166 lines
5.9 KiB
Python
166 lines
5.9 KiB
Python
"""
|
|
extract factors the build is dependent on:
|
|
[X] compute capability
|
|
[ ] TODO: Q - What if we have multiple GPUs of different makes?
|
|
- CUDA version
|
|
- Software:
|
|
- CPU-only: only CPU quantization functions (no optimizer, no matrix multiple)
|
|
- CuBLAS-LT: full-build 8-bit optimizer
|
|
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
|
|
|
|
evaluation:
|
|
- if paths faulty, return meaningful error
|
|
- else:
|
|
- determine CUDA version
|
|
- determine capabilities
|
|
- based on that set the default path
|
|
"""
|
|
|
|
import ctypes
|
|
|
|
from .paths import determine_cuda_runtime_lib_path
|
|
|
|
|
|
def check_cuda_result(cuda, result_val):
|
|
# 3. Check for CUDA errors
|
|
if result_val != 0:
|
|
error_str = ctypes.c_char_p()
|
|
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
|
|
print(f"CUDA exception! Error code: {error_str.value.decode()}")
|
|
|
|
def get_cuda_version(cuda, cudart_path):
|
|
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
|
|
try:
|
|
cudart = ctypes.CDLL(cudart_path)
|
|
except OSError:
|
|
# TODO: shouldn't we error or at least warn here?
|
|
print(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
|
|
return None
|
|
|
|
version = ctypes.c_int()
|
|
check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
|
|
version = int(version.value)
|
|
major = version//1000
|
|
minor = (version-(major*1000))//10
|
|
|
|
if major < 11:
|
|
print('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
|
|
|
|
return f'{major}{minor}'
|
|
|
|
|
|
def get_cuda_lib_handle():
|
|
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
|
try:
|
|
cuda = ctypes.CDLL("libcuda.so")
|
|
except OSError:
|
|
# TODO: shouldn't we error or at least warn here?
|
|
print('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
|
|
return None
|
|
check_cuda_result(cuda, cuda.cuInit(0))
|
|
|
|
return cuda
|
|
|
|
|
|
def get_compute_capabilities(cuda):
|
|
"""
|
|
1. find libcuda.so library (GPU driver) (/usr/lib)
|
|
init_device -> init variables -> call function by reference
|
|
2. call extern C function to determine CC
|
|
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
|
|
3. Check for CUDA errors
|
|
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
|
|
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
|
|
"""
|
|
|
|
|
|
nGpus = ctypes.c_int()
|
|
cc_major = ctypes.c_int()
|
|
cc_minor = ctypes.c_int()
|
|
|
|
device = ctypes.c_int()
|
|
|
|
check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
|
|
ccs = []
|
|
for i in range(nGpus.value):
|
|
check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
|
|
ref_major = ctypes.byref(cc_major)
|
|
ref_minor = ctypes.byref(cc_minor)
|
|
# 2. call extern C function to determine CC
|
|
check_cuda_result(
|
|
cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device)
|
|
)
|
|
ccs.append(f"{cc_major.value}.{cc_minor.value}")
|
|
|
|
return ccs
|
|
|
|
|
|
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error
|
|
def get_compute_capability(cuda):
|
|
"""
|
|
Extracts the highest compute capbility from all available GPUs, as compute
|
|
capabilities are downwards compatible. If no GPUs are detected, it returns
|
|
None.
|
|
"""
|
|
ccs = get_compute_capabilities(cuda)
|
|
if ccs is not None:
|
|
# TODO: handle different compute capabilities; for now, take the max
|
|
return ccs[-1]
|
|
return None
|
|
|
|
|
|
def evaluate_cuda_setup():
|
|
print('')
|
|
print('='*35 + 'BUG REPORT' + '='*35)
|
|
print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
|
|
print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
|
|
print('='*80)
|
|
return "libbitsandbytes_cuda116.dll" # $$$
|
|
|
|
binary_name = "libbitsandbytes_cpu.so"
|
|
#if not torch.cuda.is_available():
|
|
#print('No GPU detected. Loading CPU library...')
|
|
#return binary_name
|
|
|
|
cudart_path = determine_cuda_runtime_lib_path()
|
|
if cudart_path is None:
|
|
print(
|
|
"WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!"
|
|
)
|
|
return binary_name
|
|
|
|
print(f"CUDA SETUP: CUDA runtime path found: {cudart_path}")
|
|
cuda = get_cuda_lib_handle()
|
|
cc = get_compute_capability(cuda)
|
|
print(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
|
|
cuda_version_string = get_cuda_version(cuda, cudart_path)
|
|
|
|
|
|
if cc == '':
|
|
print(
|
|
"WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..."
|
|
)
|
|
return binary_name
|
|
|
|
# 7.5 is the minimum CC vor cublaslt
|
|
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
|
|
|
|
# TODO:
|
|
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
|
|
# (2) Multiple CUDA versions installed
|
|
|
|
# we use ls -l instead of nvcc to determine the cuda version
|
|
# since most installations will have the libcudart.so installed, but not the compiler
|
|
print(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
|
|
|
|
def get_binary_name():
|
|
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
|
|
bin_base_name = "libbitsandbytes_cuda"
|
|
if has_cublaslt:
|
|
return f"{bin_base_name}{cuda_version_string}.so"
|
|
else:
|
|
return f"{bin_base_name}{cuda_version_string}_nocublaslt.so"
|
|
|
|
binary_name = get_binary_name()
|
|
|
|
return binary_name |