# This code sorts a collection of images in a given directory by their aspect ratio, groups # them into batches of a given size, crops each image in a batch to the average aspect ratio # of that batch, and saves the cropped images in a specified directory. The user provides # the paths to the input directory and the output directory, as well as the desired batch # size. The program drops any images that do not fit exactly into the batches. import os import cv2 import argparse import shutil def aspect_ratio(img_path): """Return aspect ratio of an image""" image = cv2.imread(img_path) height, width = image.shape[:2] aspect_ratio = float(width) / float(height) return aspect_ratio def sort_images_by_aspect_ratio(path): """Sort all images in a folder by aspect ratio""" images = [] for filename in os.listdir(path): if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png") or filename.endswith(".webp"): img_path = os.path.join(path, filename) images.append((img_path, aspect_ratio(img_path))) # sort the list of tuples based on the aspect ratio sorted_images = sorted(images, key=lambda x: x[1]) return sorted_images def create_groups(sorted_images, n_groups): """Create n groups from sorted list of images""" n = len(sorted_images) size = n // n_groups groups = [sorted_images[i * size : (i + 1) * size] for i in range(n_groups - 1)] groups.append(sorted_images[(n_groups - 1) * size:]) return groups def average_aspect_ratio(group): """Calculate average aspect ratio for a group""" aspect_ratios = [aspect_ratio for _, aspect_ratio in group] avg_aspect_ratio = sum(aspect_ratios) / len(aspect_ratios) print(f"Average aspect ratio for group: {avg_aspect_ratio}") return avg_aspect_ratio def center_crop_image(image, target_aspect_ratio): """Crop the input image to the target aspect ratio. The function calculates the crop region for the input image based on its current aspect ratio and the target aspect ratio. Args: image: A numpy array representing the input image. target_aspect_ratio: A float representing the target aspect ratio. Returns: A numpy array representing the cropped image. """ height, width = image.shape[:2] current_aspect_ratio = float(width) / float(height) if current_aspect_ratio == target_aspect_ratio: return image if current_aspect_ratio > target_aspect_ratio: new_width = int(target_aspect_ratio * height) x_start = (width - new_width) // 2 cropped_image = image[:, x_start:x_start+new_width] else: new_height = int(width / target_aspect_ratio) y_start = (height - new_height) // 2 cropped_image = image[y_start:y_start+new_height, :] return cropped_image def copy_related_files(img_path, save_path): """ Copy all files in the same directory as the input image that have the same base name as the input image to the output directory with the corresponding new filename. :param img_path: Path to the input image. :param save_path: Path to the output image. """ # Get the base filename and directory img_dir, img_basename = os.path.split(img_path) img_base, img_ext = os.path.splitext(img_basename) save_dir, save_basename = os.path.split(save_path) save_base, save_ext = os.path.splitext(save_basename) # Create the output directory if it does not exist if not os.path.exists(save_dir): os.makedirs(save_dir) # Loop over all files in the same directory as the input image try: for filename in os.listdir(img_dir): # Skip files with the same name as the input image if filename == img_basename: continue # Check if the file has the same base name as the input image file_base, file_ext = os.path.splitext(filename) if file_base == img_base: # Build the new filename and copy the file new_filename = os.path.join(save_dir, f"{save_base}{file_ext}") shutil.copy2(os.path.join(img_dir, filename), new_filename) except OSError as e: print(f"Error: {e}") # Handle errors from os.listdir() def save_resized_cropped_images(group, folder_name, group_number, avg_aspect_ratio, use_original_name=False): """Crop and resize all images in the input group to the smallest resolution, and save them to a folder. Args: group: A list of tuples, where each tuple contains the path to an image and its aspect ratio. folder_name: A string representing the name of the folder to save the images to. group_number: An integer representing the group number. avg_aspect_ratio: A float representing the average aspect ratio of the images in the group. use_original_name: A boolean indicating whether to save the images with their original file names. """ if not os.path.exists(folder_name): os.makedirs(folder_name) # get the smallest size of the images smallest_res = float("inf") for img_path, _ in group: image = cv2.imread(img_path) cropped_image = center_crop_image(image, avg_aspect_ratio) height, width = cropped_image.shape[:2] image_res = height * width if image_res < smallest_res: smallest_res = image_res small_height, small_width = height, width # resize all images to the smallest resolution of the images in the group for i, (img_path, aspect_ratio) in enumerate(group): image = cv2.imread(img_path) cropped_image = center_crop_image(image, avg_aspect_ratio) resized_image = cv2.resize(cropped_image, (small_width, small_height)) if use_original_name: save_name = os.path.basename(img_path) else: save_name = f"group_{group_number}_{i}.jpg" save_path = os.path.join(folder_name, save_name) cv2.imwrite(save_path, resized_image) # Copy matching files named the same as img_path to copy_related_files(img_path, save_path) print(f"Saved {save_name} to {folder_name}") def main(): parser = argparse.ArgumentParser(description='Sort images and crop them based on aspect ratio') parser.add_argument('input_dir', type=str, help='Path to the directory containing images') parser.add_argument('output_dir', type=str, help='Path to the directory to save the cropped images') parser.add_argument('batch_size', type=int, help='Size of the batches to create') parser.add_argument('--use_original_name', action='store_true', help='Whether to use original file names for the saved images') args = parser.parse_args() print(f"Sorting images by aspect ratio in {args.input_dir}...") if not os.path.exists(args.input_dir): print(f"Error: Input directory does not exist: {args.input_dir}") return if not os.path.exists(args.output_dir): try: os.makedirs(args.output_dir) except OSError: print(f"Error: Failed to create output directory: {args.output_dir}") return sorted_images = sort_images_by_aspect_ratio(args.input_dir) total_images = len(sorted_images) print(f'Total images: {total_images}') if args.batch_size <= 0: print("Error: Batch size must be greater than 0") return group_size = total_images // args.batch_size print(f'Train batch size: {args.batch_size}, image group size: {group_size}') remainder = total_images % args.batch_size if remainder != 0: print(f'Dropping {remainder} images that do not fit in groups...') sorted_images = sorted_images[:-remainder] total_images = len(sorted_images) group_size = total_images // args.batch_size print('Creating groups...') groups = create_groups(sorted_images, group_size) print(f"Created {len(groups)} groups") print('Saving cropped and resize images...') for i, group in enumerate(groups): avg_aspect_ratio = average_aspect_ratio(group) print(f"Processing group {i+1} with {len(group)} images...") try: save_resized_cropped_images(group, args.output_dir, i+1, avg_aspect_ratio, args.use_original_name) except Exception as e: print(f"Error: Failed to save images in group {i+1}: {e}") print('Done') if __name__ == '__main__': main()