commit
98f7dd5080
30
README.md
30
README.md
@ -12,18 +12,38 @@ You can find the dreambooth solution spercific [Dreambooth README](README_dreamb
|
||||
|
||||
You can find the finetune solution spercific [Finetune README](README_finetune.md)
|
||||
|
||||
## LoRA
|
||||
|
||||
You can create LoRA network by running the dedicated GUI with:
|
||||
|
||||
```
|
||||
python lora_gui.py
|
||||
```
|
||||
|
||||
or via the all in one GUI:
|
||||
|
||||
```
|
||||
python kahya_gui.py
|
||||
```
|
||||
|
||||
Once you have created the LoRA network you can generate images via auto1111 by installing the extension found here: https://github.com/kohya-ss/sd-webui-additional-networks
|
||||
|
||||
## Change history
|
||||
|
||||
* 12/30 (v19) update:
|
||||
* 2023/01/01 (v19.1) update:
|
||||
- merge kohys_ss upstream code updates
|
||||
- rework Dreambooth LoRA GUI
|
||||
- fix bug where LoRA network weights were not loaded to properly resume training
|
||||
* 2022/12/30 (v19) update:
|
||||
- support for LoRA network training in kohya_gui.py.
|
||||
* 12/23 (v18.8) update:
|
||||
* 2022/12/23 (v18.8) update:
|
||||
- Fix for conversion tool issue when the source was an sd1.x diffuser model
|
||||
- Other minor code and GUI fix
|
||||
* 12/22 (v18.7) update:
|
||||
* 2022/12/22 (v18.7) update:
|
||||
- Merge dreambooth and finetune is a common GUI
|
||||
- General bug fixes and code improvements
|
||||
* 12/21 (v18.6.1) update:
|
||||
* 2022/12/21 (v18.6.1) update:
|
||||
- fix issue with dataset balancing when the number of detected images in the folder is 0
|
||||
|
||||
* 12/21 (v18.6) update:
|
||||
* 2022/12/21 (v18.6) update:
|
||||
- add optional GUI authentication support via: `python fine_tune.py --username=<name> --password=<password>`
|
@ -4,7 +4,7 @@ extract factors the build is dependent on:
|
||||
[ ] TODO: Q - What if we have multiple GPUs of different makes?
|
||||
- CUDA version
|
||||
- Software:
|
||||
- CPU-only: only CPU quantization functions (no optimizer, no matrix multipl)
|
||||
- CPU-only: only CPU quantization functions (no optimizer, no matrix multiple)
|
||||
- CuBLAS-LT: full-build 8-bit optimizer
|
||||
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
|
||||
|
||||
@ -44,7 +44,7 @@ def get_cuda_version(cuda, cudart_path):
|
||||
minor = (version-(major*1000))//10
|
||||
|
||||
if major < 11:
|
||||
print('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
|
||||
print('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
|
||||
|
||||
return f'{major}{minor}'
|
||||
|
||||
@ -163,4 +163,4 @@ def evaluate_cuda_setup():
|
||||
|
||||
binary_name = get_binary_name()
|
||||
|
||||
return binary_name
|
||||
return binary_name
|
@ -15,6 +15,7 @@ from library.common_gui import (
|
||||
get_folder_path,
|
||||
remove_doublequote,
|
||||
get_file_path,
|
||||
get_any_file_path,
|
||||
get_saveasfile_path,
|
||||
)
|
||||
from library.dreambooth_folder_creation_gui import (
|
||||
@ -236,7 +237,7 @@ def train_model(
|
||||
seed,
|
||||
num_cpu_threads_per_process,
|
||||
cache_latent,
|
||||
caption_extention,
|
||||
caption_extension,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16,
|
||||
@ -396,7 +397,8 @@ def train_model(
|
||||
run_cmd += f' --seed={seed}'
|
||||
run_cmd += f' --save_precision={save_precision}'
|
||||
run_cmd += f' --logging_dir={logging_dir}'
|
||||
run_cmd += f' --caption_extention={caption_extention}'
|
||||
if not caption_extension == '':
|
||||
run_cmd += f' --caption_extension={caption_extension}'
|
||||
if not stop_text_encoder_training == 0:
|
||||
run_cmd += (
|
||||
f' --stop_text_encoder_training={stop_text_encoder_training}'
|
||||
@ -542,7 +544,7 @@ def dreambooth_tab(
|
||||
document_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
pretrained_model_name_or_path_fille.click(
|
||||
get_file_path,
|
||||
get_any_file_path,
|
||||
inputs=[pretrained_model_name_or_path_input],
|
||||
outputs=pretrained_model_name_or_path_input,
|
||||
)
|
||||
|
@ -1,12 +1,12 @@
|
||||
$txt_files_folder = "D:\dreambooth\training_twq\mad_hatter\all"
|
||||
$txt_prefix_to_ignore = "asd"
|
||||
$txt_postfix_ti_ignore = "asd"
|
||||
$txt_files_folder = "D:\dataset\metart_g1\img\100_asd girl"
|
||||
$txt_prefix_to_ignore = "asds"
|
||||
$txt_postfix_ti_ignore = "asds"
|
||||
|
||||
# Should not need to touch anything below
|
||||
|
||||
# (Get-Content $txt_files_folder"\*.txt" ).Replace(",", "") -Split '\W' | Group-Object -NoElement | Sort-Object -Descending -Property Count
|
||||
|
||||
$combined_txt = Get-Content $txt_files_folder"\*.txt"
|
||||
$combined_txt = Get-Content $txt_files_folder"\*.cap"
|
||||
$combined_txt = $combined_txt.Replace(",", "")
|
||||
$combined_txt = $combined_txt.Replace("$txt_prefix_to_ignore", "")
|
||||
$combined_txt = $combined_txt.Replace("$txt_postfix_ti_ignore", "") -Split '\W' | Group-Object -NoElement | Sort-Object -Descending -Property Count
|
||||
|
2123
fine_tune.py
2123
fine_tune.py
File diff suppressed because it is too large
Load Diff
@ -9,6 +9,7 @@ import argparse
|
||||
from library.common_gui import (
|
||||
get_folder_path,
|
||||
get_file_path,
|
||||
get_any_file_path,
|
||||
get_saveasfile_path,
|
||||
)
|
||||
from library.utilities import utilities_tab
|
||||
@ -436,7 +437,7 @@ def finetune_tab():
|
||||
document_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
pretrained_model_name_or_path_file.click(
|
||||
get_file_path,
|
||||
get_any_file_path,
|
||||
inputs=pretrained_model_name_or_path_input,
|
||||
outputs=pretrained_model_name_or_path_input,
|
||||
)
|
||||
|
@ -2486,9 +2486,9 @@ if __name__ == '__main__':
|
||||
parser.add_argument("--bf16", action='store_true', help='use bfloat16 / bfloat16を指定し省メモリ化する')
|
||||
parser.add_argument("--xformers", action='store_true', help='use xformers / xformersを使用し高速化する')
|
||||
parser.add_argument("--diffusers_xformers", action='store_true',
|
||||
help='use xformers by diffusers (Hypernetworks doen\'t work) / Diffusersでxformersを使用する(Hypernetwork利用不可)')
|
||||
help='use xformers by diffusers (Hypernetworks doesn\'t work) / Diffusersでxformersを使用する(Hypernetwork利用不可)')
|
||||
parser.add_argument("--opt_channels_last", action='store_true',
|
||||
help='set channels last option to model / モデルにchannles lastを指定し最適化する')
|
||||
help='set channels last option to model / モデルにchannels lastを指定し最適化する')
|
||||
parser.add_argument("--network_module", type=str, default=None, help='Hypernetwork module to use / Hypernetworkを使う時そのモジュール名')
|
||||
parser.add_argument("--network_weights", type=str, default=None, help='Hypernetwork weights to load / Hypernetworkの重み')
|
||||
parser.add_argument("--network_mul", type=float, default=1.0, help='Hypernetwork multiplier / Hypernetworkの効果の倍率')
|
||||
@ -2514,4 +2514,4 @@ if __name__ == '__main__':
|
||||
help="save 1st stage images for highres fix / highres fixの最初のステージの画像を保存する")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
main(args)
|
@ -26,10 +26,10 @@ def UI(username, password):
|
||||
output_dir_input,
|
||||
logging_dir_input,
|
||||
) = dreambooth_tab()
|
||||
with gr.Tab('Dreambooth LoRA'):
|
||||
lora_tab()
|
||||
with gr.Tab('Finetune'):
|
||||
finetune_tab()
|
||||
with gr.Tab('LoRA'):
|
||||
lora_tab()
|
||||
with gr.Tab('Utilities'):
|
||||
utilities_tab(
|
||||
train_data_dir_input=train_data_dir_input,
|
||||
|
@ -75,7 +75,7 @@ def gradio_basic_caption_gui_tab():
|
||||
)
|
||||
with gr.Row():
|
||||
prefix = gr.Textbox(
|
||||
label='Prefix to add to txt caption',
|
||||
label='Prefix to add to caption',
|
||||
placeholder='(Optional)',
|
||||
interactive=True,
|
||||
)
|
||||
@ -85,7 +85,7 @@ def gradio_basic_caption_gui_tab():
|
||||
interactive=True,
|
||||
)
|
||||
postfix = gr.Textbox(
|
||||
label='Postfix to add to txt caption',
|
||||
label='Postfix to add to caption',
|
||||
placeholder='(Optional)',
|
||||
interactive=True,
|
||||
)
|
||||
|
File diff suppressed because it is too large
Load Diff
103
lora_gui.py
103
lora_gui.py
@ -42,7 +42,6 @@ def save_configuration(
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
@ -65,7 +64,7 @@ def save_configuration(
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_train, network_dim
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_dim, lora_network_weights
|
||||
):
|
||||
original_file_path = file_path
|
||||
|
||||
@ -94,7 +93,6 @@ def save_configuration(
|
||||
'reg_data_dir': reg_data_dir,
|
||||
'output_dir': output_dir,
|
||||
'max_resolution': max_resolution,
|
||||
'learning_rate': learning_rate,
|
||||
'lr_scheduler': lr_scheduler,
|
||||
'lr_warmup': lr_warmup,
|
||||
'train_batch_size': train_batch_size,
|
||||
@ -120,8 +118,8 @@ def save_configuration(
|
||||
'prior_loss_weight': prior_loss_weight,
|
||||
'text_encoder_lr': text_encoder_lr,
|
||||
'unet_lr': unet_lr,
|
||||
'network_train': network_train,
|
||||
'network_dim': network_dim
|
||||
'network_dim': network_dim,
|
||||
'lora_network_weights': lora_network_weights,
|
||||
}
|
||||
|
||||
# Save the data to the selected file
|
||||
@ -141,7 +139,6 @@ def open_configuration(
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
@ -164,7 +161,7 @@ def open_configuration(
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_train, network_dim
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_dim, lora_network_weights
|
||||
):
|
||||
|
||||
original_file_path = file_path
|
||||
@ -192,7 +189,6 @@ def open_configuration(
|
||||
my_data.get('reg_data_dir', reg_data_dir),
|
||||
my_data.get('output_dir', output_dir),
|
||||
my_data.get('max_resolution', max_resolution),
|
||||
my_data.get('learning_rate', learning_rate),
|
||||
my_data.get('lr_scheduler', lr_scheduler),
|
||||
my_data.get('lr_warmup', lr_warmup),
|
||||
my_data.get('train_batch_size', train_batch_size),
|
||||
@ -220,8 +216,8 @@ def open_configuration(
|
||||
my_data.get('prior_loss_weight', prior_loss_weight),
|
||||
my_data.get('text_encoder_lr', text_encoder_lr),
|
||||
my_data.get('unet_lr', unet_lr),
|
||||
my_data.get('network_train', network_train),
|
||||
my_data.get('network_dim', network_dim),
|
||||
my_data.get('lora_network_weights', lora_network_weights),
|
||||
)
|
||||
|
||||
|
||||
@ -234,7 +230,6 @@ def train_model(
|
||||
reg_data_dir,
|
||||
output_dir,
|
||||
max_resolution,
|
||||
learning_rate,
|
||||
lr_scheduler,
|
||||
lr_warmup,
|
||||
train_batch_size,
|
||||
@ -257,7 +252,7 @@ def train_model(
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_train, network_dim
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_dim, lora_network_weights
|
||||
):
|
||||
def save_inference_file(output_dir, v2, v_parameterization):
|
||||
# Copy inference model for v2 if required
|
||||
@ -294,6 +289,14 @@ def train_model(
|
||||
if output_dir == '':
|
||||
msgbox('Output folder path is missing')
|
||||
return
|
||||
|
||||
# If string is empty set string to 0.
|
||||
if text_encoder_lr == '': text_encoder_lr = 0
|
||||
if unet_lr == '': unet_lr = 0
|
||||
|
||||
if (float(text_encoder_lr) == 0) and (float(unet_lr) == 0):
|
||||
msgbox('At least one Learning Rate value for "Text encoder" or "Unet" need to be provided')
|
||||
return
|
||||
|
||||
# Get a list of all subfolders in train_data_dir
|
||||
subfolders = [
|
||||
@ -394,7 +397,7 @@ def train_model(
|
||||
run_cmd += f' --resolution={max_resolution}'
|
||||
run_cmd += f' --output_dir={output_dir}'
|
||||
run_cmd += f' --train_batch_size={train_batch_size}'
|
||||
run_cmd += f' --learning_rate={learning_rate}'
|
||||
# run_cmd += f' --learning_rate={learning_rate}'
|
||||
run_cmd += f' --lr_scheduler={lr_scheduler}'
|
||||
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
|
||||
run_cmd += f' --max_train_steps={max_train_steps}'
|
||||
@ -418,15 +421,20 @@ def train_model(
|
||||
if not float(prior_loss_weight) == 1.0:
|
||||
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
|
||||
run_cmd += f' --network_module=networks.lora'
|
||||
if not text_encoder_lr == '':
|
||||
if not float(text_encoder_lr) == 0:
|
||||
run_cmd += f' --text_encoder_lr={text_encoder_lr}'
|
||||
if not unet_lr == '':
|
||||
run_cmd += f' --unet_lr={unet_lr}'
|
||||
if network_train == 'Text encoder only':
|
||||
run_cmd += f' --network_train_text_encoder_only'
|
||||
elif network_train == 'Unet only':
|
||||
else:
|
||||
run_cmd += f' --network_train_unet_only'
|
||||
if not float(unet_lr) == 0:
|
||||
run_cmd += f' --unet_lr={unet_lr}'
|
||||
else:
|
||||
run_cmd += f' --network_train_text_encoder_only'
|
||||
# if network_train == 'Text encoder only':
|
||||
# run_cmd += f' --network_train_text_encoder_only'
|
||||
# elif network_train == 'Unet only':
|
||||
# run_cmd += f' --network_train_unet_only'
|
||||
run_cmd += f' --network_dim={network_dim}'
|
||||
run_cmd += f' --network_weights={lora_network_weights}'
|
||||
|
||||
|
||||
print(run_cmd)
|
||||
@ -503,13 +511,13 @@ def UI(username, password):
|
||||
interface = gr.Blocks(css=css)
|
||||
|
||||
with interface:
|
||||
with gr.Tab('Dreambooth'):
|
||||
with gr.Tab('LoRA'):
|
||||
(
|
||||
train_data_dir_input,
|
||||
reg_data_dir_input,
|
||||
output_dir_input,
|
||||
logging_dir_input,
|
||||
) = dreambooth_tab()
|
||||
) = lora_tab()
|
||||
with gr.Tab('Utilities'):
|
||||
utilities_tab(
|
||||
train_data_dir_input=train_data_dir_input,
|
||||
@ -563,7 +571,7 @@ def lora_tab(
|
||||
document_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
pretrained_model_name_or_path_file.click(
|
||||
get_file_path,
|
||||
get_any_file_path,
|
||||
inputs=[pretrained_model_name_or_path_input],
|
||||
outputs=pretrained_model_name_or_path_input,
|
||||
)
|
||||
@ -597,19 +605,7 @@ def lora_tab(
|
||||
],
|
||||
value='same as source model',
|
||||
)
|
||||
with gr.Row():
|
||||
lora_network_weights = gr.Textbox(
|
||||
label='LoRA network weights',
|
||||
placeholder='{Optional) Path to existing LoRA network weights to resume training}',
|
||||
)
|
||||
lora_network_weights_file = gr.Button(
|
||||
document_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
lora_network_weights_file.click(
|
||||
get_any_file_path,
|
||||
inputs=[lora_network_weights],
|
||||
outputs=lora_network_weights,
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
v2_input = gr.Checkbox(label='v2', value=True)
|
||||
v_parameterization_input = gr.Checkbox(
|
||||
@ -695,7 +691,20 @@ def lora_tab(
|
||||
)
|
||||
with gr.Tab('Training parameters'):
|
||||
with gr.Row():
|
||||
learning_rate_input = gr.Textbox(label='Learning rate', value=1e-4)
|
||||
lora_network_weights = gr.Textbox(
|
||||
label='LoRA network weights',
|
||||
placeholder='{Optional) Path to existing LoRA network weights to resume training',
|
||||
)
|
||||
lora_network_weights_file = gr.Button(
|
||||
document_symbol, elem_id='open_folder_small'
|
||||
)
|
||||
lora_network_weights_file.click(
|
||||
get_any_file_path,
|
||||
inputs=[lora_network_weights],
|
||||
outputs=lora_network_weights,
|
||||
)
|
||||
with gr.Row():
|
||||
# learning_rate_input = gr.Textbox(label='Learning rate', value=1e-4, visible=False)
|
||||
lr_scheduler_input = gr.Dropdown(
|
||||
label='LR Scheduler',
|
||||
choices=[
|
||||
@ -712,16 +721,16 @@ def lora_tab(
|
||||
with gr.Row():
|
||||
text_encoder_lr = gr.Textbox(label='Text Encoder learning rate', value=1e-6, placeholder='Optional')
|
||||
unet_lr = gr.Textbox(label='Unet learning rate', value=1e-4, placeholder='Optional')
|
||||
network_train =gr.Dropdown(
|
||||
label='Network to train',
|
||||
choices=[
|
||||
'Text encoder and Unet',
|
||||
'Text encoder only',
|
||||
'Unet only',
|
||||
],
|
||||
value='Text encoder and Unet',
|
||||
interactive=True
|
||||
)
|
||||
# network_train = gr.Dropdown(
|
||||
# label='Network to train',
|
||||
# choices=[
|
||||
# 'Text encoder and Unet',
|
||||
# 'Text encoder only',
|
||||
# 'Unet only',
|
||||
# ],
|
||||
# value='Text encoder and Unet',
|
||||
# interactive=True
|
||||
# )
|
||||
network_dim = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=32,
|
||||
@ -846,7 +855,7 @@ def lora_tab(
|
||||
reg_data_dir_input,
|
||||
output_dir_input,
|
||||
max_resolution_input,
|
||||
learning_rate_input,
|
||||
# learning_rate_input,
|
||||
lr_scheduler_input,
|
||||
lr_warmup_input,
|
||||
train_batch_size_input,
|
||||
@ -869,7 +878,7 @@ def lora_tab(
|
||||
shuffle_caption,
|
||||
save_state,
|
||||
resume,
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_train, network_dim
|
||||
prior_loss_weight, text_encoder_lr, unet_lr, network_dim, lora_network_weights
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
|
@ -925,11 +925,12 @@ def train(args):
|
||||
print(f"update token length: {args.max_token_length}")
|
||||
|
||||
# 学習データを用意する
|
||||
assert args.resolution is not None, f"resolution is required / resolution(解像度)を指定してください"
|
||||
resolution = tuple([int(r) for r in args.resolution.split(',')])
|
||||
if len(resolution) == 1:
|
||||
resolution = (resolution[0], resolution[0])
|
||||
assert len(resolution) == 2, \
|
||||
f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}"
|
||||
f"resolution must be 'size' or 'width,height' / resolution(解像度)は'サイズ'または'幅','高さ'で指定してください: {args.resolution}"
|
||||
|
||||
if args.face_crop_aug_range is not None:
|
||||
face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')])
|
||||
@ -1373,9 +1374,9 @@ if __name__ == '__main__':
|
||||
help="keep heading N tokens when shuffling caption tokens / captionのシャッフル時に、先頭からこの個数のトークンをシャッフルしないで残す")
|
||||
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ")
|
||||
parser.add_argument("--in_json", type=str, default=None, help="json meatadata for dataset / データセットのmetadataのjsonファイル")
|
||||
parser.add_argument("--in_json", type=str, default=None, help="json metadata for dataset / データセットのmetadataのjsonファイル")
|
||||
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption files / 読み込むcaptionファイルの拡張子")
|
||||
parser.add_argument("--dataset_repeats", type=int, default=None,
|
||||
parser.add_argument("--dataset_repeats", type=int, default=1,
|
||||
help="repeat dataset when training with captions / キャプションでの学習時にデータセットを繰り返す回数")
|
||||
parser.add_argument("--output_dir", type=str, default=None,
|
||||
help="directory to output trained model / 学習後のモデル出力先ディレクトリ")
|
||||
@ -1449,4 +1450,4 @@ if __name__ == '__main__':
|
||||
help="only training Text Encoder part / Text Encoder関連部分のみ学習する")
|
||||
|
||||
args = parser.parse_args()
|
||||
train(args)
|
||||
train(args)
|
Loading…
Reference in New Issue
Block a user