# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape, # portrait and square images. # # Adjust the script to your own needs # Sylvia Ritter # variable values $pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt" $train_dir = "D:\dreambooth\train_sylvia_ritter\raw_data" $landscape_image_num = 4 $portrait_image_num = 25 $square_image_num = 2 $learning_rate = 1e-6 $dataset_repeats = 120 $train_batch_size = 4 $epoch = 1 $save_every_n_epochs=1 $mixed_precision="fp16" $num_cpu_threads_per_process=6 $landscape_folder_name = "landscape-pp" $landscape_resolution = "832,512" $portrait_folder_name = "portrait-pp" $portrait_resolution = "448,896" $square_folder_name = "square-pp" $square_resolution = "512,512" # You should not have to change values past this point $landscape_data_dir = $train_dir + "\" + $landscape_folder_name $portrait_data_dir = $train_dir + "\" + $portrait_folder_name $square_data_dir = $train_dir + "\" + $square_folder_name $landscape_output_dir = $train_dir + "\model-l" $portrait_output_dir = $train_dir + "\model-lp" $square_output_dir = $train_dir + "\model-lps" $landscape_repeats = $landscape_image_num * $dataset_repeats $portrait_repeats = $portrait_image_num * $dataset_repeats $square_repeats = $square_image_num * $dataset_repeats $landscape_mts = [Math]::Ceiling($landscape_repeats / $train_batch_size * $epoch) $portrait_mts = [Math]::Ceiling($portrait_repeats / $train_batch_size * $epoch) $square_mts = [Math]::Ceiling($square_repeats / $train_batch_size * $epoch) # Write-Output $landscape_repeats .\venv\Scripts\activate accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py ` --pretrained_model_name_or_path=$pretrained_model_name_or_path ` --train_data_dir=$landscape_data_dir ` --output_dir=$landscape_output_dir ` --resolution=$landscape_resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$landscape_mts ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$dataset_repeats ` --save_half accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py ` --pretrained_model_name_or_path=$landscape_output_dir"\last.ckpt" ` --train_data_dir=$portrait_data_dir ` --output_dir=$portrait_output_dir ` --resolution=$portrait_resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$portrait_mts ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$dataset_repeats ` --save_half accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py ` --pretrained_model_name_or_path=$portrait_output_dir"\last.ckpt" ` --train_data_dir=$square_data_dir ` --output_dir=$square_output_dir ` --resolution=$square_resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$square_mts ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$dataset_repeats ` --save_half # 2nd pass at half the dataset repeat value accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py ` --pretrained_model_name_or_path=$square_output_dir"\last.ckpt" ` --train_data_dir=$landscape_data_dir ` --output_dir=$landscape_output_dir"2" ` --resolution=$landscape_resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$([Math]::Ceiling($landscape_mts/2)) ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) ` --save_half accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py ` --pretrained_model_name_or_path=$landscape_output_dir"2\last.ckpt" ` --train_data_dir=$portrait_data_dir ` --output_dir=$portrait_output_dir"2" ` --resolution=$portrait_resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$([Math]::Ceiling($portrait_mts/2)) ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) ` --save_half accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py ` --pretrained_model_name_or_path=$portrait_output_dir"2\last.ckpt" ` --train_data_dir=$square_data_dir ` --output_dir=$square_output_dir"2" ` --resolution=$square_resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$([Math]::Ceiling($square_mts/2)) ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) ` --save_half