1167 lines
43 KiB
Python
1167 lines
43 KiB
Python
# v1: split from train_db_fixed.py.
|
||
# v2: support safetensors
|
||
|
||
import math
|
||
import os
|
||
import torch
|
||
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig
|
||
from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
||
from safetensors.torch import load_file, save_file
|
||
|
||
# DiffUsers版StableDiffusionのモデルパラメータ
|
||
NUM_TRAIN_TIMESTEPS = 1000
|
||
BETA_START = 0.00085
|
||
BETA_END = 0.0120
|
||
|
||
UNET_PARAMS_MODEL_CHANNELS = 320
|
||
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
|
||
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
|
||
UNET_PARAMS_IMAGE_SIZE = 32 # unused
|
||
UNET_PARAMS_IN_CHANNELS = 4
|
||
UNET_PARAMS_OUT_CHANNELS = 4
|
||
UNET_PARAMS_NUM_RES_BLOCKS = 2
|
||
UNET_PARAMS_CONTEXT_DIM = 768
|
||
UNET_PARAMS_NUM_HEADS = 8
|
||
|
||
VAE_PARAMS_Z_CHANNELS = 4
|
||
VAE_PARAMS_RESOLUTION = 256
|
||
VAE_PARAMS_IN_CHANNELS = 3
|
||
VAE_PARAMS_OUT_CH = 3
|
||
VAE_PARAMS_CH = 128
|
||
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
|
||
VAE_PARAMS_NUM_RES_BLOCKS = 2
|
||
|
||
# V2
|
||
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
|
||
V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
||
|
||
|
||
# region StableDiffusion->Diffusersの変換コード
|
||
# convert_original_stable_diffusion_to_diffusers をコピーして修正している(ASL 2.0)
|
||
|
||
|
||
def shave_segments(path, n_shave_prefix_segments=1):
|
||
"""
|
||
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
||
"""
|
||
if n_shave_prefix_segments >= 0:
|
||
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
||
else:
|
||
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
||
|
||
|
||
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
||
"""
|
||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||
"""
|
||
mapping = []
|
||
for old_item in old_list:
|
||
new_item = old_item.replace("in_layers.0", "norm1")
|
||
new_item = new_item.replace("in_layers.2", "conv1")
|
||
|
||
new_item = new_item.replace("out_layers.0", "norm2")
|
||
new_item = new_item.replace("out_layers.3", "conv2")
|
||
|
||
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
||
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
||
|
||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||
|
||
mapping.append({"old": old_item, "new": new_item})
|
||
|
||
return mapping
|
||
|
||
|
||
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
||
"""
|
||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||
"""
|
||
mapping = []
|
||
for old_item in old_list:
|
||
new_item = old_item
|
||
|
||
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||
|
||
mapping.append({"old": old_item, "new": new_item})
|
||
|
||
return mapping
|
||
|
||
|
||
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
||
"""
|
||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||
"""
|
||
mapping = []
|
||
for old_item in old_list:
|
||
new_item = old_item
|
||
|
||
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
||
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
||
|
||
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
||
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
||
|
||
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||
|
||
mapping.append({"old": old_item, "new": new_item})
|
||
|
||
return mapping
|
||
|
||
|
||
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
||
"""
|
||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||
"""
|
||
mapping = []
|
||
for old_item in old_list:
|
||
new_item = old_item
|
||
|
||
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
||
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
||
|
||
new_item = new_item.replace("q.weight", "query.weight")
|
||
new_item = new_item.replace("q.bias", "query.bias")
|
||
|
||
new_item = new_item.replace("k.weight", "key.weight")
|
||
new_item = new_item.replace("k.bias", "key.bias")
|
||
|
||
new_item = new_item.replace("v.weight", "value.weight")
|
||
new_item = new_item.replace("v.bias", "value.bias")
|
||
|
||
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
||
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
||
|
||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||
|
||
mapping.append({"old": old_item, "new": new_item})
|
||
|
||
return mapping
|
||
|
||
|
||
def assign_to_checkpoint(
|
||
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
||
):
|
||
"""
|
||
This does the final conversion step: take locally converted weights and apply a global renaming
|
||
to them. It splits attention layers, and takes into account additional replacements
|
||
that may arise.
|
||
|
||
Assigns the weights to the new checkpoint.
|
||
"""
|
||
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
||
|
||
# Splits the attention layers into three variables.
|
||
if attention_paths_to_split is not None:
|
||
for path, path_map in attention_paths_to_split.items():
|
||
old_tensor = old_checkpoint[path]
|
||
channels = old_tensor.shape[0] // 3
|
||
|
||
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
||
|
||
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
||
|
||
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
||
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
||
|
||
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
||
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
||
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
||
|
||
for path in paths:
|
||
new_path = path["new"]
|
||
|
||
# These have already been assigned
|
||
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
||
continue
|
||
|
||
# Global renaming happens here
|
||
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
||
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
||
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
||
|
||
if additional_replacements is not None:
|
||
for replacement in additional_replacements:
|
||
new_path = new_path.replace(replacement["old"], replacement["new"])
|
||
|
||
# proj_attn.weight has to be converted from conv 1D to linear
|
||
if "proj_attn.weight" in new_path:
|
||
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
||
else:
|
||
checkpoint[new_path] = old_checkpoint[path["old"]]
|
||
|
||
|
||
def conv_attn_to_linear(checkpoint):
|
||
keys = list(checkpoint.keys())
|
||
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
||
for key in keys:
|
||
if ".".join(key.split(".")[-2:]) in attn_keys:
|
||
if checkpoint[key].ndim > 2:
|
||
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
||
elif "proj_attn.weight" in key:
|
||
if checkpoint[key].ndim > 2:
|
||
checkpoint[key] = checkpoint[key][:, :, 0]
|
||
|
||
|
||
def linear_transformer_to_conv(checkpoint):
|
||
keys = list(checkpoint.keys())
|
||
tf_keys = ["proj_in.weight", "proj_out.weight"]
|
||
for key in keys:
|
||
if ".".join(key.split(".")[-2:]) in tf_keys:
|
||
if checkpoint[key].ndim == 2:
|
||
checkpoint[key] = checkpoint[key].unsqueeze(2).unsqueeze(2)
|
||
|
||
|
||
def convert_ldm_unet_checkpoint(v2, checkpoint, config):
|
||
"""
|
||
Takes a state dict and a config, and returns a converted checkpoint.
|
||
"""
|
||
|
||
# extract state_dict for UNet
|
||
unet_state_dict = {}
|
||
unet_key = "model.diffusion_model."
|
||
keys = list(checkpoint.keys())
|
||
for key in keys:
|
||
if key.startswith(unet_key):
|
||
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
||
|
||
new_checkpoint = {}
|
||
|
||
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
||
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
||
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
||
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
||
|
||
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
||
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
||
|
||
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
||
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
||
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
||
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
||
|
||
# Retrieves the keys for the input blocks only
|
||
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
||
input_blocks = {
|
||
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key]
|
||
for layer_id in range(num_input_blocks)
|
||
}
|
||
|
||
# Retrieves the keys for the middle blocks only
|
||
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
||
middle_blocks = {
|
||
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key]
|
||
for layer_id in range(num_middle_blocks)
|
||
}
|
||
|
||
# Retrieves the keys for the output blocks only
|
||
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
||
output_blocks = {
|
||
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key]
|
||
for layer_id in range(num_output_blocks)
|
||
}
|
||
|
||
for i in range(1, num_input_blocks):
|
||
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
||
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
||
|
||
resnets = [
|
||
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
||
]
|
||
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
||
|
||
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
||
f"input_blocks.{i}.0.op.weight"
|
||
)
|
||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
||
f"input_blocks.{i}.0.op.bias"
|
||
)
|
||
|
||
paths = renew_resnet_paths(resnets)
|
||
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||
assign_to_checkpoint(
|
||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
|
||
if len(attentions):
|
||
paths = renew_attention_paths(attentions)
|
||
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
||
assign_to_checkpoint(
|
||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
|
||
resnet_0 = middle_blocks[0]
|
||
attentions = middle_blocks[1]
|
||
resnet_1 = middle_blocks[2]
|
||
|
||
resnet_0_paths = renew_resnet_paths(resnet_0)
|
||
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
||
|
||
resnet_1_paths = renew_resnet_paths(resnet_1)
|
||
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
||
|
||
attentions_paths = renew_attention_paths(attentions)
|
||
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
||
assign_to_checkpoint(
|
||
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
|
||
for i in range(num_output_blocks):
|
||
block_id = i // (config["layers_per_block"] + 1)
|
||
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
||
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
||
output_block_list = {}
|
||
|
||
for layer in output_block_layers:
|
||
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
||
if layer_id in output_block_list:
|
||
output_block_list[layer_id].append(layer_name)
|
||
else:
|
||
output_block_list[layer_id] = [layer_name]
|
||
|
||
if len(output_block_list) > 1:
|
||
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
||
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
||
|
||
resnet_0_paths = renew_resnet_paths(resnets)
|
||
paths = renew_resnet_paths(resnets)
|
||
|
||
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||
assign_to_checkpoint(
|
||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
|
||
# オリジナル:
|
||
# if ["conv.weight", "conv.bias"] in output_block_list.values():
|
||
# index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
|
||
|
||
# biasとweightの順番に依存しないようにする:もっといいやり方がありそうだが
|
||
for l in output_block_list.values():
|
||
l.sort()
|
||
|
||
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
||
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
||
f"output_blocks.{i}.{index}.conv.bias"
|
||
]
|
||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
||
f"output_blocks.{i}.{index}.conv.weight"
|
||
]
|
||
|
||
# Clear attentions as they have been attributed above.
|
||
if len(attentions) == 2:
|
||
attentions = []
|
||
|
||
if len(attentions):
|
||
paths = renew_attention_paths(attentions)
|
||
meta_path = {
|
||
"old": f"output_blocks.{i}.1",
|
||
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
||
}
|
||
assign_to_checkpoint(
|
||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
else:
|
||
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
||
for path in resnet_0_paths:
|
||
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
||
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
||
|
||
new_checkpoint[new_path] = unet_state_dict[old_path]
|
||
|
||
# SDのv2では1*1のconv2dがlinearに変わっているので、linear->convに変換する
|
||
if v2:
|
||
linear_transformer_to_conv(new_checkpoint)
|
||
|
||
return new_checkpoint
|
||
|
||
|
||
def convert_ldm_vae_checkpoint(checkpoint, config):
|
||
# extract state dict for VAE
|
||
vae_state_dict = {}
|
||
vae_key = "first_stage_model."
|
||
keys = list(checkpoint.keys())
|
||
for key in keys:
|
||
if key.startswith(vae_key):
|
||
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
||
# if len(vae_state_dict) == 0:
|
||
# # 渡されたcheckpointは.ckptから読み込んだcheckpointではなくvaeのstate_dict
|
||
# vae_state_dict = checkpoint
|
||
|
||
new_checkpoint = {}
|
||
|
||
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
||
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
||
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
||
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
||
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
||
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
||
|
||
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
||
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
||
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
||
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
||
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
||
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
||
|
||
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
||
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
||
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
||
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
||
|
||
# Retrieves the keys for the encoder down blocks only
|
||
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
||
down_blocks = {
|
||
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
||
}
|
||
|
||
# Retrieves the keys for the decoder up blocks only
|
||
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
||
up_blocks = {
|
||
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
||
}
|
||
|
||
for i in range(num_down_blocks):
|
||
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
||
|
||
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
||
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
||
f"encoder.down.{i}.downsample.conv.weight"
|
||
)
|
||
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
||
f"encoder.down.{i}.downsample.conv.bias"
|
||
)
|
||
|
||
paths = renew_vae_resnet_paths(resnets)
|
||
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
|
||
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
||
num_mid_res_blocks = 2
|
||
for i in range(1, num_mid_res_blocks + 1):
|
||
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
||
|
||
paths = renew_vae_resnet_paths(resnets)
|
||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
|
||
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
||
paths = renew_vae_attention_paths(mid_attentions)
|
||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
conv_attn_to_linear(new_checkpoint)
|
||
|
||
for i in range(num_up_blocks):
|
||
block_id = num_up_blocks - 1 - i
|
||
resnets = [
|
||
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
||
]
|
||
|
||
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
||
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
||
f"decoder.up.{block_id}.upsample.conv.weight"
|
||
]
|
||
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
||
f"decoder.up.{block_id}.upsample.conv.bias"
|
||
]
|
||
|
||
paths = renew_vae_resnet_paths(resnets)
|
||
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
|
||
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
||
num_mid_res_blocks = 2
|
||
for i in range(1, num_mid_res_blocks + 1):
|
||
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
||
|
||
paths = renew_vae_resnet_paths(resnets)
|
||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
|
||
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
||
paths = renew_vae_attention_paths(mid_attentions)
|
||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
conv_attn_to_linear(new_checkpoint)
|
||
return new_checkpoint
|
||
|
||
|
||
def create_unet_diffusers_config(v2):
|
||
"""
|
||
Creates a config for the diffusers based on the config of the LDM model.
|
||
"""
|
||
# unet_params = original_config.model.params.unet_config.params
|
||
|
||
block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT]
|
||
|
||
down_block_types = []
|
||
resolution = 1
|
||
for i in range(len(block_out_channels)):
|
||
block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D"
|
||
down_block_types.append(block_type)
|
||
if i != len(block_out_channels) - 1:
|
||
resolution *= 2
|
||
|
||
up_block_types = []
|
||
for i in range(len(block_out_channels)):
|
||
block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D"
|
||
up_block_types.append(block_type)
|
||
resolution //= 2
|
||
|
||
config = dict(
|
||
sample_size=UNET_PARAMS_IMAGE_SIZE,
|
||
in_channels=UNET_PARAMS_IN_CHANNELS,
|
||
out_channels=UNET_PARAMS_OUT_CHANNELS,
|
||
down_block_types=tuple(down_block_types),
|
||
up_block_types=tuple(up_block_types),
|
||
block_out_channels=tuple(block_out_channels),
|
||
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
|
||
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM if not v2 else V2_UNET_PARAMS_CONTEXT_DIM,
|
||
attention_head_dim=UNET_PARAMS_NUM_HEADS if not v2 else V2_UNET_PARAMS_ATTENTION_HEAD_DIM,
|
||
)
|
||
|
||
return config
|
||
|
||
|
||
def create_vae_diffusers_config():
|
||
"""
|
||
Creates a config for the diffusers based on the config of the LDM model.
|
||
"""
|
||
# vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
||
# _ = original_config.model.params.first_stage_config.params.embed_dim
|
||
block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT]
|
||
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
||
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
||
|
||
config = dict(
|
||
sample_size=VAE_PARAMS_RESOLUTION,
|
||
in_channels=VAE_PARAMS_IN_CHANNELS,
|
||
out_channels=VAE_PARAMS_OUT_CH,
|
||
down_block_types=tuple(down_block_types),
|
||
up_block_types=tuple(up_block_types),
|
||
block_out_channels=tuple(block_out_channels),
|
||
latent_channels=VAE_PARAMS_Z_CHANNELS,
|
||
layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS,
|
||
)
|
||
return config
|
||
|
||
|
||
def convert_ldm_clip_checkpoint_v1(checkpoint):
|
||
keys = list(checkpoint.keys())
|
||
text_model_dict = {}
|
||
for key in keys:
|
||
if key.startswith("cond_stage_model.transformer"):
|
||
text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key]
|
||
return text_model_dict
|
||
|
||
|
||
def convert_ldm_clip_checkpoint_v2(checkpoint, max_length):
|
||
# 嫌になるくらい違うぞ!
|
||
def convert_key(key):
|
||
if not key.startswith("cond_stage_model"):
|
||
return None
|
||
|
||
# common conversion
|
||
key = key.replace("cond_stage_model.model.transformer.", "text_model.encoder.")
|
||
key = key.replace("cond_stage_model.model.", "text_model.")
|
||
|
||
if "resblocks" in key:
|
||
# resblocks conversion
|
||
key = key.replace(".resblocks.", ".layers.")
|
||
if ".ln_" in key:
|
||
key = key.replace(".ln_", ".layer_norm")
|
||
elif ".mlp." in key:
|
||
key = key.replace(".c_fc.", ".fc1.")
|
||
key = key.replace(".c_proj.", ".fc2.")
|
||
elif '.attn.out_proj' in key:
|
||
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.")
|
||
elif '.attn.in_proj' in key:
|
||
key = None # 特殊なので後で処理する
|
||
else:
|
||
raise ValueError(f"unexpected key in SD: {key}")
|
||
elif '.positional_embedding' in key:
|
||
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight")
|
||
elif '.text_projection' in key:
|
||
key = None # 使われない???
|
||
elif '.logit_scale' in key:
|
||
key = None # 使われない???
|
||
elif '.token_embedding' in key:
|
||
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight")
|
||
elif '.ln_final' in key:
|
||
key = key.replace(".ln_final", ".final_layer_norm")
|
||
return key
|
||
|
||
keys = list(checkpoint.keys())
|
||
new_sd = {}
|
||
for key in keys:
|
||
# remove resblocks 23
|
||
if '.resblocks.23.' in key:
|
||
continue
|
||
new_key = convert_key(key)
|
||
if new_key is None:
|
||
continue
|
||
new_sd[new_key] = checkpoint[key]
|
||
|
||
# attnの変換
|
||
for key in keys:
|
||
if '.resblocks.23.' in key:
|
||
continue
|
||
if '.resblocks' in key and '.attn.in_proj_' in key:
|
||
# 三つに分割
|
||
values = torch.chunk(checkpoint[key], 3)
|
||
|
||
key_suffix = ".weight" if "weight" in key else ".bias"
|
||
key_pfx = key.replace("cond_stage_model.model.transformer.resblocks.", "text_model.encoder.layers.")
|
||
key_pfx = key_pfx.replace("_weight", "")
|
||
key_pfx = key_pfx.replace("_bias", "")
|
||
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.")
|
||
new_sd[key_pfx + "q_proj" + key_suffix] = values[0]
|
||
new_sd[key_pfx + "k_proj" + key_suffix] = values[1]
|
||
new_sd[key_pfx + "v_proj" + key_suffix] = values[2]
|
||
|
||
# position_idsの追加
|
||
new_sd["text_model.embeddings.position_ids"] = torch.Tensor([list(range(max_length))]).to(torch.int64)
|
||
return new_sd
|
||
|
||
# endregion
|
||
|
||
|
||
# region Diffusers->StableDiffusion の変換コード
|
||
# convert_diffusers_to_original_stable_diffusion をコピーして修正している(ASL 2.0)
|
||
|
||
def conv_transformer_to_linear(checkpoint):
|
||
keys = list(checkpoint.keys())
|
||
tf_keys = ["proj_in.weight", "proj_out.weight"]
|
||
for key in keys:
|
||
if ".".join(key.split(".")[-2:]) in tf_keys:
|
||
if checkpoint[key].ndim > 2:
|
||
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
||
|
||
|
||
def convert_unet_state_dict_to_sd(v2, unet_state_dict):
|
||
unet_conversion_map = [
|
||
# (stable-diffusion, HF Diffusers)
|
||
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
||
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
||
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
||
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
||
("input_blocks.0.0.weight", "conv_in.weight"),
|
||
("input_blocks.0.0.bias", "conv_in.bias"),
|
||
("out.0.weight", "conv_norm_out.weight"),
|
||
("out.0.bias", "conv_norm_out.bias"),
|
||
("out.2.weight", "conv_out.weight"),
|
||
("out.2.bias", "conv_out.bias"),
|
||
]
|
||
|
||
unet_conversion_map_resnet = [
|
||
# (stable-diffusion, HF Diffusers)
|
||
("in_layers.0", "norm1"),
|
||
("in_layers.2", "conv1"),
|
||
("out_layers.0", "norm2"),
|
||
("out_layers.3", "conv2"),
|
||
("emb_layers.1", "time_emb_proj"),
|
||
("skip_connection", "conv_shortcut"),
|
||
]
|
||
|
||
unet_conversion_map_layer = []
|
||
for i in range(4):
|
||
# loop over downblocks/upblocks
|
||
|
||
for j in range(2):
|
||
# loop over resnets/attentions for downblocks
|
||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||
|
||
if i < 3:
|
||
# no attention layers in down_blocks.3
|
||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||
|
||
for j in range(3):
|
||
# loop over resnets/attentions for upblocks
|
||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||
|
||
if i > 0:
|
||
# no attention layers in up_blocks.0
|
||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||
|
||
if i < 3:
|
||
# no downsample in down_blocks.3
|
||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||
|
||
# no upsample in up_blocks.3
|
||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||
|
||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||
sd_mid_atn_prefix = "middle_block.1."
|
||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||
|
||
for j in range(2):
|
||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||
|
||
# buyer beware: this is a *brittle* function,
|
||
# and correct output requires that all of these pieces interact in
|
||
# the exact order in which I have arranged them.
|
||
mapping = {k: k for k in unet_state_dict.keys()}
|
||
for sd_name, hf_name in unet_conversion_map:
|
||
mapping[hf_name] = sd_name
|
||
for k, v in mapping.items():
|
||
if "resnets" in k:
|
||
for sd_part, hf_part in unet_conversion_map_resnet:
|
||
v = v.replace(hf_part, sd_part)
|
||
mapping[k] = v
|
||
for k, v in mapping.items():
|
||
for sd_part, hf_part in unet_conversion_map_layer:
|
||
v = v.replace(hf_part, sd_part)
|
||
mapping[k] = v
|
||
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
||
|
||
if v2:
|
||
conv_transformer_to_linear(new_state_dict)
|
||
|
||
return new_state_dict
|
||
|
||
|
||
# ================#
|
||
# VAE Conversion #
|
||
# ================#
|
||
|
||
def reshape_weight_for_sd(w):
|
||
# convert HF linear weights to SD conv2d weights
|
||
return w.reshape(*w.shape, 1, 1)
|
||
|
||
|
||
def convert_vae_state_dict(vae_state_dict):
|
||
vae_conversion_map = [
|
||
# (stable-diffusion, HF Diffusers)
|
||
("nin_shortcut", "conv_shortcut"),
|
||
("norm_out", "conv_norm_out"),
|
||
("mid.attn_1.", "mid_block.attentions.0."),
|
||
]
|
||
|
||
for i in range(4):
|
||
# down_blocks have two resnets
|
||
for j in range(2):
|
||
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
||
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
||
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
||
|
||
if i < 3:
|
||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
||
sd_downsample_prefix = f"down.{i}.downsample."
|
||
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
||
|
||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||
sd_upsample_prefix = f"up.{3-i}.upsample."
|
||
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
||
|
||
# up_blocks have three resnets
|
||
# also, up blocks in hf are numbered in reverse from sd
|
||
for j in range(3):
|
||
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
||
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
||
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
||
|
||
# this part accounts for mid blocks in both the encoder and the decoder
|
||
for i in range(2):
|
||
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
||
sd_mid_res_prefix = f"mid.block_{i+1}."
|
||
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||
|
||
vae_conversion_map_attn = [
|
||
# (stable-diffusion, HF Diffusers)
|
||
("norm.", "group_norm."),
|
||
("q.", "query."),
|
||
("k.", "key."),
|
||
("v.", "value."),
|
||
("proj_out.", "proj_attn."),
|
||
]
|
||
|
||
mapping = {k: k for k in vae_state_dict.keys()}
|
||
for k, v in mapping.items():
|
||
for sd_part, hf_part in vae_conversion_map:
|
||
v = v.replace(hf_part, sd_part)
|
||
mapping[k] = v
|
||
for k, v in mapping.items():
|
||
if "attentions" in k:
|
||
for sd_part, hf_part in vae_conversion_map_attn:
|
||
v = v.replace(hf_part, sd_part)
|
||
mapping[k] = v
|
||
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
||
weights_to_convert = ["q", "k", "v", "proj_out"]
|
||
for k, v in new_state_dict.items():
|
||
for weight_name in weights_to_convert:
|
||
if f"mid.attn_1.{weight_name}.weight" in k:
|
||
# print(f"Reshaping {k} for SD format")
|
||
new_state_dict[k] = reshape_weight_for_sd(v)
|
||
|
||
return new_state_dict
|
||
|
||
|
||
# endregion
|
||
|
||
# region 自作のモデル読み書き
|
||
|
||
def is_safetensors(path):
|
||
return os.path.splitext(path)[1].lower() == '.safetensors'
|
||
|
||
|
||
def load_checkpoint_with_text_encoder_conversion(ckpt_path):
|
||
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
|
||
TEXT_ENCODER_KEY_REPLACEMENTS = [
|
||
('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'),
|
||
('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'),
|
||
('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.')
|
||
]
|
||
|
||
if is_safetensors(ckpt_path):
|
||
checkpoint = None
|
||
state_dict = load_file(ckpt_path, "cpu")
|
||
else:
|
||
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
||
if "state_dict" in checkpoint:
|
||
state_dict = checkpoint["state_dict"]
|
||
else:
|
||
state_dict = checkpoint
|
||
checkpoint = None
|
||
|
||
key_reps = []
|
||
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
|
||
for key in state_dict.keys():
|
||
if key.startswith(rep_from):
|
||
new_key = rep_to + key[len(rep_from):]
|
||
key_reps.append((key, new_key))
|
||
|
||
for key, new_key in key_reps:
|
||
state_dict[new_key] = state_dict[key]
|
||
del state_dict[key]
|
||
|
||
return checkpoint, state_dict
|
||
|
||
|
||
# TODO dtype指定の動作が怪しいので確認する text_encoderを指定形式で作れるか未確認
|
||
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, dtype=None):
|
||
_, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||
if dtype is not None:
|
||
for k, v in state_dict.items():
|
||
if type(v) is torch.Tensor:
|
||
state_dict[k] = v.to(dtype)
|
||
|
||
# Convert the UNet2DConditionModel model.
|
||
unet_config = create_unet_diffusers_config(v2)
|
||
converted_unet_checkpoint = convert_ldm_unet_checkpoint(v2, state_dict, unet_config)
|
||
|
||
unet = UNet2DConditionModel(**unet_config)
|
||
info = unet.load_state_dict(converted_unet_checkpoint)
|
||
print("loading u-net:", info)
|
||
|
||
# Convert the VAE model.
|
||
vae_config = create_vae_diffusers_config()
|
||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config)
|
||
|
||
vae = AutoencoderKL(**vae_config)
|
||
info = vae.load_state_dict(converted_vae_checkpoint)
|
||
print("loadint vae:", info)
|
||
|
||
# convert text_model
|
||
if v2:
|
||
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v2(state_dict, 77)
|
||
cfg = CLIPTextConfig(
|
||
vocab_size=49408,
|
||
hidden_size=1024,
|
||
intermediate_size=4096,
|
||
num_hidden_layers=23,
|
||
num_attention_heads=16,
|
||
max_position_embeddings=77,
|
||
hidden_act="gelu",
|
||
layer_norm_eps=1e-05,
|
||
dropout=0.0,
|
||
attention_dropout=0.0,
|
||
initializer_range=0.02,
|
||
initializer_factor=1.0,
|
||
pad_token_id=1,
|
||
bos_token_id=0,
|
||
eos_token_id=2,
|
||
model_type="clip_text_model",
|
||
projection_dim=512,
|
||
torch_dtype="float32",
|
||
transformers_version="4.25.0.dev0",
|
||
)
|
||
text_model = CLIPTextModel._from_config(cfg)
|
||
info = text_model.load_state_dict(converted_text_encoder_checkpoint)
|
||
else:
|
||
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v1(state_dict)
|
||
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
||
info = text_model.load_state_dict(converted_text_encoder_checkpoint)
|
||
print("loading text encoder:", info)
|
||
|
||
return text_model, vae, unet
|
||
|
||
|
||
def convert_text_encoder_state_dict_to_sd_v2(checkpoint, make_dummy_weights=False):
|
||
def convert_key(key):
|
||
# position_idsの除去
|
||
if ".position_ids" in key:
|
||
return None
|
||
|
||
# common
|
||
key = key.replace("text_model.encoder.", "transformer.")
|
||
key = key.replace("text_model.", "")
|
||
if "layers" in key:
|
||
# resblocks conversion
|
||
key = key.replace(".layers.", ".resblocks.")
|
||
if ".layer_norm" in key:
|
||
key = key.replace(".layer_norm", ".ln_")
|
||
elif ".mlp." in key:
|
||
key = key.replace(".fc1.", ".c_fc.")
|
||
key = key.replace(".fc2.", ".c_proj.")
|
||
elif '.self_attn.out_proj' in key:
|
||
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.")
|
||
elif '.self_attn.' in key:
|
||
key = None # 特殊なので後で処理する
|
||
else:
|
||
raise ValueError(f"unexpected key in DiffUsers model: {key}")
|
||
elif '.position_embedding' in key:
|
||
key = key.replace("embeddings.position_embedding.weight", "positional_embedding")
|
||
elif '.token_embedding' in key:
|
||
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight")
|
||
elif 'final_layer_norm' in key:
|
||
key = key.replace("final_layer_norm", "ln_final")
|
||
return key
|
||
|
||
keys = list(checkpoint.keys())
|
||
new_sd = {}
|
||
for key in keys:
|
||
new_key = convert_key(key)
|
||
if new_key is None:
|
||
continue
|
||
new_sd[new_key] = checkpoint[key]
|
||
|
||
# attnの変換
|
||
for key in keys:
|
||
if 'layers' in key and 'q_proj' in key:
|
||
# 三つを結合
|
||
key_q = key
|
||
key_k = key.replace("q_proj", "k_proj")
|
||
key_v = key.replace("q_proj", "v_proj")
|
||
|
||
value_q = checkpoint[key_q]
|
||
value_k = checkpoint[key_k]
|
||
value_v = checkpoint[key_v]
|
||
value = torch.cat([value_q, value_k, value_v])
|
||
|
||
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.")
|
||
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_")
|
||
new_sd[new_key] = value
|
||
|
||
# 最後の層などを捏造するか
|
||
if make_dummy_weights:
|
||
print("make dummy weights for resblock.23, text_projection and logit scale.")
|
||
keys = list(new_sd.keys())
|
||
for key in keys:
|
||
if key.startswith("transformer.resblocks.22."):
|
||
new_sd[key.replace(".22.", ".23.")] = new_sd[key]
|
||
|
||
# Diffusersに含まれない重みを作っておく
|
||
new_sd['text_projection'] = torch.ones((1024, 1024), dtype=new_sd[keys[0]].dtype, device=new_sd[keys[0]].device)
|
||
new_sd['logit_scale'] = torch.tensor(1)
|
||
|
||
return new_sd
|
||
|
||
|
||
def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_path, epochs, steps, save_dtype=None, vae=None):
|
||
if ckpt_path is not None:
|
||
# epoch/stepを参照する。またVAEがメモリ上にないときなど、もう一度VAEを含めて読み込む
|
||
checkpoint, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||
if checkpoint is None: # safetensors または state_dictのckpt
|
||
checkpoint = {}
|
||
strict = False
|
||
else:
|
||
strict = True
|
||
if "state_dict" in state_dict:
|
||
del state_dict["state_dict"]
|
||
else:
|
||
# 新しく作る
|
||
checkpoint = {}
|
||
state_dict = {}
|
||
strict = False
|
||
|
||
def update_sd(prefix, sd):
|
||
for k, v in sd.items():
|
||
key = prefix + k
|
||
assert not strict or key in state_dict, f"Illegal key in save SD: {key}"
|
||
if save_dtype is not None:
|
||
v = v.detach().clone().to("cpu").to(save_dtype)
|
||
state_dict[key] = v
|
||
|
||
# Convert the UNet model
|
||
unet_state_dict = convert_unet_state_dict_to_sd(v2, unet.state_dict())
|
||
update_sd("model.diffusion_model.", unet_state_dict)
|
||
|
||
# Convert the text encoder model
|
||
if v2:
|
||
make_dummy = ckpt_path is None # 参照元のcheckpointがない場合は最後の層を前の層から複製して作るなどダミーの重みを入れる
|
||
text_enc_dict = convert_text_encoder_state_dict_to_sd_v2(text_encoder.state_dict(), make_dummy)
|
||
update_sd("cond_stage_model.model.", text_enc_dict)
|
||
else:
|
||
text_enc_dict = text_encoder.state_dict()
|
||
update_sd("cond_stage_model.transformer.", text_enc_dict)
|
||
|
||
# Convert the VAE
|
||
if vae is not None:
|
||
vae_dict = convert_vae_state_dict(vae.state_dict())
|
||
update_sd("first_stage_model.", vae_dict)
|
||
|
||
# Put together new checkpoint
|
||
key_count = len(state_dict.keys())
|
||
new_ckpt = {'state_dict': state_dict}
|
||
|
||
if 'epoch' in checkpoint:
|
||
epochs += checkpoint['epoch']
|
||
if 'global_step' in checkpoint:
|
||
steps += checkpoint['global_step']
|
||
|
||
new_ckpt['epoch'] = epochs
|
||
new_ckpt['global_step'] = steps
|
||
|
||
if is_safetensors(output_file):
|
||
# TODO Tensor以外のdictの値を削除したほうがいいか
|
||
save_file(state_dict, output_file)
|
||
else:
|
||
torch.save(new_ckpt, output_file)
|
||
|
||
return key_count
|
||
|
||
|
||
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, vae=None):
|
||
if vae is None:
|
||
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
||
pipeline = StableDiffusionPipeline(
|
||
unet=unet,
|
||
text_encoder=text_encoder,
|
||
vae=vae,
|
||
scheduler=DDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler"),
|
||
tokenizer=CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer"),
|
||
safety_checker=None,
|
||
feature_extractor=None,
|
||
requires_safety_checker=None,
|
||
)
|
||
pipeline.save_pretrained(output_dir)
|
||
|
||
|
||
VAE_PREFIX = "first_stage_model."
|
||
|
||
|
||
def load_vae(vae_id, dtype):
|
||
print(f"load VAE: {vae_id}")
|
||
if os.path.isdir(vae_id) or not os.path.isfile(vae_id):
|
||
# Diffusers local/remote
|
||
try:
|
||
vae = AutoencoderKL.from_pretrained(vae_id, subfolder=None, torch_dtype=dtype)
|
||
except EnvironmentError as e:
|
||
print(f"exception occurs in loading vae: {e}")
|
||
print("retry with subfolder='vae'")
|
||
vae = AutoencoderKL.from_pretrained(vae_id, subfolder="vae", torch_dtype=dtype)
|
||
return vae
|
||
|
||
# local
|
||
vae_config = create_vae_diffusers_config()
|
||
|
||
if vae_id.endswith(".bin"):
|
||
# SD 1.5 VAE on Huggingface
|
||
vae_sd = torch.load(vae_id, map_location="cpu")
|
||
converted_vae_checkpoint = vae_sd
|
||
else:
|
||
# StableDiffusion
|
||
vae_model = torch.load(vae_id, map_location="cpu")
|
||
vae_sd = vae_model['state_dict']
|
||
|
||
# vae only or full model
|
||
full_model = False
|
||
for vae_key in vae_sd:
|
||
if vae_key.startswith(VAE_PREFIX):
|
||
full_model = True
|
||
break
|
||
if not full_model:
|
||
sd = {}
|
||
for key, value in vae_sd.items():
|
||
sd[VAE_PREFIX + key] = value
|
||
vae_sd = sd
|
||
del sd
|
||
|
||
# Convert the VAE model.
|
||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(vae_sd, vae_config)
|
||
|
||
vae = AutoencoderKL(**vae_config)
|
||
vae.load_state_dict(converted_vae_checkpoint)
|
||
return vae
|
||
|
||
|
||
def get_epoch_ckpt_name(use_safetensors, epoch):
|
||
return f"epoch-{epoch:06d}" + (".safetensors" if use_safetensors else ".ckpt")
|
||
|
||
|
||
def get_last_ckpt_name(use_safetensors):
|
||
return f"last" + (".safetensors" if use_safetensors else ".ckpt")
|
||
|
||
# endregion
|
||
|
||
|
||
def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64):
|
||
max_width, max_height = max_reso
|
||
max_area = (max_width // divisible) * (max_height // divisible)
|
||
|
||
resos = set()
|
||
|
||
size = int(math.sqrt(max_area)) * divisible
|
||
resos.add((size, size))
|
||
|
||
size = min_size
|
||
while size <= max_size:
|
||
width = size
|
||
height = min(max_size, (max_area // (width // divisible)) * divisible)
|
||
resos.add((width, height))
|
||
resos.add((height, width))
|
||
|
||
# # make additional resos
|
||
# if width >= height and width - divisible >= min_size:
|
||
# resos.add((width - divisible, height))
|
||
# resos.add((height, width - divisible))
|
||
# if height >= width and height - divisible >= min_size:
|
||
# resos.add((width, height - divisible))
|
||
# resos.add((height - divisible, width))
|
||
|
||
size += divisible
|
||
|
||
resos = list(resos)
|
||
resos.sort()
|
||
|
||
aspect_ratios = [w / h for w, h in resos]
|
||
return resos, aspect_ratios
|
||
|
||
|
||
if __name__ == '__main__':
|
||
resos, aspect_ratios = make_bucket_resolutions((512, 768))
|
||
print(len(resos))
|
||
print(resos)
|
||
print(aspect_ratios)
|
||
|
||
ars = set()
|
||
for ar in aspect_ratios:
|
||
if ar in ars:
|
||
print("error! duplicate ar:", ar)
|
||
ars.add(ar)
|