Publish v15
This commit is contained in:
parent
30b4be5680
commit
e8db30b9d1
75
README.md
75
README.md
@ -21,29 +21,20 @@ Give unrestricted script access to powershell so venv can work:
|
||||
Open a regular Powershell terminal and type the following inside:
|
||||
|
||||
```powershell
|
||||
# Clone the Kohya_ss repository
|
||||
git clone https://github.com/bmaltais/kohya_ss.git
|
||||
|
||||
# Navigate to the newly cloned directory
|
||||
cd kohya_ss
|
||||
|
||||
# Create a virtual environment using the system-site-packages option
|
||||
python -m venv --system-site-packages venv
|
||||
|
||||
# Activate the virtual environment
|
||||
.\venv\Scripts\activate
|
||||
|
||||
# Install the required packages
|
||||
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
|
||||
pip install --upgrade -r requirements.txt
|
||||
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
|
||||
|
||||
# Copy the necessary files to the virtual environment's site-packages directory
|
||||
cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
|
||||
cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
|
||||
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
|
||||
|
||||
# Configure the accelerate utility
|
||||
accelerate config
|
||||
|
||||
```
|
||||
@ -285,20 +276,22 @@ Refer to this url for more details about finetuning: https://note.com/kohya_ss/n
|
||||
## Options list
|
||||
|
||||
```txt
|
||||
usage: train_db_fixed.py [-h] [--v2] [--v_parameterization] [--pretrained_model_name_or_path PRETRAINED_MODEL_NAME_OR_PATH]
|
||||
[--fine_tuning] [--shuffle_caption] [--caption_extention CAPTION_EXTENTION]
|
||||
usage: train_db_fixed.py [-h] [--v2] [--v_parameterization]
|
||||
[--pretrained_model_name_or_path PRETRAINED_MODEL_NAME_OR_PATH] [--fine_tuning]
|
||||
[--shuffle_caption] [--caption_extention CAPTION_EXTENTION]
|
||||
[--caption_extension CAPTION_EXTENSION] [--train_data_dir TRAIN_DATA_DIR]
|
||||
[--reg_data_dir REG_DATA_DIR] [--dataset_repeats DATASET_REPEATS] [--output_dir OUTPUT_DIR]
|
||||
[--save_every_n_epochs SAVE_EVERY_N_EPOCHS] [--save_state] [--resume RESUME]
|
||||
[--reg_data_dir REG_DATA_DIR] [--dataset_repeats DATASET_REPEATS] [--output_dir OUTPUT_DIR]
|
||||
[--use_safetensors] [--save_every_n_epochs SAVE_EVERY_N_EPOCHS] [--save_state] [--resume RESUME]
|
||||
[--prior_loss_weight PRIOR_LOSS_WEIGHT] [--no_token_padding]
|
||||
[--stop_text_encoder_training STOP_TEXT_ENCODER_TRAINING] [--color_aug] [--flip_aug]
|
||||
[--face_crop_aug_range FACE_CROP_AUG_RANGE] [--random_crop] [--debug_dataset]
|
||||
[--resolution RESOLUTION] [--train_batch_size TRAIN_BATCH_SIZE] [--use_8bit_adam] [--mem_eff_attn]
|
||||
[--xformers] [--cache_latents] [--enable_bucket] [--min_bucket_reso MIN_BUCKET_RESO]
|
||||
[--max_bucket_reso MAX_BUCKET_RESO] [--learning_rate LEARNING_RATE]
|
||||
[--max_train_steps MAX_TRAIN_STEPS] [--seed SEED] [--gradient_checkpointing]
|
||||
[--mixed_precision {no,fp16,bf16}] [--save_precision {None,float,fp16,bf16}] [--clip_skip CLIP_SKIP]
|
||||
[--logging_dir LOGGING_DIR] [--lr_scheduler LR_SCHEDULER] [--lr_warmup_steps LR_WARMUP_STEPS]
|
||||
[--resolution RESOLUTION] [--train_batch_size TRAIN_BATCH_SIZE] [--use_8bit_adam]
|
||||
[--mem_eff_attn] [--xformers] [--vae VAE] [--cache_latents] [--enable_bucket]
|
||||
[--min_bucket_reso MIN_BUCKET_RESO] [--max_bucket_reso MAX_BUCKET_RESO]
|
||||
[--learning_rate LEARNING_RATE] [--max_train_steps MAX_TRAIN_STEPS] [--seed SEED]
|
||||
[--gradient_checkpointing] [--mixed_precision {no,fp16,bf16}]
|
||||
[--save_precision {None,float,fp16,bf16}] [--clip_skip CLIP_SKIP] [--logging_dir LOGGING_DIR]
|
||||
[--log_prefix LOG_PREFIX] [--lr_scheduler LR_SCHEDULER] [--lr_warmup_steps LR_WARMUP_STEPS]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
@ -310,7 +303,7 @@ options:
|
||||
--fine_tuning fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする
|
||||
--shuffle_caption shuffle comma-separated caption / コンマで区切られたcaptionの各要素をshuffleする
|
||||
--caption_extention CAPTION_EXTENTION
|
||||
extension of caption files (backward compatiblity) / 読み込むcaptionファイルの拡張子(スペルミスを残し てあります)
|
||||
extension of caption files (backward compatiblity) / 読み込むcaptionファイルの拡張子(スペルミスを 残してあります)
|
||||
--caption_extension CAPTION_EXTENSION
|
||||
extension of caption files / 読み込むcaptionファイルの拡張子
|
||||
--train_data_dir TRAIN_DATA_DIR
|
||||
@ -320,15 +313,18 @@ options:
|
||||
--dataset_repeats DATASET_REPEATS
|
||||
repeat dataset in fine tuning / fine tuning時にデータセットを繰り返す回数
|
||||
--output_dir OUTPUT_DIR
|
||||
directory to output trained model (default format is same to input) /
|
||||
学習後のモデル出力先ディレクトリ(デフォルトの保存形式は読み込んだ形式と同じ)
|
||||
directory to output trained model / 学習後のモデル出力先ディレクトリ
|
||||
--use_safetensors use safetensors format for StableDiffusion checkpoint /
|
||||
StableDiffusionのcheckpointをsafetensors形式で保存する
|
||||
--save_every_n_epochs SAVE_EVERY_N_EPOCHS
|
||||
save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存します
|
||||
--save_state save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する
|
||||
--save_state save training state additionally (including optimizer states etc.) /
|
||||
optimizerなど学習状態も含めたstateを追加で保存する
|
||||
--resume RESUME saved state to resume training / 学習再開するモデルのstate
|
||||
--prior_loss_weight PRIOR_LOSS_WEIGHT
|
||||
loss weight for regularization images / 正則化画像のlossの重み
|
||||
--no_token_padding disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)
|
||||
--no_token_padding disable token padding (same as Diffuser's DreamBooth) /
|
||||
トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)
|
||||
--stop_text_encoder_training STOP_TEXT_ENCODER_TRAINING
|
||||
steps to stop text encoder training / Text Encoderの学習を止めるステップ数
|
||||
--color_aug enable weak color augmentation / 学習時に色合いのaugmentationを有効にする
|
||||
@ -337,16 +333,17 @@ options:
|
||||
enable face-centered crop augmentation and its range (e.g. 2.0,4.0) /
|
||||
学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)
|
||||
--random_crop enable random crop (for style training in face-centered crop augmentation) /
|
||||
ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)
|
||||
--debug_dataset show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)
|
||||
ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)
|
||||
--debug_dataset show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)
|
||||
--resolution RESOLUTION
|
||||
resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)
|
||||
resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高 さ'指定)
|
||||
--train_batch_size TRAIN_BATCH_SIZE
|
||||
batch size for training (1 means one train or reg data, not train/reg pair) /
|
||||
学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)
|
||||
--use_8bit_adam use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)
|
||||
--mem_eff_attn use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う
|
||||
--mem_eff_attn use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う
|
||||
--xformers use xformers for CrossAttention / CrossAttentionにxformersを使う
|
||||
--vae VAE path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ
|
||||
--cache_latents cache latents to reduce memory (augmentations must be disabled) /
|
||||
メモリ削減のためにlatentをcacheする(augmentationは使用不可)
|
||||
--enable_bucket enable buckets for multi aspect ratio training / 複数解像度学習のためのbucketを有効にする
|
||||
@ -365,17 +362,29 @@ options:
|
||||
use mixed precision / 混合精度を使う場合、その精度
|
||||
--save_precision {None,float,fp16,bf16}
|
||||
precision in saving (available in StableDiffusion checkpoint) /
|
||||
保存時に精度を変更して保存する(StableDiffusion形式での保存時のみ有効)
|
||||
--clip_skip CLIP_SKIP
|
||||
use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を 用いる(nは1以上)
|
||||
--logging_dir LOGGING_DIR
|
||||
enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する
|
||||
enable logging and output TensorBoard log to this directory /
|
||||
ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する
|
||||
--log_prefix LOG_PREFIX
|
||||
add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列
|
||||
--lr_scheduler LR_SCHEDULER
|
||||
scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial,
|
||||
constant (default), constant_with_warmup
|
||||
scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts,
|
||||
polynomial, constant (default), constant_with_warmup
|
||||
--lr_warmup_steps LR_WARMUP_STEPS
|
||||
Number of steps for the warmup in the lr scheduler (default is 0) / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)
|
||||
Number of steps for the warmup in the lr scheduler (default is 0) /
|
||||
学習率のスケジューラをウォームアップするステップ数(デフォルト0)
|
||||
```
|
||||
|
||||
## Change history
|
||||
|
||||
* 12/05 (v15) update:
|
||||
- The script has been divided into two parts
|
||||
- Support for SafeTensors format has been added. Install SafeTensors with `pip install safetensors`. The script will automatically detect the format based on the file extension when loading. Use the `--use_safetensors` option if you want to save the model as safetensor.
|
||||
- The vae option has been added to load a VAE model separately.
|
||||
- The log_prefix option has been added to allow adding a custom string to the log directory name before the date and time.
|
||||
* 11/30 (v13) update:
|
||||
- fix training text encoder at specified step (`--stop_text_encoder_training=<step #>`) that was causing both Unet and text encoder training to stop completely at the specified step rather than continue without text encoding training.
|
||||
* 11/29 (v12) update:
|
||||
@ -405,4 +414,4 @@ options:
|
||||
- The data format of checkpoint at the time of saving can be specified with the --save_precision option. You can choose float, fp16, and bf16.
|
||||
- Added a --save_state option to save the learning state (optimizer, etc.) in the middle. It can be resumed with the --resume option.
|
||||
* 11/9 (v8): supports Diffusers 0.7.2. To upgrade diffusers run `pip install --upgrade diffusers[torch]`
|
||||
* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short).
|
||||
* 11/7 (v7): Text Encoder supports checkpoint files in different storage formats (it is converted at the time of import, so export will be in normal format). Changed the average value of EPOCH loss to output to the screen. Added a function to save epoch and global step in checkpoint in SD format (add values if there is existing data). The reg_data_dir option is enabled during fine tuning (fine tuning while mixing regularized images). Added dataset_repeats option that is valid for fine tuning (specified when the number of teacher images is small and the epoch is extremely short).
|
@ -1,10 +1,3 @@
|
||||
# Diffusers Fine Tuning
|
||||
|
||||
This subfolder provide all the required tools to run the diffusers fine tuning version found in this note: https://note.com/kohya_ss/n/nbf7ce8d80f29
|
||||
|
||||
## Releases
|
||||
|
||||
11/23 (v3):
|
||||
- Added WD14Tagger tagging script.
|
||||
- A log output function has been added to the fine_tune.py. Also, fixed the double shuffling of data.
|
||||
- Fixed misspelling of options for each script (caption_extention→caption_extension will work for the time being, even if it remains outdated).
|
||||
Code has been moved to dedicated repo at: https://github.com/bmaltais/kohya_diffusers_fine_tuning
|
@ -1,125 +0,0 @@
|
||||
# このスクリプトのライセンスは、Apache License 2.0とします
|
||||
# (c) 2022 Kohya S. @kohya_ss
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import json
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def clean_tags(image_key, tags):
|
||||
# replace '_' to ' '
|
||||
tags = tags.replace('_', ' ')
|
||||
|
||||
# remove rating: deepdanbooruのみ
|
||||
tokens = tags.split(", rating")
|
||||
if len(tokens) == 1:
|
||||
# WD14 taggerのときはこちらになるのでメッセージは出さない
|
||||
# print("no rating:")
|
||||
# print(f"{image_key} {tags}")
|
||||
pass
|
||||
else:
|
||||
if len(tokens) > 2:
|
||||
print("multiple ratings:")
|
||||
print(f"{image_key} {tags}")
|
||||
tags = tokens[0]
|
||||
|
||||
return tags
|
||||
|
||||
|
||||
# 上から順に検索、置換される
|
||||
# ('置換元文字列', '置換後文字列')
|
||||
CAPTION_REPLACEMENTS = [
|
||||
('anime anime', 'anime'),
|
||||
('young ', ''),
|
||||
('anime girl', 'girl'),
|
||||
('cartoon female', 'girl'),
|
||||
('cartoon lady', 'girl'),
|
||||
('cartoon character', 'girl'), # a or ~s
|
||||
('cartoon woman', 'girl'),
|
||||
('cartoon women', 'girls'),
|
||||
('cartoon girl', 'girl'),
|
||||
('anime female', 'girl'),
|
||||
('anime lady', 'girl'),
|
||||
('anime character', 'girl'), # a or ~s
|
||||
('anime woman', 'girl'),
|
||||
('anime women', 'girls'),
|
||||
('lady', 'girl'),
|
||||
('female', 'girl'),
|
||||
('woman', 'girl'),
|
||||
('women', 'girls'),
|
||||
('people', 'girls'),
|
||||
('person', 'girl'),
|
||||
('a cartoon figure', 'a figure'),
|
||||
('a cartoon image', 'an image'),
|
||||
('a cartoon picture', 'a picture'),
|
||||
('an anime cartoon image', 'an image'),
|
||||
('a cartoon anime drawing', 'a drawing'),
|
||||
('a cartoon drawing', 'a drawing'),
|
||||
('girl girl', 'girl'),
|
||||
]
|
||||
|
||||
|
||||
def clean_caption(caption):
|
||||
for rf, rt in CAPTION_REPLACEMENTS:
|
||||
replaced = True
|
||||
while replaced:
|
||||
bef = caption
|
||||
caption = caption.replace(rf, rt)
|
||||
replaced = bef != caption
|
||||
return caption
|
||||
|
||||
|
||||
def main(args):
|
||||
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png"))
|
||||
print(f"found {len(image_paths)} images.")
|
||||
|
||||
if os.path.exists(args.in_json):
|
||||
print(f"loading existing metadata: {args.in_json}")
|
||||
with open(args.in_json, "rt", encoding='utf-8') as f:
|
||||
metadata = json.load(f)
|
||||
else:
|
||||
print("no metadata / メタデータファイルがありません")
|
||||
return
|
||||
|
||||
print("cleaning captions and tags.")
|
||||
for image_path in tqdm(image_paths):
|
||||
tags_path = os.path.splitext(image_path)[0] + '.txt'
|
||||
with open(tags_path, "rt", encoding='utf-8') as f:
|
||||
tags = f.readlines()[0].strip()
|
||||
|
||||
image_key = os.path.splitext(os.path.basename(image_path))[0]
|
||||
if image_key not in metadata:
|
||||
print(f"image not in metadata / メタデータに画像がありません: {image_path}")
|
||||
return
|
||||
|
||||
tags = metadata[image_key].get('tags')
|
||||
if tags is None:
|
||||
print(f"image does not have tags / メタデータにタグがありません: {image_path}")
|
||||
else:
|
||||
metadata[image_key]['tags'] = clean_tags(image_key, tags)
|
||||
|
||||
caption = metadata[image_key].get('caption')
|
||||
if caption is None:
|
||||
print(f"image does not have caption / メタデータにキャプションがありません: {image_path}")
|
||||
else:
|
||||
metadata[image_key]['caption'] = clean_caption(caption)
|
||||
|
||||
# metadataを書き出して終わり
|
||||
print(f"writing metadata: {args.out_json}")
|
||||
with open(args.out_json, "wt", encoding='utf-8') as f:
|
||||
json.dump(metadata, f, indent=2)
|
||||
print("done!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
|
||||
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
|
||||
# parser.add_argument("--debug", action="store_true", help="debug mode")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
@ -1,968 +0,0 @@
|
||||
# v2: select precision for saved checkpoint
|
||||
# v3: add logging for tensorboard, fix to shuffle=False in DataLoader (shuffling is in dataset)
|
||||
# v4: support SD2.0, add lr scheduler options, supports save_every_n_epochs and save_state for DiffUsers model
|
||||
|
||||
# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします
|
||||
# License:
|
||||
# Copyright 2022 Kohya S. @kohya_ss
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# License of included scripts:
|
||||
# Diffusers: ASL 2.0 https://github.com/huggingface/diffusers/blob/main/LICENSE
|
||||
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import json
|
||||
import importlib
|
||||
import time
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import set_seed
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
import diffusers
|
||||
from diffusers import DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
||||
import numpy as np
|
||||
from einops import rearrange
|
||||
from torch import einsum
|
||||
|
||||
import fine_tuning_utils
|
||||
|
||||
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
|
||||
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
|
||||
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
|
||||
|
||||
# checkpointファイル名
|
||||
LAST_CHECKPOINT_NAME = "last.ckpt"
|
||||
LAST_STATE_NAME = "last-state"
|
||||
LAST_DIFFUSERS_DIR_NAME = "last"
|
||||
EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt"
|
||||
EPOCH_STATE_NAME = "epoch-{:06d}-state"
|
||||
EPOCH_DIFFUSERS_DIR_NAME = "epoch-{:06d}"
|
||||
|
||||
|
||||
def collate_fn(examples):
|
||||
return examples[0]
|
||||
|
||||
|
||||
class FineTuningDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, metadata, train_data_dir, batch_size, tokenizer, max_token_length, shuffle_caption, dataset_repeats, debug) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.metadata = metadata
|
||||
self.train_data_dir = train_data_dir
|
||||
self.batch_size = batch_size
|
||||
self.tokenizer: CLIPTokenizer = tokenizer
|
||||
self.max_token_length = max_token_length
|
||||
self.shuffle_caption = shuffle_caption
|
||||
self.debug = debug
|
||||
|
||||
self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2
|
||||
|
||||
print("make buckets")
|
||||
|
||||
# 最初に数を数える
|
||||
self.bucket_resos = set()
|
||||
for img_md in metadata.values():
|
||||
if 'train_resolution' in img_md:
|
||||
self.bucket_resos.add(tuple(img_md['train_resolution']))
|
||||
self.bucket_resos = list(self.bucket_resos)
|
||||
self.bucket_resos.sort()
|
||||
print(f"number of buckets: {len(self.bucket_resos)}")
|
||||
|
||||
reso_to_index = {}
|
||||
for i, reso in enumerate(self.bucket_resos):
|
||||
reso_to_index[reso] = i
|
||||
|
||||
# bucketに割り当てていく
|
||||
self.buckets = [[] for _ in range(len(self.bucket_resos))]
|
||||
n = 1 if dataset_repeats is None else dataset_repeats
|
||||
images_count = 0
|
||||
for image_key, img_md in metadata.items():
|
||||
if 'train_resolution' not in img_md:
|
||||
continue
|
||||
if not os.path.exists(os.path.join(self.train_data_dir, image_key + '.npz')):
|
||||
continue
|
||||
|
||||
reso = tuple(img_md['train_resolution'])
|
||||
for _ in range(n):
|
||||
self.buckets[reso_to_index[reso]].append(image_key)
|
||||
images_count += n
|
||||
|
||||
# 参照用indexを作る
|
||||
self.buckets_indices = []
|
||||
for bucket_index, bucket in enumerate(self.buckets):
|
||||
batch_count = int(math.ceil(len(bucket) / self.batch_size))
|
||||
for batch_index in range(batch_count):
|
||||
self.buckets_indices.append((bucket_index, batch_index))
|
||||
|
||||
self.shuffle_buckets()
|
||||
self._length = len(self.buckets_indices)
|
||||
self.images_count = images_count
|
||||
|
||||
def show_buckets(self):
|
||||
for i, (reso, bucket) in enumerate(zip(self.bucket_resos, self.buckets)):
|
||||
print(f"bucket {i}: resolution {reso}, count: {len(bucket)}")
|
||||
|
||||
def shuffle_buckets(self):
|
||||
random.shuffle(self.buckets_indices)
|
||||
for bucket in self.buckets:
|
||||
random.shuffle(bucket)
|
||||
|
||||
def load_latent(self, image_key):
|
||||
return np.load(os.path.join(self.train_data_dir, image_key + '.npz'))['arr_0']
|
||||
|
||||
def __len__(self):
|
||||
return self._length
|
||||
|
||||
def __getitem__(self, index):
|
||||
if index == 0:
|
||||
self.shuffle_buckets()
|
||||
|
||||
bucket = self.buckets[self.buckets_indices[index][0]]
|
||||
image_index = self.buckets_indices[index][1] * self.batch_size
|
||||
|
||||
input_ids_list = []
|
||||
latents_list = []
|
||||
captions = []
|
||||
for image_key in bucket[image_index:image_index + self.batch_size]:
|
||||
img_md = self.metadata[image_key]
|
||||
caption = img_md.get('caption')
|
||||
tags = img_md.get('tags')
|
||||
|
||||
if caption is None:
|
||||
caption = tags
|
||||
elif tags is not None and len(tags) > 0:
|
||||
caption = caption + ', ' + tags
|
||||
assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{image_key}"
|
||||
|
||||
latents = self.load_latent(image_key)
|
||||
|
||||
if self.shuffle_caption:
|
||||
tokens = caption.strip().split(",")
|
||||
random.shuffle(tokens)
|
||||
caption = ",".join(tokens).strip()
|
||||
|
||||
captions.append(caption)
|
||||
|
||||
input_ids = self.tokenizer(caption, padding="max_length", truncation=True,
|
||||
max_length=self.tokenizer_max_length, return_tensors="pt").input_ids
|
||||
|
||||
if self.tokenizer_max_length > self.tokenizer.model_max_length:
|
||||
input_ids = input_ids.squeeze(0)
|
||||
iids_list = []
|
||||
if self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
|
||||
# v1
|
||||
# 77以上の時は "<BOS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<BOS>...<EOS>"の三連に変換する
|
||||
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
|
||||
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2): # (1, 152, 75)
|
||||
ids_chunk = (input_ids[0].unsqueeze(0),
|
||||
input_ids[i:i + self.tokenizer.model_max_length - 2],
|
||||
input_ids[-1].unsqueeze(0))
|
||||
ids_chunk = torch.cat(ids_chunk)
|
||||
iids_list.append(ids_chunk)
|
||||
else:
|
||||
# v2
|
||||
# 77以上の時は "<BOS> .... <EOS> <PAD> <PAD>..." でトータル227とかになっているので、"<BOS>...<EOS> <PAD> <PAD> ..."の三連に変換する
|
||||
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2):
|
||||
ids_chunk = (input_ids[0].unsqueeze(0), # BOS
|
||||
input_ids[i:i + self.tokenizer.model_max_length - 2],
|
||||
input_ids[-1].unsqueeze(0)) # PAD or EOS
|
||||
ids_chunk = torch.cat(ids_chunk)
|
||||
|
||||
# 末尾が <EOS> <PAD> または <PAD> <PAD> の場合は、何もしなくてよい
|
||||
# 末尾が x <PAD/EOS> の場合は末尾を <EOS> に変える(x <EOS> なら結果的に変化なし)
|
||||
if ids_chunk[-2] != self.tokenizer.eos_token_id and ids_chunk[-2] != self.tokenizer.pad_token_id:
|
||||
ids_chunk[-1] = self.tokenizer.eos_token_id
|
||||
# 先頭が <BOS> <PAD> ... の場合は <BOS> <EOS> <PAD> ... に変える
|
||||
if ids_chunk[1] == self.tokenizer.pad_token_id:
|
||||
ids_chunk[1] = self.tokenizer.eos_token_id
|
||||
|
||||
iids_list.append(ids_chunk)
|
||||
|
||||
input_ids = torch.stack(iids_list) # 3,77
|
||||
|
||||
input_ids_list.append(input_ids)
|
||||
latents_list.append(torch.FloatTensor(latents))
|
||||
|
||||
example = {}
|
||||
example['input_ids'] = torch.stack(input_ids_list)
|
||||
example['latents'] = torch.stack(latents_list)
|
||||
if self.debug:
|
||||
example['image_keys'] = bucket[image_index:image_index + self.batch_size]
|
||||
example['captions'] = captions
|
||||
return example
|
||||
|
||||
|
||||
def save_hypernetwork(output_file, hypernetwork):
|
||||
state_dict = hypernetwork.get_state_dict()
|
||||
torch.save(state_dict, output_file)
|
||||
|
||||
|
||||
def train(args):
|
||||
fine_tuning = args.hypernetwork_module is None # fine tuning or hypernetwork training
|
||||
|
||||
# その他のオプション設定を確認する
|
||||
if args.v_parameterization and not args.v2:
|
||||
print("v_parameterization should be with v2 / v1でv_parameterizationを使用することは想定されていません")
|
||||
if args.v2 and args.clip_skip is not None:
|
||||
print("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません")
|
||||
|
||||
# モデル形式のオプション設定を確認する
|
||||
# v11からDiffUsersから直接落としてくるのもOK(ただし認証がいるやつは未対応)、またv11からDiffUsersも途中保存に対応した
|
||||
use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path)
|
||||
|
||||
# 乱数系列を初期化する
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
# メタデータを読み込む
|
||||
if os.path.exists(args.in_json):
|
||||
print(f"loading existing metadata: {args.in_json}")
|
||||
with open(args.in_json, "rt", encoding='utf-8') as f:
|
||||
metadata = json.load(f)
|
||||
else:
|
||||
print(f"no metadata / メタデータファイルがありません: {args.in_json}")
|
||||
return
|
||||
|
||||
# tokenizerを読み込む
|
||||
print("prepare tokenizer")
|
||||
if args.v2:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(V2_STABLE_DIFFUSION_PATH, subfolder="tokenizer")
|
||||
else:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
|
||||
|
||||
if args.max_token_length is not None:
|
||||
print(f"update token length: {args.max_token_length}")
|
||||
|
||||
# datasetを用意する
|
||||
print("prepare dataset")
|
||||
train_dataset = FineTuningDataset(metadata, args.train_data_dir, args.train_batch_size,
|
||||
tokenizer, args.max_token_length, args.shuffle_caption, args.dataset_repeats, args.debug_dataset)
|
||||
|
||||
print(f"Total dataset length / データセットの長さ: {len(train_dataset)}")
|
||||
print(f"Total images / 画像数: {train_dataset.images_count}")
|
||||
if args.debug_dataset:
|
||||
train_dataset.show_buckets()
|
||||
i = 0
|
||||
for example in train_dataset:
|
||||
print(f"image: {example['image_keys']}")
|
||||
print(f"captions: {example['captions']}")
|
||||
print(f"latents: {example['latents'].shape}")
|
||||
print(f"input_ids: {example['input_ids'].shape}")
|
||||
print(example['input_ids'])
|
||||
i += 1
|
||||
if i >= 8:
|
||||
break
|
||||
return
|
||||
|
||||
# acceleratorを準備する
|
||||
print("prepare accelerator")
|
||||
if args.logging_dir is None:
|
||||
log_with = None
|
||||
logging_dir = None
|
||||
else:
|
||||
log_with = "tensorboard"
|
||||
logging_dir = args.logging_dir + "/" + time.strftime('%Y%m%d%H%M%S', time.localtime())
|
||||
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps,
|
||||
mixed_precision=args.mixed_precision, log_with=log_with, logging_dir=logging_dir)
|
||||
|
||||
# mixed precisionに対応した型を用意しておき適宜castする
|
||||
weight_dtype = torch.float32
|
||||
if args.mixed_precision == "fp16":
|
||||
weight_dtype = torch.float16
|
||||
elif args.mixed_precision == "bf16":
|
||||
weight_dtype = torch.bfloat16
|
||||
|
||||
save_dtype = None
|
||||
if args.save_precision == "fp16":
|
||||
save_dtype = torch.float16
|
||||
elif args.save_precision == "bf16":
|
||||
save_dtype = torch.bfloat16
|
||||
elif args.save_precision == "float":
|
||||
save_dtype = torch.float32
|
||||
|
||||
# モデルを読み込む
|
||||
if use_stable_diffusion_format:
|
||||
print("load StableDiffusion checkpoint")
|
||||
text_encoder, _, unet = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(
|
||||
args.v2, args.pretrained_model_name_or_path)
|
||||
else:
|
||||
print("load Diffusers pretrained models")
|
||||
pipe = StableDiffusionPipeline.from_pretrained(args.pretrained_model_name_or_path, tokenizer=None, safety_checker=None)
|
||||
# , torch_dtype=weight_dtype) ここでtorch_dtypeを指定すると学習時にエラーになる
|
||||
text_encoder = pipe.text_encoder
|
||||
unet = pipe.unet
|
||||
del pipe
|
||||
|
||||
# モデルに xformers とか memory efficient attention を組み込む
|
||||
replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||||
|
||||
if not fine_tuning:
|
||||
# Hypernetwork
|
||||
print("import hypernetwork module:", args.hypernetwork_module)
|
||||
hyp_module = importlib.import_module(args.hypernetwork_module)
|
||||
|
||||
hypernetwork = hyp_module.Hypernetwork()
|
||||
|
||||
if args.hypernetwork_weights is not None:
|
||||
print("load hypernetwork weights from:", args.hypernetwork_weights)
|
||||
hyp_sd = torch.load(args.hypernetwork_weights, map_location='cpu')
|
||||
success = hypernetwork.load_from_state_dict(hyp_sd)
|
||||
assert success, "hypernetwork weights loading failed."
|
||||
|
||||
print("apply hypernetwork")
|
||||
hypernetwork.apply_to_diffusers(None, text_encoder, unet)
|
||||
|
||||
# 学習を準備する:モデルを適切な状態にする
|
||||
training_models = []
|
||||
if fine_tuning:
|
||||
if args.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
training_models.append(unet)
|
||||
|
||||
if args.train_text_encoder:
|
||||
print("enable text encoder training")
|
||||
if args.gradient_checkpointing:
|
||||
text_encoder.gradient_checkpointing_enable()
|
||||
training_models.append(text_encoder)
|
||||
else:
|
||||
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
||||
text_encoder.requires_grad_(False) # text encoderは学習しない
|
||||
text_encoder.eval()
|
||||
else:
|
||||
unet.to(accelerator.device) # , dtype=weight_dtype) # dtypeを指定すると学習できない
|
||||
unet.requires_grad_(False)
|
||||
unet.eval()
|
||||
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
||||
text_encoder.requires_grad_(False)
|
||||
text_encoder.eval()
|
||||
training_models.append(hypernetwork)
|
||||
|
||||
for m in training_models:
|
||||
m.requires_grad_(True)
|
||||
params = []
|
||||
for m in training_models:
|
||||
params.extend(m.parameters())
|
||||
params_to_optimize = params
|
||||
|
||||
# 学習に必要なクラスを準備する
|
||||
print("prepare optimizer, data loader etc.")
|
||||
|
||||
# 8-bit Adamを使う
|
||||
if args.use_8bit_adam:
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
except ImportError:
|
||||
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
|
||||
print("use 8-bit Adam optimizer")
|
||||
optimizer_class = bnb.optim.AdamW8bit
|
||||
else:
|
||||
optimizer_class = torch.optim.AdamW
|
||||
|
||||
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
|
||||
optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate)
|
||||
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers)
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = diffusers.optimization.get_scheduler(
|
||||
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
|
||||
|
||||
# acceleratorがなんかよろしくやってくれるらしい
|
||||
if fine_tuning:
|
||||
if args.train_text_encoder:
|
||||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler)
|
||||
else:
|
||||
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
|
||||
else:
|
||||
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler)
|
||||
|
||||
# resumeする
|
||||
if args.resume is not None:
|
||||
print(f"resume training from state: {args.resume}")
|
||||
accelerator.load_state(args.resume)
|
||||
|
||||
# epoch数を計算する
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
|
||||
# 学習する
|
||||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||||
print("running training / 学習開始")
|
||||
print(f" num examples / サンプル数: {train_dataset.images_count}")
|
||||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||||
print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}")
|
||||
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||||
global_step = 0
|
||||
|
||||
# v4で更新:clip_sample=Falseに
|
||||
# Diffusersのtrain_dreambooth.pyがconfigから持ってくるように変更されたので、clip_sample=Falseになるため、それに合わせる
|
||||
# 既存の1.4/1.5/2.0はすべてschdulerのconfigは(クラス名を除いて)同じ
|
||||
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
||||
num_train_timesteps=1000, clip_sample=False)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("finetuning" if fine_tuning else "hypernetwork")
|
||||
|
||||
# 以下 train_dreambooth.py からほぼコピペ
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
for m in training_models:
|
||||
m.train()
|
||||
|
||||
loss_total = 0
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
with accelerator.accumulate(training_models[0]): # 複数モデルに対応していない模様だがとりあえずこうしておく
|
||||
latents = batch["latents"].to(accelerator.device)
|
||||
latents = latents * 0.18215
|
||||
b_size = latents.shape[0]
|
||||
|
||||
# with torch.no_grad():
|
||||
with torch.set_grad_enabled(args.train_text_encoder):
|
||||
# Get the text embedding for conditioning
|
||||
input_ids = batch["input_ids"].to(accelerator.device)
|
||||
input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77
|
||||
|
||||
if args.clip_skip is None:
|
||||
encoder_hidden_states = text_encoder(input_ids)[0]
|
||||
else:
|
||||
enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
|
||||
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
|
||||
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
|
||||
|
||||
# bs*3, 77, 768 or 1024
|
||||
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
|
||||
|
||||
if args.max_token_length is not None:
|
||||
if args.v2:
|
||||
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
|
||||
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
|
||||
for i in range(1, args.max_token_length, tokenizer.model_max_length):
|
||||
chunk = encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2] # <BOS> の後から 最後の前まで
|
||||
if i > 0:
|
||||
for j in range(len(chunk)):
|
||||
if input_ids[j, 1] == tokenizer.eos_token: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
|
||||
chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
|
||||
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
|
||||
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
|
||||
encoder_hidden_states = torch.cat(states_list, dim=1)
|
||||
else:
|
||||
# v1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
|
||||
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
|
||||
for i in range(1, args.max_token_length, tokenizer.model_max_length):
|
||||
states_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
|
||||
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS>
|
||||
encoder_hidden_states = torch.cat(states_list, dim=1)
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise = torch.randn_like(latents, device=latents.device)
|
||||
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||||
timesteps = timesteps.long()
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Predict the noise residual
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
if args.v_parameterization:
|
||||
# v-parameterization training
|
||||
|
||||
# 11/29現在v predictionのコードがDiffusersにcommitされたがリリースされていないので独自コードを使う
|
||||
# 実装の中身は同じ模様
|
||||
|
||||
# こうしたい:
|
||||
# target = noise_scheduler.get_v(latents, noise, timesteps)
|
||||
|
||||
# StabilityAiのddpm.pyのコード:
|
||||
# elif self.parameterization == "v":
|
||||
# target = self.get_v(x_start, noise, t)
|
||||
# ...
|
||||
# def get_v(self, x, noise, t):
|
||||
# return (
|
||||
# extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
|
||||
# extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
||||
# )
|
||||
|
||||
# scheduling_ddim.pyのコード:
|
||||
# elif self.config.prediction_type == "v_prediction":
|
||||
# pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
||||
# # predict V
|
||||
# model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
||||
|
||||
# これでいいかな?:
|
||||
alpha_prod_t = noise_scheduler.alphas_cumprod[timesteps]
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
alpha_prod_t = torch.reshape(alpha_prod_t, (len(alpha_prod_t), 1, 1, 1)) # broadcastされないらしいのでreshape
|
||||
beta_prod_t = torch.reshape(beta_prod_t, (len(beta_prod_t), 1, 1, 1))
|
||||
target = (alpha_prod_t ** 0.5) * noise - (beta_prod_t ** 0.5) * latents
|
||||
else:
|
||||
target = noise
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
||||
|
||||
accelerator.backward(loss)
|
||||
if accelerator.sync_gradients:
|
||||
params_to_clip = []
|
||||
for m in training_models:
|
||||
params_to_clip.extend(m.parameters())
|
||||
accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||||
if accelerator.sync_gradients:
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
|
||||
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / (step+1)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
break
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = {"epoch_loss": loss_total / len(train_dataloader)}
|
||||
accelerator.log(logs, step=epoch+1)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
if args.save_every_n_epochs is not None:
|
||||
if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs:
|
||||
print("saving checkpoint.")
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1))
|
||||
|
||||
if fine_tuning:
|
||||
if use_stable_diffusion_format:
|
||||
fine_tuning_utils.save_stable_diffusion_checkpoint(
|
||||
args.v2, ckpt_file, accelerator.unwrap_model(text_encoder), accelerator.unwrap_model(unet),
|
||||
args.pretrained_model_name_or_path, epoch + 1, global_step, save_dtype)
|
||||
else:
|
||||
out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(epoch + 1))
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
fine_tuning_utils.save_diffusers_checkpoint(args.v2, out_dir, accelerator.unwrap_model(text_encoder),
|
||||
accelerator.unwrap_model(unet), args.pretrained_model_name_or_path, save_dtype)
|
||||
else:
|
||||
save_hypernetwork(ckpt_file, accelerator.unwrap_model(hypernetwork))
|
||||
|
||||
if args.save_state:
|
||||
print("saving state.")
|
||||
accelerator.save_state(os.path.join(args.output_dir, EPOCH_STATE_NAME.format(epoch + 1)))
|
||||
|
||||
is_main_process = accelerator.is_main_process
|
||||
if is_main_process:
|
||||
if fine_tuning:
|
||||
unet = accelerator.unwrap_model(unet)
|
||||
text_encoder = accelerator.unwrap_model(text_encoder)
|
||||
else:
|
||||
hypernetwork = accelerator.unwrap_model(hypernetwork)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
if args.save_state:
|
||||
print("saving last state.")
|
||||
accelerator.save_state(os.path.join(args.output_dir, LAST_STATE_NAME))
|
||||
|
||||
del accelerator # この後メモリを使うのでこれは消す
|
||||
|
||||
if is_main_process:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
if fine_tuning:
|
||||
if use_stable_diffusion_format:
|
||||
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
|
||||
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
|
||||
fine_tuning_utils.save_stable_diffusion_checkpoint(
|
||||
args.v2, ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step, save_dtype)
|
||||
else:
|
||||
# Create the pipeline using using the trained modules and save it.
|
||||
print(f"save trained model as Diffusers to {args.output_dir}")
|
||||
out_dir = os.path.join(args.output_dir, LAST_DIFFUSERS_DIR_NAME)
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
fine_tuning_utils.save_diffusers_checkpoint(args.v2, out_dir, text_encoder, unet,
|
||||
args.pretrained_model_name_or_path, save_dtype)
|
||||
else:
|
||||
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
|
||||
print(f"save trained model to {ckpt_file}")
|
||||
save_hypernetwork(ckpt_file, hypernetwork)
|
||||
|
||||
print("model saved.")
|
||||
|
||||
|
||||
# region モジュール入れ替え部
|
||||
"""
|
||||
高速化のためのモジュール入れ替え
|
||||
"""
|
||||
|
||||
# FlashAttentionを使うCrossAttention
|
||||
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
|
||||
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
|
||||
|
||||
# constants
|
||||
|
||||
EPSILON = 1e-6
|
||||
|
||||
# helper functions
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
# flash attention forwards and backwards
|
||||
|
||||
# https://arxiv.org/abs/2205.14135
|
||||
|
||||
|
||||
class FlashAttentionFunction(torch.autograd.function.Function):
|
||||
@ staticmethod
|
||||
@ torch.no_grad()
|
||||
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
||||
""" Algorithm 2 in the paper """
|
||||
|
||||
device = q.device
|
||||
dtype = q.dtype
|
||||
max_neg_value = -torch.finfo(q.dtype).max
|
||||
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
||||
|
||||
o = torch.zeros_like(q)
|
||||
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
|
||||
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
|
||||
|
||||
scale = (q.shape[-1] ** -0.5)
|
||||
|
||||
if not exists(mask):
|
||||
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
||||
else:
|
||||
mask = rearrange(mask, 'b n -> b 1 1 n')
|
||||
mask = mask.split(q_bucket_size, dim=-1)
|
||||
|
||||
row_splits = zip(
|
||||
q.split(q_bucket_size, dim=-2),
|
||||
o.split(q_bucket_size, dim=-2),
|
||||
mask,
|
||||
all_row_sums.split(q_bucket_size, dim=-2),
|
||||
all_row_maxes.split(q_bucket_size, dim=-2),
|
||||
)
|
||||
|
||||
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
||||
q_start_index = ind * q_bucket_size - qk_len_diff
|
||||
|
||||
col_splits = zip(
|
||||
k.split(k_bucket_size, dim=-2),
|
||||
v.split(k_bucket_size, dim=-2),
|
||||
)
|
||||
|
||||
for k_ind, (kc, vc) in enumerate(col_splits):
|
||||
k_start_index = k_ind * k_bucket_size
|
||||
|
||||
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
||||
|
||||
if exists(row_mask):
|
||||
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
||||
|
||||
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
||||
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
|
||||
device=device).triu(q_start_index - k_start_index + 1)
|
||||
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
||||
|
||||
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
||||
attn_weights -= block_row_maxes
|
||||
exp_weights = torch.exp(attn_weights)
|
||||
|
||||
if exists(row_mask):
|
||||
exp_weights.masked_fill_(~row_mask, 0.)
|
||||
|
||||
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
|
||||
|
||||
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
||||
|
||||
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
|
||||
|
||||
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
||||
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
||||
|
||||
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
|
||||
|
||||
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
|
||||
|
||||
row_maxes.copy_(new_row_maxes)
|
||||
row_sums.copy_(new_row_sums)
|
||||
|
||||
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
||||
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
|
||||
|
||||
return o
|
||||
|
||||
@ staticmethod
|
||||
@ torch.no_grad()
|
||||
def backward(ctx, do):
|
||||
""" Algorithm 4 in the paper """
|
||||
|
||||
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
||||
q, k, v, o, l, m = ctx.saved_tensors
|
||||
|
||||
device = q.device
|
||||
|
||||
max_neg_value = -torch.finfo(q.dtype).max
|
||||
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
||||
|
||||
dq = torch.zeros_like(q)
|
||||
dk = torch.zeros_like(k)
|
||||
dv = torch.zeros_like(v)
|
||||
|
||||
row_splits = zip(
|
||||
q.split(q_bucket_size, dim=-2),
|
||||
o.split(q_bucket_size, dim=-2),
|
||||
do.split(q_bucket_size, dim=-2),
|
||||
mask,
|
||||
l.split(q_bucket_size, dim=-2),
|
||||
m.split(q_bucket_size, dim=-2),
|
||||
dq.split(q_bucket_size, dim=-2)
|
||||
)
|
||||
|
||||
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
|
||||
q_start_index = ind * q_bucket_size - qk_len_diff
|
||||
|
||||
col_splits = zip(
|
||||
k.split(k_bucket_size, dim=-2),
|
||||
v.split(k_bucket_size, dim=-2),
|
||||
dk.split(k_bucket_size, dim=-2),
|
||||
dv.split(k_bucket_size, dim=-2),
|
||||
)
|
||||
|
||||
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
||||
k_start_index = k_ind * k_bucket_size
|
||||
|
||||
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
||||
|
||||
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
||||
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
|
||||
device=device).triu(q_start_index - k_start_index + 1)
|
||||
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
||||
|
||||
exp_attn_weights = torch.exp(attn_weights - mc)
|
||||
|
||||
if exists(row_mask):
|
||||
exp_attn_weights.masked_fill_(~row_mask, 0.)
|
||||
|
||||
p = exp_attn_weights / lc
|
||||
|
||||
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
|
||||
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
|
||||
|
||||
D = (doc * oc).sum(dim=-1, keepdims=True)
|
||||
ds = p * scale * (dp - D)
|
||||
|
||||
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
|
||||
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
|
||||
|
||||
dqc.add_(dq_chunk)
|
||||
dkc.add_(dk_chunk)
|
||||
dvc.add_(dv_chunk)
|
||||
|
||||
return dq, dk, dv, None, None, None, None
|
||||
|
||||
|
||||
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
|
||||
if mem_eff_attn:
|
||||
replace_unet_cross_attn_to_memory_efficient()
|
||||
elif xformers:
|
||||
replace_unet_cross_attn_to_xformers()
|
||||
|
||||
|
||||
def replace_unet_cross_attn_to_memory_efficient():
|
||||
print("Replace CrossAttention.forward to use FlashAttention")
|
||||
flash_func = FlashAttentionFunction
|
||||
|
||||
def forward_flash_attn(self, x, context=None, mask=None):
|
||||
q_bucket_size = 512
|
||||
k_bucket_size = 1024
|
||||
|
||||
h = self.heads
|
||||
q = self.to_q(x)
|
||||
|
||||
context = context if context is not None else x
|
||||
context = context.to(x.dtype)
|
||||
|
||||
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
|
||||
context_k, context_v = self.hypernetwork.forward(x, context)
|
||||
context_k = context_k.to(x.dtype)
|
||||
context_v = context_v.to(x.dtype)
|
||||
else:
|
||||
context_k = context
|
||||
context_v = context
|
||||
|
||||
k = self.to_k(context_k)
|
||||
v = self.to_v(context_v)
|
||||
del context, x
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
||||
|
||||
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
|
||||
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
# diffusers 0.6.0
|
||||
if type(self.to_out) is torch.nn.Sequential:
|
||||
return self.to_out(out)
|
||||
|
||||
# diffusers 0.7.0~ わざわざ変えるなよ (;´Д`)
|
||||
out = self.to_out[0](out)
|
||||
out = self.to_out[1](out)
|
||||
return out
|
||||
|
||||
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
|
||||
|
||||
|
||||
def replace_unet_cross_attn_to_xformers():
|
||||
print("Replace CrossAttention.forward to use xformers")
|
||||
try:
|
||||
import xformers.ops
|
||||
except ImportError:
|
||||
raise ImportError("No xformers / xformersがインストールされていないようです")
|
||||
|
||||
def forward_xformers(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
q_in = self.to_q(x)
|
||||
|
||||
context = default(context, x)
|
||||
context = context.to(x.dtype)
|
||||
|
||||
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
|
||||
context_k, context_v = self.hypernetwork.forward(x, context)
|
||||
context_k = context_k.to(x.dtype)
|
||||
context_v = context_v.to(x.dtype)
|
||||
else:
|
||||
context_k = context
|
||||
context_v = context
|
||||
|
||||
k_in = self.to_k(context_k)
|
||||
v_in = self.to_v(context_v)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
|
||||
del q_in, k_in, v_in
|
||||
|
||||
q = q.contiguous()
|
||||
k = k.contiguous()
|
||||
v = v.contiguous()
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
|
||||
|
||||
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
|
||||
|
||||
# diffusers 0.6.0
|
||||
if type(self.to_out) is torch.nn.Sequential:
|
||||
return self.to_out(out)
|
||||
|
||||
# diffusers 0.7.0~
|
||||
out = self.to_out[0](out)
|
||||
out = self.to_out[1](out)
|
||||
return out
|
||||
|
||||
diffusers.models.attention.CrossAttention.forward = forward_xformers
|
||||
# endregion
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# torch.cuda.set_per_process_memory_fraction(0.48)
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--v2", action='store_true',
|
||||
help='load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む')
|
||||
parser.add_argument("--v_parameterization", action='store_true',
|
||||
help='enable v-parameterization training / v-parameterization学習を有効にする')
|
||||
parser.add_argument("--pretrained_model_name_or_path", type=str, default=None,
|
||||
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル")
|
||||
parser.add_argument("--in_json", type=str, default=None, help="metadata file to input / 読みこむメタデータファイル")
|
||||
parser.add_argument("--shuffle_caption", action="store_true",
|
||||
help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする")
|
||||
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("--dataset_repeats", type=int, default=None, help="num times to repeat dataset / 学習にデータセットを繰り返す回数")
|
||||
parser.add_argument("--output_dir", type=str, default=None,
|
||||
help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)")
|
||||
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
|
||||
parser.add_argument("--hypernetwork_module", type=str, default=None,
|
||||
help='train hypernetwork instead of fine tuning, module to use / fine tuningの代わりにHypernetworkの学習をする場合、そのモジュール')
|
||||
parser.add_argument("--hypernetwork_weights", type=str, default=None,
|
||||
help='hypernetwork weights to initialize for additional training / Hypernetworkの学習時に読み込む重み(Hypernetworkの追加学習)')
|
||||
parser.add_argument("--save_every_n_epochs", type=int, default=None,
|
||||
help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する")
|
||||
parser.add_argument("--save_state", action="store_true",
|
||||
help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する")
|
||||
parser.add_argument("--resume", type=str, default=None,
|
||||
help="saved state to resume training / 学習再開するモデルのstate")
|
||||
parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225],
|
||||
help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)")
|
||||
parser.add_argument("--train_batch_size", type=int, default=1,
|
||||
help="batch size for training / 学習時のバッチサイズ")
|
||||
parser.add_argument("--use_8bit_adam", action="store_true",
|
||||
help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)")
|
||||
parser.add_argument("--mem_eff_attn", action="store_true",
|
||||
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う")
|
||||
parser.add_argument("--xformers", action="store_true",
|
||||
help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
|
||||
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
|
||||
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
|
||||
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
|
||||
parser.add_argument("--gradient_checkpointing", action="store_true",
|
||||
help="enable gradient checkpointing / grandient checkpointingを有効にする")
|
||||
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数")
|
||||
parser.add_argument("--mixed_precision", type=str, default="no",
|
||||
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
|
||||
parser.add_argument("--save_precision", type=str, default=None,
|
||||
choices=[None, "float", "fp16", "bf16"], help="precision in saving (available in StableDiffusion checkpoint) / 保存時に精度を変更して保存する(StableDiffusion形式での保存時のみ有効)")
|
||||
parser.add_argument("--clip_skip", type=int, default=None,
|
||||
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)")
|
||||
parser.add_argument("--debug_dataset", action="store_true",
|
||||
help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)")
|
||||
parser.add_argument("--logging_dir", type=str, default=None,
|
||||
help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する")
|
||||
parser.add_argument("--lr_scheduler", type=str, default="constant",
|
||||
help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup")
|
||||
parser.add_argument("--lr_warmup_steps", type=int, default=0,
|
||||
help="Number of steps for the warmup in the lr scheduler (default is 0) / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)")
|
||||
|
||||
args = parser.parse_args()
|
||||
train(args)
|
@ -1,96 +0,0 @@
|
||||
# NAI compatible
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
def __init__(self, dim, multiplier=1.0):
|
||||
super().__init__()
|
||||
|
||||
linear1 = torch.nn.Linear(dim, dim * 2)
|
||||
linear2 = torch.nn.Linear(dim * 2, dim)
|
||||
linear1.weight.data.normal_(mean=0.0, std=0.01)
|
||||
linear1.bias.data.zero_()
|
||||
linear2.weight.data.normal_(mean=0.0, std=0.01)
|
||||
linear2.bias.data.zero_()
|
||||
linears = [linear1, linear2]
|
||||
|
||||
self.linear = torch.nn.Sequential(*linears)
|
||||
self.multiplier = multiplier
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.linear(x) * self.multiplier
|
||||
|
||||
|
||||
class Hypernetwork(torch.nn.Module):
|
||||
enable_sizes = [320, 640, 768, 1280]
|
||||
# return self.modules[Hypernetwork.enable_sizes.index(size)]
|
||||
|
||||
def __init__(self, multiplier=1.0) -> None:
|
||||
super().__init__()
|
||||
self.modules = []
|
||||
for size in Hypernetwork.enable_sizes:
|
||||
self.modules.append((HypernetworkModule(size, multiplier), HypernetworkModule(size, multiplier)))
|
||||
self.register_module(f"{size}_0", self.modules[-1][0])
|
||||
self.register_module(f"{size}_1", self.modules[-1][1])
|
||||
|
||||
def apply_to_stable_diffusion(self, text_encoder, vae, unet):
|
||||
blocks = unet.input_blocks + [unet.middle_block] + unet.output_blocks
|
||||
for block in blocks:
|
||||
for subblk in block:
|
||||
if 'SpatialTransformer' in str(type(subblk)):
|
||||
for tf_block in subblk.transformer_blocks:
|
||||
for attn in [tf_block.attn1, tf_block.attn2]:
|
||||
size = attn.context_dim
|
||||
if size in Hypernetwork.enable_sizes:
|
||||
attn.hypernetwork = self
|
||||
else:
|
||||
attn.hypernetwork = None
|
||||
|
||||
def apply_to_diffusers(self, text_encoder, vae, unet):
|
||||
blocks = unet.down_blocks + [unet.mid_block] + unet.up_blocks
|
||||
for block in blocks:
|
||||
if hasattr(block, 'attentions'):
|
||||
for subblk in block.attentions:
|
||||
if 'SpatialTransformer' in str(type(subblk)) or 'Transformer2DModel' in str(type(subblk)): # 0.6.0 and 0.7~
|
||||
for tf_block in subblk.transformer_blocks:
|
||||
for attn in [tf_block.attn1, tf_block.attn2]:
|
||||
size = attn.to_k.in_features
|
||||
if size in Hypernetwork.enable_sizes:
|
||||
attn.hypernetwork = self
|
||||
else:
|
||||
attn.hypernetwork = None
|
||||
return True # TODO error checking
|
||||
|
||||
def forward(self, x, context):
|
||||
size = context.shape[-1]
|
||||
assert size in Hypernetwork.enable_sizes
|
||||
module = self.modules[Hypernetwork.enable_sizes.index(size)]
|
||||
return module[0].forward(context), module[1].forward(context)
|
||||
|
||||
def load_from_state_dict(self, state_dict):
|
||||
# old ver to new ver
|
||||
changes = {
|
||||
'linear1.bias': 'linear.0.bias',
|
||||
'linear1.weight': 'linear.0.weight',
|
||||
'linear2.bias': 'linear.1.bias',
|
||||
'linear2.weight': 'linear.1.weight',
|
||||
}
|
||||
for key_from, key_to in changes.items():
|
||||
if key_from in state_dict:
|
||||
state_dict[key_to] = state_dict[key_from]
|
||||
del state_dict[key_from]
|
||||
|
||||
for size, sd in state_dict.items():
|
||||
if type(size) == int:
|
||||
self.modules[Hypernetwork.enable_sizes.index(size)][0].load_state_dict(sd[0], strict=True)
|
||||
self.modules[Hypernetwork.enable_sizes.index(size)][1].load_state_dict(sd[1], strict=True)
|
||||
return True
|
||||
|
||||
def get_state_dict(self):
|
||||
state_dict = {}
|
||||
for i, size in enumerate(Hypernetwork.enable_sizes):
|
||||
sd0 = self.modules[i][0].state_dict()
|
||||
sd1 = self.modules[i][1].state_dict()
|
||||
state_dict[size] = [sd0, sd1]
|
||||
return state_dict
|
@ -1,97 +0,0 @@
|
||||
# このスクリプトのライセンスは、Apache License 2.0とします
|
||||
# (c) 2022 Kohya S. @kohya_ss
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import json
|
||||
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
from models.blip import blip_decoder
|
||||
# from Salesforce_BLIP.models.blip import blip_decoder
|
||||
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
|
||||
def main(args):
|
||||
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png"))
|
||||
print(f"found {len(image_paths)} images.")
|
||||
|
||||
print(f"loading BLIP caption: {args.caption_weights}")
|
||||
image_size = 384
|
||||
model = blip_decoder(pretrained=args.caption_weights, image_size=image_size, vit='large')
|
||||
model.eval()
|
||||
model = model.to(DEVICE)
|
||||
print("BLIP loaded")
|
||||
|
||||
# 正方形でいいのか? という気がするがソースがそうなので
|
||||
transform = transforms.Compose([
|
||||
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||||
])
|
||||
|
||||
# captioningする
|
||||
def run_batch(path_imgs):
|
||||
imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE)
|
||||
|
||||
with torch.no_grad():
|
||||
if args.beam_search:
|
||||
captions = model.generate(imgs, sample=False, num_beams=args.num_beams,
|
||||
max_length=args.max_length, min_length=args.min_length)
|
||||
else:
|
||||
captions = model.generate(imgs, sample=True, top_p=args.top_p, max_length=args.max_length, min_length=args.min_length)
|
||||
|
||||
for (image_path, _), caption in zip(path_imgs, captions):
|
||||
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding='utf-8') as f:
|
||||
f.write(caption + "\n")
|
||||
if args.debug:
|
||||
print(image_path, caption)
|
||||
|
||||
b_imgs = []
|
||||
for image_path in tqdm(image_paths):
|
||||
raw_image = Image.open(image_path)
|
||||
if raw_image.mode != "RGB":
|
||||
print(f"convert image mode {raw_image.mode} to RGB: {image_path}")
|
||||
raw_image = raw_image.convert("RGB")
|
||||
|
||||
image = transform(raw_image)
|
||||
b_imgs.append((image_path, image))
|
||||
if len(b_imgs) >= args.batch_size:
|
||||
run_batch(b_imgs)
|
||||
b_imgs.clear()
|
||||
if len(b_imgs) > 0:
|
||||
run_batch(b_imgs)
|
||||
|
||||
print("done!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("caption_weights", type=str,
|
||||
help="BLIP caption weights (model_large_caption.pth) / BLIP captionの重みファイル(model_large_caption.pth)")
|
||||
parser.add_argument("--caption_extention", type=str, default=None,
|
||||
help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)")
|
||||
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子")
|
||||
parser.add_argument("--beam_search", action="store_true",
|
||||
help="use beam search (default Nucleus sampling) / beam searchを使う(このオプション未指定時はNucleus sampling)")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
|
||||
parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数(多いと精度が上がるが時間がかかる)")
|
||||
parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p")
|
||||
parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長")
|
||||
parser.add_argument("--min_length", type=int, default=5, help="min length of caption / captionの最小長")
|
||||
parser.add_argument("--debug", action="store_true", help="debug mode")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# スペルミスしていたオプションを復元する
|
||||
if args.caption_extention is not None:
|
||||
args.caption_extension = args.caption_extention
|
||||
|
||||
main(args)
|
@ -1,68 +0,0 @@
|
||||
# このスクリプトのライセンスは、Apache License 2.0とします
|
||||
# (c) 2022 Kohya S. @kohya_ss
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import json
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def main(args):
|
||||
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
|
||||
print(f"found {len(image_paths)} images.")
|
||||
|
||||
if args.in_json is not None:
|
||||
print(f"loading existing metadata: {args.in_json}")
|
||||
with open(args.in_json, "rt", encoding='utf-8') as f:
|
||||
metadata = json.load(f)
|
||||
print("captions for existing images will be overwritten / 既存の画像のキャプションは上書きされます")
|
||||
else:
|
||||
print("new metadata will be created / 新しいメタデータファイルが作成されます")
|
||||
metadata = {}
|
||||
|
||||
print("merge caption texts to metadata json.")
|
||||
for image_path in tqdm(image_paths):
|
||||
caption_path = os.path.splitext(image_path)[0] + args.caption_extension
|
||||
with open(caption_path, "rt", encoding='utf-8') as f:
|
||||
caption = f.readlines()[0].strip()
|
||||
|
||||
image_key = os.path.splitext(os.path.basename(image_path))[0]
|
||||
if image_key not in metadata:
|
||||
# if args.verify_caption:
|
||||
# print(f"image not in metadata / メタデータに画像がありません: {image_path}")
|
||||
# return
|
||||
metadata[image_key] = {}
|
||||
# elif args.verify_caption and 'caption' not in metadata[image_key]:
|
||||
# print(f"no caption in metadata / メタデータにcaptionがありません: {image_path}")
|
||||
# return
|
||||
|
||||
metadata[image_key]['caption'] = caption
|
||||
if args.debug:
|
||||
print(image_key, caption)
|
||||
|
||||
# metadataを書き出して終わり
|
||||
print(f"writing metadata: {args.out_json}")
|
||||
with open(args.out_json, "wt", encoding='utf-8') as f:
|
||||
json.dump(metadata, f, indent=2)
|
||||
print("done!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
|
||||
parser.add_argument("--in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
|
||||
parser.add_argument("--caption_extention", type=str, default=None,
|
||||
help="extension of caption file (for backward compatibility) / 読み込むキャプションファイルの拡張子(スペルミスしていたのを残してあります)")
|
||||
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 読み込むキャプションファイルの拡張子")
|
||||
parser.add_argument("--debug", action="store_true", help="debug mode")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# スペルミスしていたオプションを復元する
|
||||
if args.caption_extention is not None:
|
||||
args.caption_extension = args.caption_extention
|
||||
|
||||
main(args)
|
@ -1,61 +0,0 @@
|
||||
# このスクリプトのライセンスは、Apache License 2.0とします
|
||||
# (c) 2022 Kohya S. @kohya_ss
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import json
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def main(args):
|
||||
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
|
||||
print(f"found {len(image_paths)} images.")
|
||||
|
||||
if args.in_json is not None:
|
||||
print(f"loading existing metadata: {args.in_json}")
|
||||
with open(args.in_json, "rt", encoding='utf-8') as f:
|
||||
metadata = json.load(f)
|
||||
print("tags data for existing images will be overwritten / 既存の画像のタグは上書きされます")
|
||||
else:
|
||||
print("new metadata will be created / 新しいメタデータファイルが作成されます")
|
||||
metadata = {}
|
||||
|
||||
print("merge tags to metadata json.")
|
||||
for image_path in tqdm(image_paths):
|
||||
tags_path = os.path.splitext(image_path)[0] + '.txt'
|
||||
with open(tags_path, "rt", encoding='utf-8') as f:
|
||||
tags = f.readlines()[0].strip()
|
||||
|
||||
image_key = os.path.splitext(os.path.basename(image_path))[0]
|
||||
if image_key not in metadata:
|
||||
# if args.verify_caption:
|
||||
# print(f"image not in metadata / メタデータに画像がありません: {image_path}")
|
||||
# return
|
||||
metadata[image_key] = {}
|
||||
# elif args.verify_caption and 'caption' not in metadata[image_key]:
|
||||
# print(f"no caption in metadata / メタデータにcaptionがありません: {image_path}")
|
||||
# return
|
||||
|
||||
metadata[image_key]['tags'] = tags
|
||||
if args.debug:
|
||||
print(image_key, tags)
|
||||
|
||||
# metadataを書き出して終わり
|
||||
print(f"writing metadata: {args.out_json}")
|
||||
with open(args.out_json, "wt", encoding='utf-8') as f:
|
||||
json.dump(metadata, f, indent=2)
|
||||
print("done!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
|
||||
parser.add_argument("--in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
|
||||
# parser.add_argument("--verify_caption", action="store_true", help="verify caption exists / メタデータにすでにcaptionが存在することを確認する")
|
||||
parser.add_argument("--debug", action="store_true", help="debug mode")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
@ -1,175 +0,0 @@
|
||||
# このスクリプトのライセンスは、Apache License 2.0とします
|
||||
# (c) 2022 Kohya S. @kohya_ss
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import json
|
||||
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKL
|
||||
from PIL import Image
|
||||
import cv2
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
|
||||
import fine_tuning_utils
|
||||
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
IMAGE_TRANSFORMS = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.5], [0.5]),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def get_latents(vae, images, weight_dtype):
|
||||
img_tensors = [IMAGE_TRANSFORMS(image) for image in images]
|
||||
img_tensors = torch.stack(img_tensors)
|
||||
img_tensors = img_tensors.to(DEVICE, weight_dtype)
|
||||
with torch.no_grad():
|
||||
latents = vae.encode(img_tensors).latent_dist.sample().float().to("cpu").numpy()
|
||||
return latents
|
||||
|
||||
|
||||
def main(args):
|
||||
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
|
||||
print(f"found {len(image_paths)} images.")
|
||||
|
||||
if os.path.exists(args.in_json):
|
||||
print(f"loading existing metadata: {args.in_json}")
|
||||
with open(args.in_json, "rt", encoding='utf-8') as f:
|
||||
metadata = json.load(f)
|
||||
else:
|
||||
print(f"no metadata / メタデータファイルがありません: {args.in_json}")
|
||||
return
|
||||
|
||||
# モデル形式のオプション設定を確認する
|
||||
use_stable_diffusion_format = os.path.isfile(args.model_name_or_path)
|
||||
|
||||
# モデルを読み込む
|
||||
if use_stable_diffusion_format:
|
||||
print("load StableDiffusion checkpoint")
|
||||
_, vae, _ = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_name_or_path)
|
||||
else:
|
||||
print("load Diffusers pretrained models")
|
||||
vae = AutoencoderKL.from_pretrained(args.model_name_or_path, subfolder="vae")
|
||||
|
||||
weight_dtype = torch.float32
|
||||
if args.mixed_precision == "fp16":
|
||||
weight_dtype = torch.float16
|
||||
elif args.mixed_precision == "bf16":
|
||||
weight_dtype = torch.bfloat16
|
||||
|
||||
vae.eval()
|
||||
vae.to(DEVICE, dtype=weight_dtype)
|
||||
|
||||
# bucketのサイズを計算する
|
||||
max_reso = tuple([int(t) for t in args.max_resolution.split(',')])
|
||||
assert len(max_reso) == 2, f"illegal resolution (not 'width,height') / 画像サイズに誤りがあります。'幅,高さ'で指定してください: {args.max_resolution}"
|
||||
|
||||
bucket_resos, bucket_aspect_ratios = fine_tuning_utils.make_bucket_resolutions(
|
||||
max_reso, args.min_bucket_reso, args.max_bucket_reso)
|
||||
|
||||
# 画像をひとつずつ適切なbucketに割り当てながらlatentを計算する
|
||||
bucket_aspect_ratios = np.array(bucket_aspect_ratios)
|
||||
buckets_imgs = [[] for _ in range(len(bucket_resos))]
|
||||
bucket_counts = [0 for _ in range(len(bucket_resos))]
|
||||
img_ar_errors = []
|
||||
for i, image_path in enumerate(tqdm(image_paths)):
|
||||
image_key = os.path.splitext(os.path.basename(image_path))[0]
|
||||
if image_key not in metadata:
|
||||
metadata[image_key] = {}
|
||||
|
||||
image = Image.open(image_path)
|
||||
if image.mode != 'RGB':
|
||||
image = image.convert("RGB")
|
||||
|
||||
aspect_ratio = image.width / image.height
|
||||
ar_errors = bucket_aspect_ratios - aspect_ratio
|
||||
bucket_id = np.abs(ar_errors).argmin()
|
||||
reso = bucket_resos[bucket_id]
|
||||
ar_error = ar_errors[bucket_id]
|
||||
img_ar_errors.append(abs(ar_error))
|
||||
|
||||
# どのサイズにリサイズするか→トリミングする方向で
|
||||
if ar_error <= 0: # 横が長い→縦を合わせる
|
||||
scale = reso[1] / image.height
|
||||
else:
|
||||
scale = reso[0] / image.width
|
||||
|
||||
resized_size = (int(image.width * scale + .5), int(image.height * scale + .5))
|
||||
|
||||
# print(image.width, image.height, bucket_id, bucket_resos[bucket_id], ar_errors[bucket_id], resized_size,
|
||||
# bucket_resos[bucket_id][0] - resized_size[0], bucket_resos[bucket_id][1] - resized_size[1])
|
||||
|
||||
assert resized_size[0] == reso[0] or resized_size[1] == reso[
|
||||
1], f"internal error, resized size not match: {reso}, {resized_size}, {image.width}, {image.height}"
|
||||
assert resized_size[0] >= reso[0] and resized_size[1] >= reso[
|
||||
1], f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}"
|
||||
|
||||
# 画像をリサイズしてトリミングする
|
||||
# PILにinter_areaがないのでcv2で……
|
||||
image = np.array(image)
|
||||
image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA)
|
||||
if resized_size[0] > reso[0]:
|
||||
trim_size = resized_size[0] - reso[0]
|
||||
image = image[:, trim_size//2:trim_size//2 + reso[0]]
|
||||
elif resized_size[1] > reso[1]:
|
||||
trim_size = resized_size[1] - reso[1]
|
||||
image = image[trim_size//2:trim_size//2 + reso[1]]
|
||||
assert image.shape[0] == reso[1] and image.shape[1] == reso[0], f"internal error, illegal trimmed size: {image.shape}, {reso}"
|
||||
|
||||
# # debug
|
||||
# cv2.imwrite(f"r:\\test\\img_{i:05d}.jpg", image[:, :, ::-1])
|
||||
|
||||
# バッチへ追加
|
||||
buckets_imgs[bucket_id].append((image_key, reso, image))
|
||||
bucket_counts[bucket_id] += 1
|
||||
metadata[image_key]['train_resolution'] = reso
|
||||
|
||||
# バッチを推論するか判定して推論する
|
||||
is_last = i == len(image_paths) - 1
|
||||
for j in range(len(buckets_imgs)):
|
||||
bucket = buckets_imgs[j]
|
||||
if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size:
|
||||
latents = get_latents(vae, [img for _, _, img in bucket], weight_dtype)
|
||||
|
||||
for (image_key, reso, _), latent in zip(bucket, latents):
|
||||
np.savez(os.path.join(args.train_data_dir, image_key), latent)
|
||||
|
||||
bucket.clear()
|
||||
|
||||
for i, (reso, count) in enumerate(zip(bucket_resos, bucket_counts)):
|
||||
print(f"bucket {i} {reso}: {count}")
|
||||
img_ar_errors = np.array(img_ar_errors)
|
||||
print(f"mean ar error: {np.mean(img_ar_errors)}")
|
||||
|
||||
# metadataを書き出して終わり
|
||||
print(f"writing metadata: {args.out_json}")
|
||||
with open(args.out_json, "wt", encoding='utf-8') as f:
|
||||
json.dump(metadata, f, indent=2)
|
||||
print("done!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
|
||||
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
|
||||
parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル")
|
||||
parser.add_argument("--v2", action='store_true',
|
||||
help='load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む')
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
|
||||
parser.add_argument("--max_resolution", type=str, default="512,512",
|
||||
help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)")
|
||||
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
|
||||
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最小解像度")
|
||||
parser.add_argument("--mixed_precision", type=str, default="no",
|
||||
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
@ -1,6 +0,0 @@
|
||||
transformers>=4.21.0
|
||||
ftfy
|
||||
albumentations
|
||||
opencv-python
|
||||
einops
|
||||
pytorch_lightning
|
@ -1,107 +0,0 @@
|
||||
# このスクリプトのライセンスは、Apache License 2.0とします
|
||||
# (c) 2022 Kohya S. @kohya_ss
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import glob
|
||||
import os
|
||||
import json
|
||||
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from tensorflow.keras.models import load_model
|
||||
from Utils import dbimutils
|
||||
|
||||
|
||||
# from wd14 tagger
|
||||
IMAGE_SIZE = 448
|
||||
|
||||
|
||||
def main(args):
|
||||
image_paths = glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + \
|
||||
glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
|
||||
print(f"found {len(image_paths)} images.")
|
||||
|
||||
print("loading model and labels")
|
||||
model = load_model(args.model)
|
||||
|
||||
# label_names = pd.read_csv("2022_0000_0899_6549/selected_tags.csv")
|
||||
# 依存ライブラリを増やしたくないので自力で読むよ
|
||||
with open(args.tag_csv, "r", encoding="utf-8") as f:
|
||||
reader = csv.reader(f)
|
||||
l = [row for row in reader]
|
||||
header = l[0] # tag_id,name,category,count
|
||||
rows = l[1:]
|
||||
assert header[0] == 'tag_id' and header[1] == 'name' and header[2] == 'category', f"unexpected csv format: {header}"
|
||||
|
||||
tags = [row[1] for row in rows[1:] if row[2] == '0'] # categoryが0、つまり通常のタグのみ
|
||||
|
||||
# 推論する
|
||||
def run_batch(path_imgs):
|
||||
imgs = np.array([im for _, im in path_imgs])
|
||||
|
||||
probs = model(imgs, training=False)
|
||||
probs = probs.numpy()
|
||||
|
||||
for (image_path, _), prob in zip(path_imgs, probs):
|
||||
# 最初の4つはratingなので無視する
|
||||
# # First 4 labels are actually ratings: pick one with argmax
|
||||
# ratings_names = label_names[:4]
|
||||
# rating_index = ratings_names["probs"].argmax()
|
||||
# found_rating = ratings_names[rating_index: rating_index + 1][["name", "probs"]]
|
||||
|
||||
# それ以降はタグなのでconfidenceがthresholdより高いものを追加する
|
||||
# Everything else is tags: pick any where prediction confidence > threshold
|
||||
tag_text = ""
|
||||
for i, p in enumerate(prob[4:]): # numpyとか使うのが良いけど、まあそれほど数も多くないのでループで
|
||||
if p >= args.thresh:
|
||||
tag_text += ", " + tags[i]
|
||||
|
||||
if len(tag_text) > 0:
|
||||
tag_text = tag_text[2:] # 最初の ", " を消す
|
||||
|
||||
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding='utf-8') as f:
|
||||
f.write(tag_text + '\n')
|
||||
if args.debug:
|
||||
print(image_path, tag_text)
|
||||
|
||||
b_imgs = []
|
||||
for image_path in tqdm(image_paths):
|
||||
img = dbimutils.smart_imread(image_path)
|
||||
img = dbimutils.smart_24bit(img)
|
||||
img = dbimutils.make_square(img, IMAGE_SIZE)
|
||||
img = dbimutils.smart_resize(img, IMAGE_SIZE)
|
||||
img = img.astype(np.float32)
|
||||
b_imgs.append((image_path, img))
|
||||
|
||||
if len(b_imgs) >= args.batch_size:
|
||||
run_batch(b_imgs)
|
||||
b_imgs.clear()
|
||||
if len(b_imgs) > 0:
|
||||
run_batch(b_imgs)
|
||||
|
||||
print("done!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
||||
parser.add_argument("--model", type=str, default="networks/ViTB16_11_03_2022_07h05m53s",
|
||||
help="model path to load / 読み込むモデルファイル")
|
||||
parser.add_argument("--tag_csv", type=str, default="2022_0000_0899_6549/selected_tags.csv",
|
||||
help="csv file for tags / タグ一覧のCSVファイル")
|
||||
parser.add_argument("--thresh", type=float, default=0.35, help="threshold of confidence to add a tag / タグを追加するか判定する閾値")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
|
||||
parser.add_argument("--caption_extention", type=str, default=None,
|
||||
help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)")
|
||||
parser.add_argument("--caption_extension", type=str, default=".txt", help="extension of caption file / 出力されるキャプションファイルの拡張子")
|
||||
parser.add_argument("--debug", action="store_true", help="debug mode")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# スペルミスしていたオプションを復元する
|
||||
if args.caption_extention is not None:
|
||||
args.caption_extension = args.caption_extention
|
||||
|
||||
main(args)
|
@ -1,12 +1,12 @@
|
||||
# v1: split from train_db_fixed.py.
|
||||
# v2: support safetensors
|
||||
|
||||
import math
|
||||
import os
|
||||
import torch
|
||||
from transformers import CLIPTextModel
|
||||
from diffusers import AutoencoderKL, UNet2DConditionModel
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig
|
||||
from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
||||
|
||||
|
||||
# region checkpoint変換、読み込み、書き込み ###############################
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
# DiffUsers版StableDiffusionのモデルパラメータ
|
||||
NUM_TRAIN_TIMESTEPS = 1000
|
||||
@ -37,7 +37,7 @@ V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
||||
|
||||
|
||||
# region StableDiffusion->Diffusersの変換コード
|
||||
# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0)
|
||||
# convert_original_stable_diffusion_to_diffusers をコピーして修正している(ASL 2.0)
|
||||
|
||||
|
||||
def shave_segments(path, n_shave_prefix_segments=1):
|
||||
@ -243,21 +243,21 @@ def convert_ldm_unet_checkpoint(v2, checkpoint, config):
|
||||
# Retrieves the keys for the input blocks only
|
||||
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
||||
input_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
||||
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key]
|
||||
for layer_id in range(num_input_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the middle blocks only
|
||||
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
||||
middle_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
||||
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key]
|
||||
for layer_id in range(num_middle_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the output blocks only
|
||||
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
||||
output_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
||||
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key]
|
||||
for layer_id in range(num_output_blocks)
|
||||
}
|
||||
|
||||
@ -332,14 +332,22 @@ def convert_ldm_unet_checkpoint(v2, checkpoint, config):
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
if ["conv.weight", "conv.bias"] in output_block_list.values():
|
||||
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.weight"
|
||||
]
|
||||
# オリジナル:
|
||||
# if ["conv.weight", "conv.bias"] in output_block_list.values():
|
||||
# index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
|
||||
|
||||
# biasとweightの順番に依存しないようにする:もっといいやり方がありそうだが
|
||||
for l in output_block_list.values():
|
||||
l.sort()
|
||||
|
||||
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
||||
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.bias"
|
||||
]
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.weight"
|
||||
]
|
||||
|
||||
# Clear attentions as they have been attributed above.
|
||||
if len(attentions) == 2:
|
||||
@ -377,6 +385,9 @@ def convert_ldm_vae_checkpoint(checkpoint, config):
|
||||
for key in keys:
|
||||
if key.startswith(vae_key):
|
||||
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
||||
# if len(vae_state_dict) == 0:
|
||||
# # 渡されたcheckpointは.ckptから読み込んだcheckpointではなくvaeのstate_dict
|
||||
# vae_state_dict = checkpoint
|
||||
|
||||
new_checkpoint = {}
|
||||
|
||||
@ -617,7 +628,7 @@ def convert_ldm_clip_checkpoint_v2(checkpoint, max_length):
|
||||
|
||||
|
||||
# region Diffusers->StableDiffusion の変換コード
|
||||
# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0)
|
||||
# convert_diffusers_to_original_stable_diffusion をコピーして修正している(ASL 2.0)
|
||||
|
||||
def conv_transformer_to_linear(checkpoint):
|
||||
keys = list(checkpoint.keys())
|
||||
@ -723,8 +734,90 @@ def convert_unet_state_dict_to_sd(v2, unet_state_dict):
|
||||
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# ================#
|
||||
# VAE Conversion #
|
||||
# ================#
|
||||
|
||||
def reshape_weight_for_sd(w):
|
||||
# convert HF linear weights to SD conv2d weights
|
||||
return w.reshape(*w.shape, 1, 1)
|
||||
|
||||
|
||||
def convert_vae_state_dict(vae_state_dict):
|
||||
vae_conversion_map = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("nin_shortcut", "conv_shortcut"),
|
||||
("norm_out", "conv_norm_out"),
|
||||
("mid.attn_1.", "mid_block.attentions.0."),
|
||||
]
|
||||
|
||||
for i in range(4):
|
||||
# down_blocks have two resnets
|
||||
for j in range(2):
|
||||
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
||||
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
||||
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
||||
|
||||
if i < 3:
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
||||
sd_downsample_prefix = f"down.{i}.downsample."
|
||||
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"up.{3-i}.upsample."
|
||||
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
# up_blocks have three resnets
|
||||
# also, up blocks in hf are numbered in reverse from sd
|
||||
for j in range(3):
|
||||
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
||||
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
||||
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
||||
|
||||
# this part accounts for mid blocks in both the encoder and the decoder
|
||||
for i in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
||||
sd_mid_res_prefix = f"mid.block_{i+1}."
|
||||
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
vae_conversion_map_attn = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("norm.", "group_norm."),
|
||||
("q.", "query."),
|
||||
("k.", "key."),
|
||||
("v.", "value."),
|
||||
("proj_out.", "proj_attn."),
|
||||
]
|
||||
|
||||
mapping = {k: k for k in vae_state_dict.keys()}
|
||||
for k, v in mapping.items():
|
||||
for sd_part, hf_part in vae_conversion_map:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
for k, v in mapping.items():
|
||||
if "attentions" in k:
|
||||
for sd_part, hf_part in vae_conversion_map_attn:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
||||
weights_to_convert = ["q", "k", "v", "proj_out"]
|
||||
for k, v in new_state_dict.items():
|
||||
for weight_name in weights_to_convert:
|
||||
if f"mid.attn_1.{weight_name}.weight" in k:
|
||||
# print(f"Reshaping {k} for SD format")
|
||||
new_state_dict[k] = reshape_weight_for_sd(v)
|
||||
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# endregion
|
||||
|
||||
# region 自作のモデル読み書き
|
||||
|
||||
def is_safetensors(path):
|
||||
return os.path.splitext(path)[1].lower() == '.safetensors'
|
||||
|
||||
|
||||
def load_checkpoint_with_text_encoder_conversion(ckpt_path):
|
||||
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
|
||||
@ -734,8 +827,16 @@ def load_checkpoint_with_text_encoder_conversion(ckpt_path):
|
||||
('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.')
|
||||
]
|
||||
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
||||
state_dict = checkpoint["state_dict"]
|
||||
if is_safetensors(ckpt_path):
|
||||
checkpoint = None
|
||||
state_dict = load_file(ckpt_path, "cpu")
|
||||
else:
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
||||
if "state_dict" in checkpoint:
|
||||
state_dict = checkpoint["state_dict"]
|
||||
else:
|
||||
state_dict = checkpoint
|
||||
checkpoint = None
|
||||
|
||||
key_reps = []
|
||||
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
|
||||
@ -748,12 +849,12 @@ def load_checkpoint_with_text_encoder_conversion(ckpt_path):
|
||||
state_dict[new_key] = state_dict[key]
|
||||
del state_dict[key]
|
||||
|
||||
return checkpoint
|
||||
return checkpoint, state_dict
|
||||
|
||||
|
||||
# TODO dtype指定の動作が怪しいので確認する text_encoderを指定形式で作れるか未確認
|
||||
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, dtype=None):
|
||||
checkpoint = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||||
state_dict = checkpoint["state_dict"]
|
||||
_, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||||
if dtype is not None:
|
||||
for k, v in state_dict.items():
|
||||
if type(v) is torch.Tensor:
|
||||
@ -810,7 +911,7 @@ def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, dtype=None):
|
||||
return text_model, vae, unet
|
||||
|
||||
|
||||
def convert_text_encoder_state_dict_to_sd_v2(checkpoint):
|
||||
def convert_text_encoder_state_dict_to_sd_v2(checkpoint, make_dummy_weights=False):
|
||||
def convert_key(key):
|
||||
# position_idsの除去
|
||||
if ".position_ids" in key:
|
||||
@ -866,35 +967,66 @@ def convert_text_encoder_state_dict_to_sd_v2(checkpoint):
|
||||
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_")
|
||||
new_sd[new_key] = value
|
||||
|
||||
# 最後の層などを捏造するか
|
||||
if make_dummy_weights:
|
||||
print("make dummy weights for resblock.23, text_projection and logit scale.")
|
||||
keys = list(new_sd.keys())
|
||||
for key in keys:
|
||||
if key.startswith("transformer.resblocks.22."):
|
||||
new_sd[key.replace(".22.", ".23.")] = new_sd[key]
|
||||
|
||||
# Diffusersに含まれない重みを作っておく
|
||||
new_sd['text_projection'] = torch.ones((1024, 1024), dtype=new_sd[keys[0]].dtype, device=new_sd[keys[0]].device)
|
||||
new_sd['logit_scale'] = torch.tensor(1)
|
||||
|
||||
return new_sd
|
||||
|
||||
|
||||
def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_path, epochs, steps, save_dtype=None):
|
||||
# VAEがメモリ上にないので、もう一度VAEを含めて読み込む
|
||||
checkpoint = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||||
state_dict = checkpoint["state_dict"]
|
||||
def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_path, epochs, steps, save_dtype=None, vae=None):
|
||||
if ckpt_path is not None:
|
||||
# epoch/stepを参照する。またVAEがメモリ上にないときなど、もう一度VAEを含めて読み込む
|
||||
checkpoint, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||||
if checkpoint is None: # safetensors または state_dictのckpt
|
||||
checkpoint = {}
|
||||
strict = False
|
||||
else:
|
||||
strict = True
|
||||
if "state_dict" in state_dict:
|
||||
del state_dict["state_dict"]
|
||||
else:
|
||||
# 新しく作る
|
||||
checkpoint = {}
|
||||
state_dict = {}
|
||||
strict = False
|
||||
|
||||
def assign_new_sd(prefix, sd):
|
||||
def update_sd(prefix, sd):
|
||||
for k, v in sd.items():
|
||||
key = prefix + k
|
||||
assert key in state_dict, f"Illegal key in save SD: {key}"
|
||||
assert not strict or key in state_dict, f"Illegal key in save SD: {key}"
|
||||
if save_dtype is not None:
|
||||
v = v.detach().clone().to("cpu").to(save_dtype)
|
||||
state_dict[key] = v
|
||||
|
||||
# Convert the UNet model
|
||||
unet_state_dict = convert_unet_state_dict_to_sd(v2, unet.state_dict())
|
||||
assign_new_sd("model.diffusion_model.", unet_state_dict)
|
||||
update_sd("model.diffusion_model.", unet_state_dict)
|
||||
|
||||
# Convert the text encoder model
|
||||
if v2:
|
||||
text_enc_dict = convert_text_encoder_state_dict_to_sd_v2(text_encoder.state_dict())
|
||||
assign_new_sd("cond_stage_model.model.", text_enc_dict)
|
||||
make_dummy = ckpt_path is None # 参照元のcheckpointがない場合は最後の層を前の層から複製して作るなどダミーの重みを入れる
|
||||
text_enc_dict = convert_text_encoder_state_dict_to_sd_v2(text_encoder.state_dict(), make_dummy)
|
||||
update_sd("cond_stage_model.model.", text_enc_dict)
|
||||
else:
|
||||
text_enc_dict = text_encoder.state_dict()
|
||||
assign_new_sd("cond_stage_model.transformer.", text_enc_dict)
|
||||
update_sd("cond_stage_model.transformer.", text_enc_dict)
|
||||
|
||||
# Convert the VAE
|
||||
if vae is not None:
|
||||
vae_dict = convert_vae_state_dict(vae.state_dict())
|
||||
update_sd("first_stage_model.", vae_dict)
|
||||
|
||||
# Put together new checkpoint
|
||||
key_count = len(state_dict.keys())
|
||||
new_ckpt = {'state_dict': state_dict}
|
||||
|
||||
if 'epoch' in checkpoint:
|
||||
@ -905,14 +1037,22 @@ def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_p
|
||||
new_ckpt['epoch'] = epochs
|
||||
new_ckpt['global_step'] = steps
|
||||
|
||||
torch.save(new_ckpt, output_file)
|
||||
if is_safetensors(output_file):
|
||||
# TODO Tensor以外のdictの値を削除したほうがいいか
|
||||
save_file(state_dict, output_file)
|
||||
else:
|
||||
torch.save(new_ckpt, output_file)
|
||||
|
||||
return key_count
|
||||
|
||||
|
||||
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, save_dtype):
|
||||
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, vae=None):
|
||||
if vae is None:
|
||||
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
||||
pipeline = StableDiffusionPipeline(
|
||||
unet=unet,
|
||||
text_encoder=text_encoder,
|
||||
vae=AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae"),
|
||||
vae=vae,
|
||||
scheduler=DDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler"),
|
||||
tokenizer=CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer"),
|
||||
safety_checker=None,
|
||||
@ -921,6 +1061,62 @@ def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_mod
|
||||
)
|
||||
pipeline.save_pretrained(output_dir)
|
||||
|
||||
|
||||
VAE_PREFIX = "first_stage_model."
|
||||
|
||||
|
||||
def load_vae(vae_id, dtype):
|
||||
print(f"load VAE: {vae_id}")
|
||||
if os.path.isdir(vae_id) or not os.path.isfile(vae_id):
|
||||
# Diffusers local/remote
|
||||
try:
|
||||
vae = AutoencoderKL.from_pretrained(vae_id, subfolder=None, torch_dtype=dtype)
|
||||
except EnvironmentError as e:
|
||||
print(f"exception occurs in loading vae: {e}")
|
||||
print("retry with subfolder='vae'")
|
||||
vae = AutoencoderKL.from_pretrained(vae_id, subfolder="vae", torch_dtype=dtype)
|
||||
return vae
|
||||
|
||||
# local
|
||||
vae_config = create_vae_diffusers_config()
|
||||
|
||||
if vae_id.endswith(".bin"):
|
||||
# SD 1.5 VAE on Huggingface
|
||||
vae_sd = torch.load(vae_id, map_location="cpu")
|
||||
converted_vae_checkpoint = vae_sd
|
||||
else:
|
||||
# StableDiffusion
|
||||
vae_model = torch.load(vae_id, map_location="cpu")
|
||||
vae_sd = vae_model['state_dict']
|
||||
|
||||
# vae only or full model
|
||||
full_model = False
|
||||
for vae_key in vae_sd:
|
||||
if vae_key.startswith(VAE_PREFIX):
|
||||
full_model = True
|
||||
break
|
||||
if not full_model:
|
||||
sd = {}
|
||||
for key, value in vae_sd.items():
|
||||
sd[VAE_PREFIX + key] = value
|
||||
vae_sd = sd
|
||||
del sd
|
||||
|
||||
# Convert the VAE model.
|
||||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(vae_sd, vae_config)
|
||||
|
||||
vae = AutoencoderKL(**vae_config)
|
||||
vae.load_state_dict(converted_vae_checkpoint)
|
||||
return vae
|
||||
|
||||
|
||||
def get_epoch_ckpt_name(use_safetensors, epoch):
|
||||
return f"epoch-{epoch:06d}" + (".safetensors" if use_safetensors else ".ckpt")
|
||||
|
||||
|
||||
def get_last_ckpt_name(use_safetensors):
|
||||
return f"last" + (".safetensors" if use_safetensors else ".ckpt")
|
||||
|
||||
# endregion
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
accelerate==0.14.0
|
||||
transformers>=4.21.0
|
||||
transformers==4.25.1
|
||||
ftfy
|
||||
albumentations
|
||||
opencv-python
|
||||
@ -8,3 +8,4 @@ diffusers[torch]==0.9.0
|
||||
pytorch_lightning
|
||||
bitsandbytes==0.35.0
|
||||
tensorboard
|
||||
safetensors==0.2.5
|
69
tools/caption.py
Normal file
69
tools/caption.py
Normal file
@ -0,0 +1,69 @@
|
||||
# This script will create the caption text files in the specified folder using the specified file pattern and caption text.
|
||||
#
|
||||
# eg: python caption.py D:\some\folder\location "*.png, *.jpg, *.webp" "some caption text"
|
||||
|
||||
import argparse
|
||||
# import glob
|
||||
# import os
|
||||
from pathlib import Path
|
||||
|
||||
def create_caption_files(image_folder: str, file_pattern: str, caption_text: str, caption_file_ext: str, overwrite: bool):
|
||||
# Split the file patterns string and strip whitespace from each pattern
|
||||
patterns = [pattern.strip() for pattern in file_pattern.split(",")]
|
||||
|
||||
# Create a Path object for the image folder
|
||||
folder = Path(image_folder)
|
||||
|
||||
# Iterate over the file patterns
|
||||
for pattern in patterns:
|
||||
# Use the glob method to match the file patterns
|
||||
files = folder.glob(pattern)
|
||||
|
||||
# Iterate over the matched files
|
||||
for file in files:
|
||||
# Check if a text file with the same name as the current file exists in the folder
|
||||
txt_file = file.with_suffix(caption_file_ext)
|
||||
if not txt_file.exists() or overwrite:
|
||||
# Create a text file with the caption text in the folder, if it does not already exist
|
||||
# or if the overwrite argument is True
|
||||
with open(txt_file, "w") as f:
|
||||
f.write(caption_text)
|
||||
|
||||
def main():
|
||||
# Define command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("image_folder", type=str, help="the folder where the image files are located")
|
||||
parser.add_argument("--file_pattern", type=str, default="*.png, *.jpg, *.jpeg, *.webp", help="the pattern to match the image file names")
|
||||
parser.add_argument("--caption_file_ext", type=str, default=".caption", help="the caption file extension.")
|
||||
parser.add_argument("--overwrite", action="store_true", default=False, help="whether to overwrite existing caption files")
|
||||
|
||||
# Create a mutually exclusive group for the caption_text and caption_file arguments
|
||||
group = parser.add_mutually_exclusive_group()
|
||||
group.add_argument("--caption_text", type=str, help="the text to include in the caption files")
|
||||
group.add_argument("--caption_file", type=argparse.FileType("r"), help="the file containing the text to include in the caption files")
|
||||
|
||||
# Parse the command-line arguments
|
||||
args = parser.parse_args()
|
||||
image_folder = args.image_folder
|
||||
file_pattern = args.file_pattern
|
||||
caption_file_ext = args.caption_file_ext
|
||||
overwrite = args.overwrite
|
||||
|
||||
# Get the caption text from either the caption_text or caption_file argument
|
||||
if args.caption_text:
|
||||
caption_text = args.caption_text
|
||||
elif args.caption_file:
|
||||
caption_text = args.caption_file.read()
|
||||
|
||||
# Create a Path object for the image folder
|
||||
folder = Path(image_folder)
|
||||
|
||||
# Check if the image folder exists and is a directory
|
||||
if not folder.is_dir():
|
||||
raise ValueError(f"{image_folder} is not a valid directory.")
|
||||
|
||||
# Create the caption files
|
||||
create_caption_files(image_folder, file_pattern, caption_text, caption_file_ext, overwrite)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
57
tools/convert_images_to_hq_jpg.py
Normal file
57
tools/convert_images_to_hq_jpg.py
Normal file
@ -0,0 +1,57 @@
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
from pathlib import Path
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def main():
|
||||
# Define the command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("directory", type=str,
|
||||
help="the directory containing the images to be converted")
|
||||
parser.add_argument("--in_ext", type=str, default="webp",
|
||||
help="the input file extension")
|
||||
parser.add_argument("--quality", type=int, default=95,
|
||||
help="the JPEG quality (0-100)")
|
||||
parser.add_argument("--delete_originals", action="store_true",
|
||||
help="whether to delete the original files after conversion")
|
||||
|
||||
# Parse the command-line arguments
|
||||
args = parser.parse_args()
|
||||
directory = args.directory
|
||||
in_ext = args.in_ext
|
||||
out_ext = "jpg"
|
||||
quality = args.quality
|
||||
delete_originals = args.delete_originals
|
||||
|
||||
# Create the file pattern string using the input file extension
|
||||
file_pattern = f"*.{in_ext}"
|
||||
|
||||
# Get the list of files in the directory that match the file pattern
|
||||
files = glob.glob(os.path.join(directory, file_pattern))
|
||||
|
||||
# Iterate over the list of files
|
||||
for file in files:
|
||||
# Open the image file
|
||||
img = Image.open(file)
|
||||
|
||||
# Create a new file path with the output file extension
|
||||
new_path = Path(file).with_suffix(f".{out_ext}")
|
||||
|
||||
# Check if the output file already exists
|
||||
if new_path.exists():
|
||||
# Skip the conversion if the output file already exists
|
||||
print(f"Skipping {file} because {new_path} already exists")
|
||||
continue
|
||||
|
||||
# Save the image to the new file as high-quality JPEG
|
||||
img.save(new_path, quality=quality, optimize=True)
|
||||
|
||||
# Optionally, delete the original file
|
||||
if delete_originals:
|
||||
os.remove(file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
57
tools/convert_images_to_webp.py
Normal file
57
tools/convert_images_to_webp.py
Normal file
@ -0,0 +1,57 @@
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
from pathlib import Path
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def main():
|
||||
# Define the command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("directory", type=str,
|
||||
help="the directory containing the images to be converted")
|
||||
parser.add_argument("--in_ext", type=str, default="webp",
|
||||
help="the input file extension")
|
||||
parser.add_argument("--delete_originals", action="store_true",
|
||||
help="whether to delete the original files after conversion")
|
||||
|
||||
# Parse the command-line arguments
|
||||
args = parser.parse_args()
|
||||
directory = args.directory
|
||||
in_ext = args.in_ext
|
||||
delete_originals = args.delete_originals
|
||||
|
||||
# Set the output file extension to .webp
|
||||
out_ext = "webp"
|
||||
|
||||
# Create the file pattern string using the input file extension
|
||||
file_pattern = f"*.{in_ext}"
|
||||
|
||||
# Get the list of files in the directory that match the file pattern
|
||||
files = glob.glob(os.path.join(directory, file_pattern))
|
||||
|
||||
# Iterate over the list of files
|
||||
for file in files:
|
||||
# Open the image file
|
||||
img = Image.open(file)
|
||||
|
||||
# Create a new file path with the output file extension
|
||||
new_path = Path(file).with_suffix(f".{out_ext}")
|
||||
print(new_path)
|
||||
|
||||
# Check if the output file already exists
|
||||
if new_path.exists():
|
||||
# Skip the conversion if the output file already exists
|
||||
print(f"Skipping {file} because {new_path} already exists")
|
||||
continue
|
||||
|
||||
# Save the image to the new file as lossless
|
||||
img.save(new_path, lossless=True)
|
||||
|
||||
# Optionally, delete the original file
|
||||
if delete_originals:
|
||||
os.remove(file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1023
train_db_fixed.py
1023
train_db_fixed.py
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user