# Sylvia Ritter. AKA: by silvery trait # variable values $pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt" $train_dir = "D:\dreambooth\train_sylvia_ritter\raw_data" $training_folder = "all-images-v3" $learning_rate = 5e-6 $dataset_repeats = 40 $train_batch_size = 6 $epoch = 4 $save_every_n_epochs=1 $mixed_precision="bf16" $num_cpu_threads_per_process=6 $max_resolution = "768,576" # You should not have to change values past this point # stop script on error $ErrorActionPreference = "Stop" # activate venv .\venv\Scripts\activate # create caption json file python D:\kohya_ss\diffusers_fine_tuning\merge_captions_to_metadata.py ` --caption_extention ".txt" $train_dir"\"$training_folder $train_dir"\meta_cap.json" # create images buckets python D:\kohya_ss\diffusers_fine_tuning\prepare_buckets_latents.py ` $train_dir"\"$training_folder ` $train_dir"\meta_cap.json" ` $train_dir"\meta_lat.json" ` $pretrained_model_name_or_path ` --batch_size 4 --max_resolution $max_resolution --mixed_precision fp16 # Get number of valid images $image_num = Get-ChildItem "$train_dir\$training_folder" -Recurse -File -Include *.npz | Measure-Object | %{$_.Count} $repeats = $image_num * $dataset_repeats # calculate max_train_set $max_train_set = [Math]::Ceiling($repeats / $train_batch_size * $epoch) accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process D:\kohya_ss\diffusers_fine_tuning\fine_tune.py ` --pretrained_model_name_or_path=$pretrained_model_name_or_path ` --in_json $train_dir"\meta_lat.json" ` --train_data_dir=$train_dir"\"$training_folder ` --output_dir=$train_dir"\fine_tuned2" ` --train_batch_size=$train_batch_size ` --dataset_repeats=$dataset_repeats ` --learning_rate=$learning_rate ` --max_train_steps=$max_train_set ` --use_8bit_adam --xformers ` --mixed_precision=$mixed_precision ` --save_every_n_epochs=$save_every_n_epochs ` --train_text_encoder ` --save_precision="fp16" accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process D:\kohya_ss\diffusers_fine_tuning\fine_tune_v1-ber.py ` --pretrained_model_name_or_path=$train_dir"\fine_tuned\last.ckpt" ` --in_json $train_dir"\meta_lat.json" ` --train_data_dir=$train_dir"\"$training_folder ` --output_dir=$train_dir"\fine_tuned2" ` --train_batch_size=$train_batch_size ` --dataset_repeats=$([Math]::Ceiling($dataset_repeats / 2)) ` --learning_rate=$learning_rate ` --max_train_steps=$([Math]::Ceiling($max_train_set / 2)) ` --use_8bit_adam --xformers ` --mixed_precision=$mixed_precision ` --save_every_n_epochs=$save_every_n_epochs ` --save_precision="fp16" # Hypernetwork accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process D:\kohya_ss\diffusers_fine_tuning\fine_tune_v1-ber.py ` --pretrained_model_name_or_path=$pretrained_model_name_or_path ` --in_json $train_dir"\meta_lat.json" ` --train_data_dir=$train_dir"\"$training_folder ` --output_dir=$train_dir"\fine_tuned" ` --train_batch_size=$train_batch_size ` --dataset_repeats=$dataset_repeats ` --learning_rate=$learning_rate ` --max_train_steps=$max_train_set ` --use_8bit_adam --xformers ` --mixed_precision=$mixed_precision ` --save_every_n_epochs=$save_every_n_epochs ` --save_precision="fp16" ` --hypernetwork_module="hypernetwork_nai"