import gradio as gr import json import math import os import subprocess import pathlib import argparse from library.common_gui import ( get_folder_path, get_file_path, get_saveasfile_path, save_inference_file, gradio_advanced_training, run_cmd_advanced_training, gradio_training, run_cmd_advanced_training, gradio_config, gradio_source_model, color_aug_changed, run_cmd_training, set_legacy_8bitadam, update_optimizer, ) from library.tensorboard_gui import ( gradio_tensorboard, start_tensorboard, stop_tensorboard, ) from library.utilities import utilities_tab folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 document_symbol = '\U0001F4C4' # 📄 def save_configuration( save_as, file_path, pretrained_model_name_or_path, v2, v_parameterization, train_dir, image_folder, output_dir, logging_dir, max_resolution, min_bucket_reso, max_bucket_reso, batch_size, flip_aug, caption_metadata_filename, latent_metadata_filename, full_path, learning_rate, lr_scheduler, lr_warmup, dataset_repeats, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, seed, num_cpu_threads_per_process, train_text_encoder, create_caption, create_buckets, save_model_as, caption_extension, use_8bit_adam, xformers, clip_skip, save_state, resume, gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption, output_name, max_token_length, max_train_epochs, max_data_loader_n_workers, full_fp16, color_aug, model_list, cache_latents, use_latent_files, keep_tokens, persistent_data_loader_workers, bucket_no_upscale, random_crop, bucket_reso_steps, caption_dropout_every_n_epochs, caption_dropout_rate, optimizer, optimizer_args, noise_offset, ): # Get list of function parameters and values parameters = list(locals().items()) original_file_path = file_path save_as_bool = True if save_as.get('label') == 'True' else False if save_as_bool: print('Save as...') file_path = get_saveasfile_path(file_path) else: print('Save...') if file_path == None or file_path == '': file_path = get_saveasfile_path(file_path) # print(file_path) if file_path == None or file_path == '': return original_file_path # In case a file_path was provided and the user decide to cancel the open action # Return the values of the variables as a dictionary variables = { name: value for name, value in parameters # locals().items() if name not in [ 'file_path', 'save_as', ] } # Extract the destination directory from the file path destination_directory = os.path.dirname(file_path) # Create the destination directory if it doesn't exist if not os.path.exists(destination_directory): os.makedirs(destination_directory) # Save the data to the selected file with open(file_path, 'w') as file: json.dump(variables, file, indent=2) return file_path def open_config_file( file_path, pretrained_model_name_or_path, v2, v_parameterization, train_dir, image_folder, output_dir, logging_dir, max_resolution, min_bucket_reso, max_bucket_reso, batch_size, flip_aug, caption_metadata_filename, latent_metadata_filename, full_path, learning_rate, lr_scheduler, lr_warmup, dataset_repeats, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, seed, num_cpu_threads_per_process, train_text_encoder, create_caption, create_buckets, save_model_as, caption_extension, use_8bit_adam, xformers, clip_skip, save_state, resume, gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption, output_name, max_token_length, max_train_epochs, max_data_loader_n_workers, full_fp16, color_aug, model_list, cache_latents, use_latent_files, keep_tokens, persistent_data_loader_workers, bucket_no_upscale, random_crop, bucket_reso_steps, caption_dropout_every_n_epochs, caption_dropout_rate, optimizer, optimizer_args, noise_offset, ): # Get list of function parameters and values parameters = list(locals().items()) original_file_path = file_path file_path = get_file_path(file_path) if not file_path == '' and not file_path == None: # load variables from JSON file with open(file_path, 'r') as f: my_data_db = json.load(f) print('Loading config...') # Update values to fix deprecated use_8bit_adam checkbox and set appropriate optimizer if it is set to True my_data = update_optimizer(my_data) else: file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action my_data_db = {} values = [file_path] for key, value in parameters: # Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found if not key in ['file_path']: values.append(my_data_db.get(key, value)) return tuple(values) def train_model( pretrained_model_name_or_path, v2, v_parameterization, train_dir, image_folder, output_dir, logging_dir, max_resolution, min_bucket_reso, max_bucket_reso, batch_size, flip_aug, caption_metadata_filename, latent_metadata_filename, full_path, learning_rate, lr_scheduler, lr_warmup, dataset_repeats, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, seed, num_cpu_threads_per_process, train_text_encoder, generate_caption_database, generate_image_buckets, save_model_as, caption_extension, use_8bit_adam, xformers, clip_skip, save_state, resume, gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption, output_name, max_token_length, max_train_epochs, max_data_loader_n_workers, full_fp16, color_aug, model_list, # Keep this. Yes, it is unused here but required given the common list used cache_latents, use_latent_files, keep_tokens, persistent_data_loader_workers, bucket_no_upscale, random_crop, bucket_reso_steps, caption_dropout_every_n_epochs, caption_dropout_rate, optimizer, optimizer_args, noise_offset, ): # create caption json file if generate_caption_database: if not os.path.exists(train_dir): os.mkdir(train_dir) run_cmd = ( f'./venv/Scripts/python.exe finetune/merge_captions_to_metadata.py' ) if caption_extension == '': run_cmd += f' --caption_extension=".caption"' else: run_cmd += f' --caption_extension={caption_extension}' run_cmd += f' "{image_folder}"' run_cmd += f' "{train_dir}/{caption_metadata_filename}"' if full_path: run_cmd += f' --full_path' print(run_cmd) # Run the command subprocess.run(run_cmd) # create images buckets if generate_image_buckets: run_cmd = ( f'./venv/Scripts/python.exe finetune/prepare_buckets_latents.py' ) run_cmd += f' "{image_folder}"' run_cmd += f' "{train_dir}/{caption_metadata_filename}"' run_cmd += f' "{train_dir}/{latent_metadata_filename}"' run_cmd += f' "{pretrained_model_name_or_path}"' run_cmd += f' --batch_size={batch_size}' run_cmd += f' --max_resolution={max_resolution}' run_cmd += f' --min_bucket_reso={min_bucket_reso}' run_cmd += f' --max_bucket_reso={max_bucket_reso}' run_cmd += f' --mixed_precision={mixed_precision}' # if flip_aug: # run_cmd += f' --flip_aug' if full_path: run_cmd += f' --full_path' print(run_cmd) # Run the command subprocess.run(run_cmd) image_num = len( [ f for f in os.listdir(image_folder) if f.endswith('.jpg') or f.endswith('.png') or f.endswith('.webp') ] ) print(f'image_num = {image_num}') repeats = int(image_num) * int(dataset_repeats) print(f'repeats = {str(repeats)}') # calculate max_train_steps max_train_steps = int( math.ceil(float(repeats) / int(train_batch_size) * int(epoch)) ) # Divide by two because flip augmentation create two copied of the source images if flip_aug: max_train_steps = int(math.ceil(float(max_train_steps) / 2)) print(f'max_train_steps = {max_train_steps}') lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100)) print(f'lr_warmup_steps = {lr_warmup_steps}') run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "./fine_tune.py"' if v2: run_cmd += ' --v2' if v_parameterization: run_cmd += ' --v_parameterization' if train_text_encoder: run_cmd += ' --train_text_encoder' run_cmd += ( f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"' ) if use_latent_files == 'Yes': run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"' else: run_cmd += f' --in_json="{train_dir}/{caption_metadata_filename}"' run_cmd += f' --train_data_dir="{image_folder}"' run_cmd += f' --output_dir="{output_dir}"' if not logging_dir == '': run_cmd += f' --logging_dir="{logging_dir}"' run_cmd += f' --dataset_repeats={dataset_repeats}' run_cmd += f' --learning_rate={learning_rate}' run_cmd += ' --enable_bucket' run_cmd += f' --resolution={max_resolution}' run_cmd += f' --min_bucket_reso={min_bucket_reso}' run_cmd += f' --max_bucket_reso={max_bucket_reso}' if not save_model_as == 'same as source model': run_cmd += f' --save_model_as={save_model_as}' if int(gradient_accumulation_steps) > 1: run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}' # if save_state: # run_cmd += ' --save_state' # if not resume == '': # run_cmd += f' --resume={resume}' if not output_name == '': run_cmd += f' --output_name="{output_name}"' if int(max_token_length) > 75: run_cmd += f' --max_token_length={max_token_length}' run_cmd += run_cmd_training( learning_rate=learning_rate, lr_scheduler=lr_scheduler, lr_warmup_steps=lr_warmup_steps, train_batch_size=train_batch_size, max_train_steps=max_train_steps, save_every_n_epochs=save_every_n_epochs, mixed_precision=mixed_precision, save_precision=save_precision, seed=seed, caption_extension=caption_extension, cache_latents=cache_latents, optimizer=optimizer, optimizer_args=optimizer_args, ) run_cmd += run_cmd_advanced_training( max_train_epochs=max_train_epochs, max_data_loader_n_workers=max_data_loader_n_workers, max_token_length=max_token_length, resume=resume, save_state=save_state, mem_eff_attn=mem_eff_attn, clip_skip=clip_skip, flip_aug=flip_aug, color_aug=color_aug, shuffle_caption=shuffle_caption, gradient_checkpointing=gradient_checkpointing, full_fp16=full_fp16, xformers=xformers, use_8bit_adam=use_8bit_adam, keep_tokens=keep_tokens, persistent_data_loader_workers=persistent_data_loader_workers, bucket_no_upscale=bucket_no_upscale, random_crop=random_crop, bucket_reso_steps=bucket_reso_steps, caption_dropout_every_n_epochs=caption_dropout_every_n_epochs, caption_dropout_rate=caption_dropout_rate, noise_offset=noise_offset, ) print(run_cmd) # Run the command subprocess.run(run_cmd) # check if output_dir/last is a folder... therefore it is a diffuser model last_dir = pathlib.Path(f'{output_dir}/{output_name}') if not last_dir.is_dir(): # Copy inference model for v2 if required save_inference_file(output_dir, v2, v_parameterization, output_name) def remove_doublequote(file_path): if file_path != None: file_path = file_path.replace('"', '') return file_path def finetune_tab(): dummy_ft_true = gr.Label(value=True, visible=False) dummy_ft_false = gr.Label(value=False, visible=False) gr.Markdown('Train a custom model using kohya finetune python code...') ( button_open_config, button_save_config, button_save_as_config, config_file_name, ) = gradio_config() ( pretrained_model_name_or_path, v2, v_parameterization, save_model_as, model_list, ) = gradio_source_model() with gr.Tab('Folders'): with gr.Row(): train_dir = gr.Textbox( label='Training config folder', placeholder='folder where the training configuration files will be saved', ) train_dir_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) train_dir_folder.click(get_folder_path, outputs=train_dir) image_folder = gr.Textbox( label='Training Image folder', placeholder='folder where the training images are located', ) image_folder_input_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) image_folder_input_folder.click( get_folder_path, outputs=image_folder ) with gr.Row(): output_dir = gr.Textbox( label='Model output folder', placeholder='folder where the model will be saved', ) output_dir_input_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) output_dir_input_folder.click(get_folder_path, outputs=output_dir) logging_dir = gr.Textbox( label='Logging folder', placeholder='Optional: enable logging and output TensorBoard log to this folder', ) logging_dir_input_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) logging_dir_input_folder.click( get_folder_path, outputs=logging_dir ) with gr.Row(): output_name = gr.Textbox( label='Model output name', placeholder='Name of the model to output', value='last', interactive=True, ) train_dir.change( remove_doublequote, inputs=[train_dir], outputs=[train_dir], ) image_folder.change( remove_doublequote, inputs=[image_folder], outputs=[image_folder], ) output_dir.change( remove_doublequote, inputs=[output_dir], outputs=[output_dir], ) with gr.Tab('Dataset preparation'): with gr.Row(): max_resolution = gr.Textbox( label='Resolution (width,height)', value='512,512' ) min_bucket_reso = gr.Textbox( label='Min bucket resolution', value='256' ) max_bucket_reso = gr.Textbox( label='Max bucket resolution', value='1024' ) batch_size = gr.Textbox(label='Batch size', value='1') with gr.Row(): create_caption = gr.Checkbox( label='Generate caption metadata', value=True ) create_buckets = gr.Checkbox( label='Generate image buckets metadata', value=True ) use_latent_files = gr.Dropdown( label='Use latent files', choices=[ 'No', 'Yes', ], value='Yes', ) with gr.Accordion('Advanced parameters', open=False): with gr.Row(): caption_metadata_filename = gr.Textbox( label='Caption metadata filename', value='meta_cap.json' ) latent_metadata_filename = gr.Textbox( label='Latent metadata filename', value='meta_lat.json' ) full_path = gr.Checkbox(label='Use full path', value=True) with gr.Tab('Training parameters'): ( learning_rate, lr_scheduler, lr_warmup, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, num_cpu_threads_per_process, seed, caption_extension, cache_latents, optimizer, optimizer_args, ) = gradio_training(learning_rate_value='1e-5') with gr.Row(): dataset_repeats = gr.Textbox(label='Dataset repeats', value=40) train_text_encoder = gr.Checkbox( label='Train text encoder', value=True ) with gr.Accordion('Advanced parameters', open=False): with gr.Row(): gradient_accumulation_steps = gr.Number( label='Gradient accumulate steps', value='1' ) ( use_8bit_adam, xformers, full_fp16, gradient_checkpointing, shuffle_caption, color_aug, flip_aug, clip_skip, mem_eff_attn, save_state, resume, max_token_length, max_train_epochs, max_data_loader_n_workers, keep_tokens, persistent_data_loader_workers, bucket_no_upscale, random_crop, bucket_reso_steps, caption_dropout_every_n_epochs, caption_dropout_rate, noise_offset, ) = gradio_advanced_training() color_aug.change( color_aug_changed, inputs=[color_aug], outputs=[cache_latents], # Not applicable to fine_tune.py ) optimizer.change( set_legacy_8bitadam, inputs=[optimizer, use_8bit_adam], outputs=[optimizer, use_8bit_adam], ) button_run = gr.Button('Train model', variant='primary') # Setup gradio tensorboard buttons button_start_tensorboard, button_stop_tensorboard = gradio_tensorboard() button_start_tensorboard.click( start_tensorboard, inputs=logging_dir, ) button_stop_tensorboard.click( stop_tensorboard, ) settings_list = [ pretrained_model_name_or_path, v2, v_parameterization, train_dir, image_folder, output_dir, logging_dir, max_resolution, min_bucket_reso, max_bucket_reso, batch_size, flip_aug, caption_metadata_filename, latent_metadata_filename, full_path, learning_rate, lr_scheduler, lr_warmup, dataset_repeats, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, seed, num_cpu_threads_per_process, train_text_encoder, create_caption, create_buckets, save_model_as, caption_extension, use_8bit_adam, xformers, clip_skip, save_state, resume, gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption, output_name, max_token_length, max_train_epochs, max_data_loader_n_workers, full_fp16, color_aug, model_list, cache_latents, use_latent_files, keep_tokens, persistent_data_loader_workers, bucket_no_upscale, random_crop, bucket_reso_steps, caption_dropout_every_n_epochs, caption_dropout_rate, optimizer, optimizer_args, noise_offset, ] button_run.click(train_model, inputs=settings_list) button_open_config.click( open_config_file, inputs=[config_file_name] + settings_list, outputs=[config_file_name] + settings_list, ) button_save_config.click( save_configuration, inputs=[dummy_ft_false, config_file_name] + settings_list, outputs=[config_file_name], ) button_save_as_config.click( save_configuration, inputs=[dummy_ft_true, config_file_name] + settings_list, outputs=[config_file_name], ) def UI(**kwargs): css = '' if os.path.exists('./style.css'): with open(os.path.join('./style.css'), 'r', encoding='utf8') as file: print('Load CSS...') css += file.read() + '\n' interface = gr.Blocks(css=css) with interface: with gr.Tab('Finetune'): finetune_tab() with gr.Tab('Utilities'): utilities_tab(enable_dreambooth_tab=False) # Show the interface launch_kwargs = {} if not kwargs.get('username', None) == '': launch_kwargs['auth'] = ( kwargs.get('username', None), kwargs.get('password', None), ) if kwargs.get('server_port', 0) > 0: launch_kwargs['server_port'] = kwargs.get('server_port', 0) if kwargs.get('inbrowser', False): launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False) print(launch_kwargs) interface.launch(**launch_kwargs) if __name__ == '__main__': # torch.cuda.set_per_process_memory_fraction(0.48) parser = argparse.ArgumentParser() parser.add_argument( '--username', type=str, default='', help='Username for authentication' ) parser.add_argument( '--password', type=str, default='', help='Password for authentication' ) parser.add_argument( '--server_port', type=int, default=0, help='Port to run the server listener on', ) parser.add_argument( '--inbrowser', action='store_true', help='Open in browser' ) args = parser.parse_args() UI( username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port, )