# convert Diffusers v1.x/v2.0 model to original Stable Diffusion import argparse import os import torch from diffusers import StableDiffusionPipeline import library.model_util as model_util def convert(args): # 引数を確認する load_dtype = torch.float16 if args.fp16 else None save_dtype = None if args.fp16: save_dtype = torch.float16 elif args.bf16: save_dtype = torch.bfloat16 elif args.float: save_dtype = torch.float is_load_ckpt = os.path.isfile(args.model_to_load) is_save_ckpt = len(os.path.splitext(args.model_to_save)[1]) > 0 assert not is_load_ckpt or args.v1 != args.v2, f"v1 or v2 is required to load checkpoint / checkpointの読み込みにはv1/v2指定が必要です" assert is_save_ckpt or args.reference_model is not None, f"reference model is required to save as Diffusers / Diffusers形式での保存には参照モデルが必要です" # モデルを読み込む msg = "checkpoint" if is_load_ckpt else ("Diffusers" + (" as fp16" if args.fp16 else "")) print(f"loading {msg}: {args.model_to_load}") if is_load_ckpt: v2_model = args.v2 text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(v2_model, args.model_to_load) else: pipe = StableDiffusionPipeline.from_pretrained(args.model_to_load, torch_dtype=load_dtype, tokenizer=None, safety_checker=None) text_encoder = pipe.text_encoder vae = pipe.vae unet = pipe.unet if args.v1 == args.v2: # 自動判定する v2_model = unet.config.cross_attention_dim == 1024 print("checking model version: model is " + ('v2' if v2_model else 'v1')) else: v2_model = not args.v1 # 変換して保存する msg = ("checkpoint" + ("" if save_dtype is None else f" in {save_dtype}")) if is_save_ckpt else "Diffusers" print(f"converting and saving as {msg}: {args.model_to_save}") if is_save_ckpt: original_model = args.model_to_load if is_load_ckpt else None key_count = model_util.save_stable_diffusion_checkpoint(v2_model, args.model_to_save, text_encoder, unet, original_model, args.epoch, args.global_step, save_dtype, vae) print(f"model saved. total converted state_dict keys: {key_count}") else: print(f"copy scheduler/tokenizer config from: {args.reference_model}") model_util.save_diffusers_checkpoint(v2_model, args.model_to_save, text_encoder, unet, args.reference_model, vae, args.use_safetensors) print(f"model saved.") def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument("--v1", action='store_true', help='load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む') parser.add_argument("--v2", action='store_true', help='load v2.0 model (v1 or v2 is required to load checkpoint) / 2.0のモデルを読み込む') parser.add_argument("--fp16", action='store_true', help='load as fp16 (Diffusers only) and save as fp16 (checkpoint only) / fp16形式で読み込み(Diffusers形式のみ対応)、保存する(checkpointのみ対応)') parser.add_argument("--bf16", action='store_true', help='save as bf16 (checkpoint only) / bf16形式で保存する(checkpointのみ対応)') parser.add_argument("--float", action='store_true', help='save as float (checkpoint only) / float(float32)形式で保存する(checkpointのみ対応)') parser.add_argument("--epoch", type=int, default=0, help='epoch to write to checkpoint / checkpointに記録するepoch数の値') parser.add_argument("--global_step", type=int, default=0, help='global_step to write to checkpoint / checkpointに記録するglobal_stepの値') parser.add_argument("--reference_model", type=str, default=None, help="reference model for schduler/tokenizer, required in saving Diffusers, copy schduler/tokenizer from this / scheduler/tokenizerのコピー元のDiffusersモデル、Diffusers形式で保存するときに必要") parser.add_argument("--use_safetensors", action='store_true', help="use safetensors format to save Diffusers model (checkpoint depends on the file extension) / Duffusersモデルをsafetensors形式で保存する(checkpointは拡張子で自動判定)") parser.add_argument("model_to_load", type=str, default=None, help="model to load: checkpoint file or Diffusers model's directory / 読み込むモデル、checkpointかDiffusers形式モデルのディレクトリ") parser.add_argument("model_to_save", type=str, default=None, help="model to save: checkpoint (with extension) or Diffusers model's directory (without extension) / 変換後のモデル、拡張子がある場合はcheckpoint、ない場合はDiffusesモデルとして保存") return parser if __name__ == '__main__': parser = setup_parser() args = parser.parse_args() convert(args)