||
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
||||
|
||||
# mixed precisionに対応した型を用意しておき適宜castする
|
||||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||||
|
||||
# モデルを読み込む
|
||||
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
|
||||
|
||||
# Convert the init_word to token_id
|
||||
if args.init_word is not None:
|
||||
init_token_ids = tokenizer.encode(args.init_word, add_special_tokens=False)
|
||||
if len(init_token_ids) > 1 and len(init_token_ids) != args.num_vectors_per_token:
|
||||
print(
|
||||
f"token length for init words is not same to num_vectors_per_token, init words is repeated or truncated / 初期化単語のトークン長がnum_vectors_per_tokenと合わないため、繰り返しまたは切り捨てが発生します: length {len(init_token_ids)}"
|
||||
)
|
||||
else:
|
||||
init_token_ids = None
|
||||
|
||||
# add new word to tokenizer, count is num_vectors_per_token
|
||||
token_strings = [args.token_string] + [f"{args.token_string}{i+1}" for i in range(args.num_vectors_per_token - 1)]
|
||||
num_added_tokens = tokenizer.add_tokens(token_strings)
|
||||
assert (
|
||||
num_added_tokens == args.num_vectors_per_token
|
||||
), f"tokenizer has same word to token string. please use another one / 指定したargs.token_stringは既に存在します。別の単語を使ってください: {args.token_string}"
|
||||
|
||||
token_ids = tokenizer.convert_tokens_to_ids(token_strings)
|
||||
print(f"tokens are added: {token_ids}")
|
||||
assert min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1, f"token ids is not ordered"
|
||||
assert len(tokenizer) - 1 == token_ids[-1], f"token ids is not end of tokenize: {len(tokenizer)}"
|
||||
|
||||
token_strings_XTI = []
|
||||
XTI_layers = [
|
||||
"IN01",
|
||||
"IN02",
|
||||
"IN04",
|
||||
"IN05",
|
||||
"IN07",
|
||||
"IN08",
|
||||
"MID",
|
||||
"OUT03",
|
||||
"OUT04",
|
||||
"OUT05",
|
||||
"OUT06",
|
||||
"OUT07",
|
||||
"OUT08",
|
||||
"OUT09",
|
||||
"OUT10",
|
||||
"OUT11",
|
||||
]
|
||||
for layer_name in XTI_layers:
|
||||
token_strings_XTI += [f"{t}_{layer_name}" for t in token_strings]
|
||||
|
||||
tokenizer.add_tokens(token_strings_XTI)
|
||||
token_ids_XTI = tokenizer.convert_tokens_to_ids(token_strings_XTI)
|
||||
print(f"tokens are added (XTI): {token_ids_XTI}")
|
||||
# Resize the token embeddings as we are adding new special tokens to the tokenizer
|
||||
text_encoder.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# Initialise the newly added placeholder token with the embeddings of the initializer token
|
||||
token_embeds = text_encoder.get_input_embeddings().weight.data
|
||||
if init_token_ids is not None:
|
||||
for i, token_id in enumerate(token_ids_XTI):
|
||||
token_embeds[token_id] = token_embeds[init_token_ids[(i // 16) % len(init_token_ids)]]
|
||||
# print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
|
||||
|
||||
# load weights
|
||||
if args.weights is not None:
|
||||
embeddings = load_weights(args.weights)
|
||||
assert len(token_ids) == len(
|
||||
embeddings
|
||||
), f"num_vectors_per_token is mismatch for weights / 指定した重みとnum_vectors_per_tokenの値が異なります: {len(embeddings)}"
|
||||
# print(token_ids, embeddings.size())
|
||||
for token_id, embedding in zip(token_ids_XTI, embeddings):
|
||||
token_embeds[token_id] = embedding
|
||||
# print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
|
||||
print(f"weighs loaded")
|
||||
|
||||
print(f"create embeddings for {args.num_vectors_per_token} tokens, for {args.token_string}")
|
||||
|
||||
# データセットを準備する
|
||||
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False))
|
||||
if args.dataset_config is not None:
|
||||
print(f"Load dataset config from {args.dataset_config}")
|
||||
user_config = config_util.load_user_config(args.dataset_config)
|
||||
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
|
||||
if any(getattr(args, attr) is not None for attr in ignored):
|
||||
print(
|
||||
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
||||
", ".join(ignored)
|
||||
)
|
||||
)
|
||||
else:
|
||||
use_dreambooth_method = args.in_json is None
|
||||
if use_dreambooth_method:
|
||||
print("Use DreamBooth method.")
|
||||
user_config = {
|
||||
"datasets": [
|
||||
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
|
||||
]
|
||||
}
|
||||
else:
|
||||
print("Train with captions.")
|
||||
user_config = {
|
||||
"datasets": [
|
||||
{
|
||||
"subsets": [
|
||||
{
|
||||
"image_dir": args.train_data_dir,
|
||||
"metadata_file": args.in_json,
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
train_dataset_group.enable_XTI(XTI_layers, token_strings=token_strings)
|
||||
current_epoch = Value("i", 0)
|
||||
current_step = Value("i", 0)
|
||||
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
||||
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
|
||||
|
||||
# make captions: tokenstring tokenstring1 tokenstring2 ...tokenstringn という文字列に書き換える超乱暴な実装
|
||||
if use_template:
|
||||
print("use template for training captions. is object: {args.use_object_template}")
|
||||
templates = imagenet_templates_small if args.use_object_template else imagenet_style_templates_small
|
||||
replace_to = " ".join(token_strings)
|
||||
captions = []
|
||||
for tmpl in templates:
|
||||
captions.append(tmpl.format(replace_to))
|
||||
train_dataset_group.add_replacement("", captions)
|
||||
|
||||
if args.num_vectors_per_token > 1:
|
||||
prompt_replacement = (args.token_string, replace_to)
|
||||
else:
|
||||
prompt_replacement = None
|
||||
else:
|
||||
if args.num_vectors_per_token > 1:
|
||||
replace_to = " ".join(token_strings)
|
||||
train_dataset_group.add_replacement(args.token_string, replace_to)
|
||||
prompt_replacement = (args.token_string, replace_to)
|
||||
else:
|
||||
prompt_replacement = None
|
||||
|
||||
if args.debug_dataset:
|
||||
train_util.debug_dataset(train_dataset_group, show_input_ids=True)
|
||||
return
|
||||
if len(train_dataset_group) == 0:
|
||||
print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください")
|
||||
return
|
||||
|
||||
if cache_latents:
|
||||
assert (
|
||||
train_dataset_group.is_latent_cacheable()
|
||||
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
||||
|
||||
# モデルに xformers とか memory efficient attention を組み込む
|
||||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||||
diffusers.models.UNet2DConditionModel.forward = unet_forward_XTI
|
||||
diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D.forward = downblock_forward_XTI
|
||||
diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D.forward = upblock_forward_XTI
|
||||
|
||||
# 学習を準備する
|
||||
if cache_latents:
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
with torch.no_grad():
|
||||
train_dataset_group.cache_latents(vae, args.vae_batch_size)
|
||||
vae.to("cpu")
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
if args.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
text_encoder.gradient_checkpointing_enable()
|
||||
|
||||
# 学習に必要なクラスを準備する
|
||||
print("prepare optimizer, data loader etc.")
|
||||
trainable_params = text_encoder.get_input_embeddings().parameters()
|
||||
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
|
||||
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
|
||||
# 学習ステップ数を計算する
|
||||
if args.max_train_epochs is not None:
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(
|
||||
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
||||
)
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||||
|
||||
# acceleratorがなんかよろしくやってくれるらしい
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
|
||||
index_no_updates = torch.arange(len(tokenizer)) < token_ids_XTI[0]
|
||||
# print(len(index_no_updates), torch.sum(index_no_updates))
|
||||
orig_embeds_params = unwrap_model(text_encoder).get_input_embeddings().weight.data.detach().clone()
|
||||
|
||||
# Freeze all parameters except for the token embeddings in text encoder
|
||||
text_encoder.requires_grad_(True)
|
||||
text_encoder.text_model.encoder.requires_grad_(False)
|
||||
text_encoder.text_model.final_layer_norm.requires_grad_(False)
|
||||
text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
|
||||
# text_encoder.text_model.embeddings.token_embedding.requires_grad_(True)
|
||||
|
||||
unet.requires_grad_(False)
|
||||
unet.to(accelerator.device, dtype=weight_dtype)
|
||||
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
|
||||
unet.train()
|
||||
else:
|
||||
unet.eval()
|
||||
|
||||
if not cache_latents:
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
||||
if args.full_fp16:
|
||||
train_util.patch_accelerator_for_fp16_training(accelerator)
|
||||
text_encoder.to(weight_dtype)
|
||||
|
||||
# resumeする
|
||||
if args.resume is not None:
|
||||
print(f"resume training from state: {args.resume}")
|
||||
accelerator.load_state(args.resume)
|
||||
|
||||
# epoch数を計算する
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
||||
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
||||
|
||||
# 学習する
|
||||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||||
print("running training / 学習開始")
|
||||
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
||||
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
||||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||||
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
|
||||
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||||
global_step = 0
|
||||
|
||||
noise_scheduler = DDPMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
||||
)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("textual_inversion")
|
||||
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
current_epoch.value = epoch + 1
|
||||
|
||||
text_encoder.train()
|
||||
|
||||
loss_total = 0
|
||||
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
with accelerator.accumulate(text_encoder):
|
||||
with torch.no_grad():
|
||||
if "latents" in batch and batch["latents"] is not None:
|
||||
latents = batch["latents"].to(accelerator.device)
|
||||
else:
|
||||
# latentに変換
|
||||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||||
latents = latents * 0.18215
|
||||
b_size = latents.shape[0]
|
||||
|
||||
# Get the text embedding for conditioning
|
||||
input_ids = batch["input_ids"].to(accelerator.device)
|
||||
# weight_dtype) use float instead of fp16/bf16 because text encoder is float
|
||||
encoder_hidden_states = torch.stack(
|
||||
[
|
||||
train_util.get_hidden_states(args, s, tokenizer, text_encoder, weight_dtype)
|
||||
for s in torch.split(input_ids, 1, dim=1)
|
||||
]
|
||||
)
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise = torch.randn_like(latents, device=latents.device)
|
||||
if args.noise_offset:
|
||||
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
||||
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
|
||||
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||||
timesteps = timesteps.long()
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Predict the noise residual
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
|
||||
|
||||
if args.v_parameterization:
|
||||
# v-parameterization training
|
||||
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
||||
else:
|
||||
target = noise
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||||
loss = loss.mean([1, 2, 3])
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
|
||||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||||
|
||||
accelerator.backward(loss)
|
||||
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
||||
params_to_clip = text_encoder.get_input_embeddings().parameters()
|
||||
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
# Let's make sure we don't update any embedding weights besides the newly added token
|
||||
with torch.no_grad():
|
||||
unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = orig_embeds_params[
|
||||
index_no_updates
|
||||
]
|
||||
|
||||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||||
if accelerator.sync_gradients:
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
# TODO: fix sample_images
|
||||
# train_util.sample_images(
|
||||
# accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, prompt_replacement
|
||||
# )
|
||||
|
||||
current_loss = loss.detach().item()
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
|
||||
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value
|
||||
logs["lr/d*lr"] = (
|
||||
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
|
||||
)
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / (step + 1)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
break
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss/epoch": loss_total / len(train_dataloader)}
|
||||
accelerator.log(logs, step=epoch + 1)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
updated_embs = unwrap_model(text_encoder).get_input_embeddings().weight[token_ids_XTI].data.detach().clone()
|
||||
|
||||
if args.save_every_n_epochs is not None:
|
||||
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
|
||||
|
||||
def save_func():
|
||||
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + "." + args.save_model_as
|
||||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||||
print(f"saving checkpoint: {ckpt_file}")
|
||||
save_weights(ckpt_file, updated_embs, save_dtype)
|
||||
|
||||
def remove_old_func(old_epoch_no):
|
||||
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + "." + args.save_model_as
|
||||
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
||||
if os.path.exists(old_ckpt_file):
|
||||
print(f"removing old checkpoint: {old_ckpt_file}")
|
||||
os.remove(old_ckpt_file)
|
||||
|
||||
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
|
||||
if saving and args.save_state:
|
||||
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1)
|
||||
|
||||
# TODO: fix sample_images
|
||||
# train_util.sample_images(
|
||||
# accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, prompt_replacement
|
||||
# )
|
||||
|
||||
# end of epoch
|
||||
|
||||
is_main_process = accelerator.is_main_process
|
||||
if is_main_process:
|
||||
text_encoder = unwrap_model(text_encoder)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
if args.save_state:
|
||||
train_util.save_state_on_train_end(args, accelerator)
|
||||
|
||||
updated_embs = text_encoder.get_input_embeddings().weight[token_ids_XTI].data.detach().clone()
|
||||
|
||||
del accelerator # この後メモリを使うのでこれは消す
|
||||
|
||||
if is_main_process:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
|
||||
ckpt_name = model_name + "." + args.save_model_as
|
||||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||||
|
||||
print(f"save trained model to {ckpt_file}")
|
||||
save_weights(ckpt_file, updated_embs, save_dtype)
|
||||
print("model saved.")
|
||||
|
||||
|
||||
def save_weights(file, updated_embs, save_dtype):
|
||||
updated_embs = updated_embs.reshape(16, -1, updated_embs.shape[-1])
|
||||
updated_embs = updated_embs.chunk(16)
|
||||
XTI_layers = [
|
||||
"IN01",
|
||||
"IN02",
|
||||
"IN04",
|
||||
"IN05",
|
||||
"IN07",
|
||||
"IN08",
|
||||
"MID",
|
||||
"OUT03",
|
||||
"OUT04",
|
||||
"OUT05",
|
||||
"OUT06",
|
||||
"OUT07",
|
||||
"OUT08",
|
||||
"OUT09",
|
||||
"OUT10",
|
||||
"OUT11",
|
||||
]
|
||||
state_dict = {}
|
||||
for i, layer_name in enumerate(XTI_layers):
|
||||
state_dict[layer_name] = updated_embs[i].squeeze(0).detach().clone().to("cpu").to(save_dtype)
|
||||
|
||||
# if save_dtype is not None:
|
||||
# for key in list(state_dict.keys()):
|
||||
# v = state_dict[key]
|
||||
# v = v.detach().clone().to("cpu").to(save_dtype)
|
||||
# state_dict[key] = v
|
||||
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
from safetensors.torch import save_file
|
||||
|
||||
save_file(state_dict, file)
|
||||
else:
|
||||
torch.save(state_dict, file) # can be loaded in Web UI
|
||||
|
||||
|
||||
def load_weights(file):
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
from safetensors.torch import load_file
|
||||
|
||||
data = load_file(file)
|
||||
else:
|
||||
raise ValueError(f"NOT XTI: {file}")
|
||||
|
||||
if len(data.values()) != 16:
|
||||
raise ValueError(f"NOT XTI: {file}")
|
||||
|
||||
emb = torch.concat([x for x in data.values()])
|
||||
|
||||
return emb
|
||||
|
||||
|
||||
def setup_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, True, True, False)
|
||||
train_util.add_training_arguments(parser, True)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument(
|
||||
"--save_model_as",
|
||||
type=str,
|
||||
default="pt",
|
||||
choices=[None, "ckpt", "pt", "safetensors"],
|
||||
help="format to save the model (default is .pt) / モデル保存時の形式(デフォルトはpt)",
|
||||
)
|
||||
|
||||
parser.add_argument("--weights", type=str, default=None, help="embedding weights to initialize / 学習するネットワークの初期重み")
|
||||
parser.add_argument(
|
||||
"--num_vectors_per_token", type=int, default=1, help="number of vectors per token / トークンに割り当てるembeddingsの要素数"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--token_string",
|
||||
type=str,
|
||||
default=None,
|
||||
help="token string used in training, must not exist in tokenizer / 学習時に使用されるトークン文字列、tokenizerに存在しない文字であること",
|
||||
)
|
||||
parser.add_argument("--init_word", type=str, default=None, help="words to initialize vector / ベクトルを初期化に使用する単語、複数可")
|
||||
parser.add_argument(
|
||||
"--use_object_template",
|
||||
action="store_true",
|
||||
help="ignore caption and use default templates for object / キャプションは使わずデフォルトの物体用テンプレートで学習する",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_style_template",
|
||||
action="store_true",
|
||||
help="ignore caption and use default templates for stype / キャプションは使わずデフォルトのスタイル用テンプレートで学習する",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = setup_parser()
|
||||
|
||||
args = parser.parse_args()
|
||||
args = train_util.read_config_from_file(args, parser)
|
||||
|
||||
train(args)
|
16
upgrade.bat
Normal file
16
upgrade.bat
Normal file
@ -0,0 +1,16 @@
|
||||
@echo off
|
||||
:: Check if there are any changes that need to be committed
|
||||
git status --short
|
||||
if %errorlevel%==1 (
|
||||
echo There are changes that need to be committed. Please stash or undo your changes before running this script.
|
||||
exit
|
||||
)
|
||||
|
||||
:: Pull the latest changes from the remote repository
|
||||
git pull
|
||||
|
||||
:: Activate the virtual environment
|
||||
call .\venv\Scripts\activate.baT
|
||||
|
||||
:: Upgrade the required packages
|
||||
pip install --upgrade -r requirements.txt
|
Loading…
Reference in New Issue
Block a user