# LoRA network module # reference: # https://github.com/microsoft/LoRA/blob/main/loralib/layers.py # https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py import math import os from typing import List import numpy as np import torch from library import train_util class LoRAModule(torch.nn.Module): """ replaces forward method of the original Linear, instead of replacing the original Linear module. """ def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1): """ if alpha == 0 or None, alpha is rank (no scaling). """ super().__init__() self.lora_name = lora_name self.lora_dim = lora_dim if org_module.__class__.__name__ == 'Conv2d': in_dim = org_module.in_channels out_dim = org_module.out_channels self.lora_dim = min(self.lora_dim, in_dim, out_dim) if self.lora_dim != lora_dim: print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}") kernel_size = org_module.kernel_size stride = org_module.stride padding = org_module.padding self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False) else: in_dim = org_module.in_features out_dim = org_module.out_features self.lora_down = torch.nn.Linear(in_dim, lora_dim, bias=False) self.lora_up = torch.nn.Linear(lora_dim, out_dim, bias=False) if type(alpha) == torch.Tensor: alpha = alpha.detach().float().numpy() # without casting, bf16 causes error alpha = lora_dim if alpha is None or alpha == 0 else alpha self.scale = alpha / self.lora_dim self.register_buffer('alpha', torch.tensor(alpha)) # 定数として扱える # same as microsoft's torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) torch.nn.init.zeros_(self.lora_up.weight) self.multiplier = multiplier self.org_module = org_module # remove in applying self.region = None self.region_mask = None def apply_to(self): self.org_forward = self.org_module.forward self.org_module.forward = self.forward del self.org_module def set_region(self, region): self.region = region self.region_mask = None def forward(self, x): if self.region is None: return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale # regional LoRA FIXME same as additional-network extension if x.size()[1] % 77 == 0: # print(f"LoRA for context: {self.lora_name}") self.region = None return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale # calculate region mask first time if self.region_mask is None: if len(x.size()) == 4: h, w = x.size()[2:4] else: seq_len = x.size()[1] ratio = math.sqrt((self.region.size()[0] * self.region.size()[1]) / seq_len) h = int(self.region.size()[0] / ratio + .5) w = seq_len // h r = self.region.to(x.device) if r.dtype == torch.bfloat16: r = r.to(torch.float) r = r.unsqueeze(0).unsqueeze(1) # print(self.lora_name, self.region.size(), x.size(), r.size(), h, w) r = torch.nn.functional.interpolate(r, (h, w), mode='bilinear') r = r.to(x.dtype) if len(x.size()) == 3: r = torch.reshape(r, (1, x.size()[1], -1)) self.region_mask = r return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale * self.region_mask def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs): if network_dim is None: network_dim = 4 # default # extract dim/alpha for conv2d, and block dim conv_dim = kwargs.get('conv_dim', None) conv_alpha = kwargs.get('conv_alpha', None) if conv_dim is not None: conv_dim = int(conv_dim) if conv_alpha is None: conv_alpha = 1.0 else: conv_alpha = float(conv_alpha) """ block_dims = kwargs.get("block_dims") block_alphas = None if block_dims is not None: block_dims = [int(d) for d in block_dims.split(',')] assert len(block_dims) == NUM_BLOCKS, f"Number of block dimensions is not same to {NUM_BLOCKS}" block_alphas = kwargs.get("block_alphas") if block_alphas is None: block_alphas = [1] * len(block_dims) else: block_alphas = [int(a) for a in block_alphas(',')] assert len(block_alphas) == NUM_BLOCKS, f"Number of block alphas is not same to {NUM_BLOCKS}" conv_block_dims = kwargs.get("conv_block_dims") conv_block_alphas = None if conv_block_dims is not None: conv_block_dims = [int(d) for d in conv_block_dims.split(',')] assert len(conv_block_dims) == NUM_BLOCKS, f"Number of block dimensions is not same to {NUM_BLOCKS}" conv_block_alphas = kwargs.get("conv_block_alphas") if conv_block_alphas is None: conv_block_alphas = [1] * len(conv_block_dims) else: conv_block_alphas = [int(a) for a in conv_block_alphas(',')] assert len(conv_block_alphas) == NUM_BLOCKS, f"Number of block alphas is not same to {NUM_BLOCKS}" """ network = LoRANetwork(text_encoder, unet, multiplier=multiplier, lora_dim=network_dim, alpha=network_alpha, conv_lora_dim=conv_dim, conv_alpha=conv_alpha) return network def create_network_from_weights(multiplier, file, vae, text_encoder, unet, **kwargs): if os.path.splitext(file)[1] == '.safetensors': from safetensors.torch import load_file, safe_open weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location='cpu') # get dim/alpha mapping modules_dim = {} modules_alpha = {} for key, value in weights_sd.items(): if '.' not in key: continue lora_name = key.split('.')[0] if 'alpha' in key: modules_alpha[lora_name] = value elif 'lora_down' in key: dim = value.size()[0] modules_dim[lora_name] = dim # print(lora_name, value.size(), dim) # support old LoRA without alpha for key in modules_dim.keys(): if key not in modules_alpha: modules_alpha = modules_dim[key] network = LoRANetwork(text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha) network.weights_sd = weights_sd return network class LoRANetwork(torch.nn.Module): # is it possible to apply conv_in and conv_out? UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention", "ResnetBlock2D", "Downsample2D", "Upsample2D"] TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] LORA_PREFIX_UNET = 'lora_unet' LORA_PREFIX_TEXT_ENCODER = 'lora_te' def __init__(self, text_encoder, unet, multiplier=1.0, lora_dim=4, alpha=1, conv_lora_dim=None, conv_alpha=None, modules_dim=None, modules_alpha=None) -> None: super().__init__() self.multiplier = multiplier self.lora_dim = lora_dim self.alpha = alpha self.conv_lora_dim = conv_lora_dim self.conv_alpha = conv_alpha if modules_dim is not None: print(f"create LoRA network from weights") else: print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") self.apply_to_conv2d_3x3 = self.conv_lora_dim is not None if self.apply_to_conv2d_3x3: if self.conv_alpha is None: self.conv_alpha = self.alpha print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}") # create module instances def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> List[LoRAModule]: loras = [] for name, module in root_module.named_modules(): if module.__class__.__name__ in target_replace_modules: # TODO get block index here for child_name, child_module in module.named_modules(): is_linear = child_module.__class__.__name__ == "Linear" is_conv2d = child_module.__class__.__name__ == "Conv2d" is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) if is_linear or is_conv2d: lora_name = prefix + '.' + name + '.' + child_name lora_name = lora_name.replace('.', '_') if modules_dim is not None: if lora_name not in modules_dim: continue # no LoRA module in this weights file dim = modules_dim[lora_name] alpha = modules_alpha[lora_name] else: if is_linear or is_conv2d_1x1: dim = self.lora_dim alpha = self.alpha elif self.apply_to_conv2d_3x3: dim = self.conv_lora_dim alpha = self.conv_alpha else: continue lora = LoRAModule(lora_name, child_module, self.multiplier, dim, alpha) loras.append(lora) return loras self.text_encoder_loras = create_modules(LoRANetwork.LORA_PREFIX_TEXT_ENCODER, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, LoRANetwork.UNET_TARGET_REPLACE_MODULE) print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") self.weights_sd = None # assertion names = set() for lora in self.text_encoder_loras + self.unet_loras: assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" names.add(lora.lora_name) def set_multiplier(self, multiplier): self.multiplier = multiplier for lora in self.text_encoder_loras + self.unet_loras: lora.multiplier = self.multiplier def load_weights(self, file): if os.path.splitext(file)[1] == '.safetensors': from safetensors.torch import load_file, safe_open self.weights_sd = load_file(file) else: self.weights_sd = torch.load(file, map_location='cpu') def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None): if self.weights_sd: weights_has_text_encoder = weights_has_unet = False for key in self.weights_sd.keys(): if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER): weights_has_text_encoder = True elif key.startswith(LoRANetwork.LORA_PREFIX_UNET): weights_has_unet = True if apply_text_encoder is None: apply_text_encoder = weights_has_text_encoder else: assert apply_text_encoder == weights_has_text_encoder, f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています" if apply_unet is None: apply_unet = weights_has_unet else: assert apply_unet == weights_has_unet, f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています" else: assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set" if apply_text_encoder: print("enable LoRA for text encoder") else: self.text_encoder_loras = [] if apply_unet: print("enable LoRA for U-Net") else: self.unet_loras = [] for lora in self.text_encoder_loras + self.unet_loras: lora.apply_to() self.add_module(lora.lora_name, lora) if self.weights_sd: # if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros) info = self.load_state_dict(self.weights_sd, False) print(f"weights are loaded: {info}") def enable_gradient_checkpointing(self): # not supported pass def prepare_optimizer_params(self, text_encoder_lr, unet_lr): def enumerate_params(loras): params = [] for lora in loras: params.extend(lora.parameters()) return params self.requires_grad_(True) all_params = [] if self.text_encoder_loras: param_data = {'params': enumerate_params(self.text_encoder_loras)} if text_encoder_lr is not None: param_data['lr'] = text_encoder_lr all_params.append(param_data) if self.unet_loras: param_data = {'params': enumerate_params(self.unet_loras)} if unet_lr is not None: param_data['lr'] = unet_lr all_params.append(param_data) return all_params def prepare_grad_etc(self, text_encoder, unet): self.requires_grad_(True) def on_epoch_start(self, text_encoder, unet): self.train() def get_trainable_params(self): return self.parameters() def save_weights(self, file, dtype, metadata): if metadata is not None and len(metadata) == 0: metadata = None state_dict = self.state_dict() if dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(dtype) state_dict[key] = v if os.path.splitext(file)[1] == '.safetensors': from safetensors.torch import save_file # Precalculate model hashes to save time on indexing if metadata is None: metadata = {} model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash save_file(state_dict, file, metadata) else: torch.save(state_dict, file) @staticmethod def set_regions(networks, image): image = image.astype(np.float32) / 255.0 for i, network in enumerate(networks[:3]): # NOTE: consider averaging overwrapping area region = image[:, :, i] if region.max() == 0: continue region = torch.tensor(region) network.set_region(region) def set_region(self, region): for lora in self.unet_loras: lora.set_region(region)