Update Readme

This commit is contained in:
bmaltais 2023-03-02 14:36:07 -05:00
parent 6105eb0279
commit c926c9d877
4 changed files with 231 additions and 12 deletions

View File

@ -164,7 +164,7 @@ This will store your a backup file with your current locally installed pip packa
## Change History
* 2023/03/02 (v21.1.0):
- Add LoCon support (https://github.com/KohakuBlueleaf/LoCon.git) to the Dreambooth LoRA tab. This will allow to create a new type of LoRA that include conv layers as part of the LoRA... hence the name LoCon.
- Add LoCon support (https://github.com/KohakuBlueleaf/LoCon.git) to the Dreambooth LoRA tab. This will allow to create a new type of LoRA that include conv layers as part of the LoRA... hence the name LoCon. LoCon will work with the native Auto1111 implementation of LoRA. If you want to use it with the Kohya_ss additionalNetwork you will need to install this other extension... until Kohya_ss support it nativelly: https://github.com/KohakuBlueleaf/a1111-sd-webui-locon
* 2023/03/01 (v21.0.1):
- Add warning to tensorboard start if the log information is missing
- Fix issue with 8bitadam on older config file load

1
locon Submodule

@ -0,0 +1 @@
Subproject commit 143b7b1e33a4253b13f45526de41df748b97e585

View File

@ -0,0 +1,194 @@
# extract approximating LoRA by svd from two SD models
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo!
import argparse
import os
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
import library.model_util as model_util
import lora
import numpy as np
CLAMP_QUANTILE = 1 # 0.99
MIN_DIFF = 1e-6
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == '.safetensors':
save_file(model, file_name)
else:
torch.save(model, file_name)
def svd(args):
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
save_dtype = str_to_dtype(args.save_precision)
print(f"loading SD model : {args.model_org}")
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org)
print(f"loading SD model : {args.model_tuned}")
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned)
# create LoRA network to extract weights: Use dim (rank) as alpha
lora_network_o = lora.create_network(1.0, args.dim, args.dim * 1.5, None, text_encoder_o, unet_o)
lora_network_t = lora.create_network(1.0, args.dim, args.dim * 1.5, None, text_encoder_t, unet_t)
assert len(lora_network_o.text_encoder_loras) == len(
lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違いますSD1.xベースとSD2.xベース "
# get diffs
diffs = {}
text_encoder_different = False
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
# Text Encoder might be same
if torch.max(torch.abs(diff)) > MIN_DIFF:
text_encoder_different = True
diff = diff.float()
diffs[lora_name] = diff
if not text_encoder_different:
print("Text encoder is same. Extract U-Net only.")
lora_network_o.text_encoder_loras = []
diffs = {}
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
diff = diff.float()
if args.device:
diff = diff.to(args.device)
diffs[lora_name] = diff
# make LoRA with SVD
print("calculating by SVD")
rank = args.dim
lora_weights = {}
with torch.no_grad():
for lora_name, mat in tqdm(list(diffs.items())):
conv2d = (len(mat.size()) == 4)
if conv2d:
mat = mat.squeeze()
U, S, Vt = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vt = Vt[:rank, :]
lora_weights[lora_name] = (U, Vt)
# # make LoRA with svd
# print("calculating by svd")
# rank = args.dim
# lora_weights = {}
# with torch.no_grad():
# for lora_name, mat in tqdm(list(diffs.items())):
# conv2d = (len(mat.size()) == 4)
# if conv2d:
# mat = mat.squeeze()
# U, S, Vh = torch.linalg.svd(mat)
# U = U[:, :rank]
# S = S[:rank]
# U = U @ torch.diag(S)
# Vh = Vh[:rank, :]
# # create new tensors directly from the numpy arrays
# U = torch.as_tensor(U)
# Vh = torch.as_tensor(Vh)
# # dist = torch.cat([U.flatten(), Vh.flatten()])
# # hi_val = torch.quantile(dist, CLAMP_QUANTILE)
# # low_val = -hi_val
# # U = U.clamp(low_val, hi_val)
# # Vh = Vh.clamp(low_val, hi_val)
# # # soft thresholding
# # alpha = S[-1] / 1000.0 # adjust this parameter as needed
# # U = torch.sign(U) * torch.nn.functional.relu(torch.abs(U) - alpha)
# # Vh = torch.sign(Vh) * torch.nn.functional.relu(torch.abs(Vh) - alpha)
# lora_weights[lora_name] = (U, Vh)
# make state dict for LoRA
lora_network_o.apply_to(text_encoder_o, unet_o, text_encoder_different, True) # to make state dict
lora_sd = lora_network_o.state_dict()
print(f"LoRA has {len(lora_sd)} weights.")
for key in list(lora_sd.keys()):
if "alpha" in key:
continue
lora_name = key.split('.')[0]
i = 0 if "lora_up" in key else 1
weights = lora_weights[lora_name][i]
# print(key, i, weights.size(), lora_sd[key].size())
if len(lora_sd[key].size()) == 4:
weights = weights.unsqueeze(2).unsqueeze(3)
assert weights.size() == lora_sd[key].size(), f"size unmatch: {key}"
lora_sd[key] = weights
# load state dict to LoRA and save it
info = lora_network_o.load_state_dict(lora_sd)
print(f"Loading extracted LoRA weights: {info}")
dir_name = os.path.dirname(args.save_to)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# minimum metadata
metadata = {"ss_network_dim": str(args.dim), "ss_network_alpha": str(args.dim * 1.5)}
lora_network_o.save_weights(args.save_to, save_dtype, metadata)
print(f"LoRA weights are saved to: {args.save_to}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat")
parser.add_argument("--model_org", type=str, default=None,
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors")
parser.add_argument("--model_tuned", type=str, default=None,
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル生成されるLoRAは元→派生の差分になります、ckptまたはsafetensors")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数rankデフォルト4")
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
args = parser.parse_args()
svd(args)

View File

@ -38,10 +38,11 @@ def save_to_file(file_name, model, state_dict, dtype, metadata):
torch.save(model, file_name)
def resize_lora_model(lora_sd, new_rank, save_dtype, device, verbose):
def resize_lora_model(lora_sd, new_rank, save_dtype, device, sv_ratio, verbose):
network_alpha = None
network_dim = None
verbose_str = "\n"
ratio_flag = False
CLAMP_QUANTILE = 0.99
@ -57,9 +58,12 @@ def resize_lora_model(lora_sd, new_rank, save_dtype, device, verbose):
network_alpha = network_dim
scale = network_alpha/network_dim
new_alpha = float(scale*new_rank) # calculate new alpha from scale
print(f"old dimension: {network_dim}, old alpha: {network_alpha}, new alpha: {new_alpha}")
if not sv_ratio:
new_alpha = float(scale*new_rank) # calculate new alpha from scale
print(f"old dimension: {network_dim}, old alpha: {network_alpha}, new dim: {new_rank}, new alpha: {new_alpha}")
else:
print(f"Dynamically determining new alphas and dims based off sv ratio: {sv_ratio}")
ratio_flag = True
lora_down_weight = None
lora_up_weight = None
@ -97,11 +101,24 @@ def resize_lora_model(lora_sd, new_rank, save_dtype, device, verbose):
U, S, Vh = torch.linalg.svd(full_weight_matrix)
if ratio_flag:
# Calculate new dim and alpha for dynamic sizing
max_sv = S[0]
min_sv = max_sv/sv_ratio
new_rank = torch.sum(S > min_sv).item()
new_rank = max(new_rank, 1)
new_alpha = float(scale*new_rank)
if verbose:
s_sum = torch.sum(torch.abs(S))
s_rank = torch.sum(torch.abs(S[:new_rank]))
verbose_str+=f"{block_down_name:76} | "
verbose_str+=f"sum(S) retained: {(s_rank)/s_sum:.1%}, max(S) ratio: {S[0]/S[new_rank]:0.1f}\n"
verbose_str+=f"{block_down_name:75} | "
verbose_str+=f"sum(S) retained: {(s_rank)/s_sum:.1%}, max(S) ratio: {S[0]/S[new_rank]:0.1f}"
if verbose and ratio_flag:
verbose_str+=f", dynamic| dim: {new_rank}, alpha: {new_alpha}\n"
else:
verbose_str+=f"\n"
U = U[:, :new_rank]
S = S[:new_rank]
@ -160,16 +177,21 @@ def resize(args):
lora_sd, metadata = load_state_dict(args.model, merge_dtype)
print("resizing rank...")
state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.verbose)
state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.sv_ratio, args.verbose)
# update metadata
if metadata is None:
metadata = {}
comment = metadata.get("ss_training_comment", "")
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}"
metadata["ss_network_dim"] = str(args.new_rank)
metadata["ss_network_alpha"] = str(new_alpha)
if not args.sv_ratio:
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}"
metadata["ss_network_dim"] = str(args.new_rank)
metadata["ss_network_alpha"] = str(new_alpha)
else:
metadata["ss_training_comment"] = f"Dynamic resize from {old_dim} with ratio {args.sv_ratio}; {comment}"
metadata["ss_network_dim"] = 'Dynamic'
metadata["ss_network_alpha"] = 'Dynamic'
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
@ -193,6 +215,8 @@ if __name__ == '__main__':
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
parser.add_argument("--verbose", action="store_true",
help="Display verbose resizing information / rank変更時の詳細情報を出力する")
parser.add_argument("--sv_ratio", type=float, default=None,
help="Specify svd ratio for dim calcs. Will override --new_rank")
args = parser.parse_args()
resize(args)
resize(args)